Status of the Novosibirsk two-photon exchange experiment

J. Arrington,² L. M. Barkov,¹ V. F. Dmitriev,¹ V. V. Gauzshtein,³
R. A Golovin,¹ <u>A.V. Gramolin</u>,¹ R. J. Holt,² V. V. Kaminsky,¹ B. A. Lazarenko,¹
S. I. Mishnev,¹ N. Yu. Muchnoi,¹ V.V. Neufeld,¹ D. M. Nikolenko,¹
I. A. Rachek,¹ R.Sh. Sadykov,¹ Yu. V. Shestakov,¹ V. N. Stibunov,³
D. K. Toporkov,¹ H. de Vries,⁴ S. A. Zevakov,¹ and V. N. Zhilich¹

¹Budker Institute of Nuclear Physics, Novosibirsk, Russia
 ²Argonne National Laboratory, Argonne, USA
 ³Nuclear Physics Institute at Tomsk Polytechnical University, Tomsk, Russia
 ⁴NIKHEF, Amsterdam, The Netherlands

Symposium "Experimental and theoretical aspects of the proton form factors"

Elastic electron-proton scattering

Differential cross section for elastic *ep*-scattering is given by the Rosenbluth formula:

where $\tau = Q^2/(4M^2)$, $Q^2 = 2M(E_{\ell} - E'_{\ell})$, $d\sigma_{Mott}/d\Omega_{\ell}$ — Mott cross section, $G_E(Q^2)$ and $G_M(Q^2)$ — electric and magnetic form factors of the proton.

 G_E and G_M are functions of the 4-momentum transfer squared (Q^2) only and describe the distributions of charge and magnetic moment inside the proton.

Introducing the variable ε (virtual photon polarization)

$$arepsilon = \left[1+2(1+ au)\,\mathrm{tg}^2\,rac{ heta_\ell}{2}
ight]^{-1},$$

the Rosenbluth formula can be written as follows:

$$rac{d\sigma_{\mathsf{Ros}}}{d\Omega_\ell} = rac{1}{arepsilon(1+ au)} ig[arepsilon G_{\mathit{E}}^2(\mathcal{Q}^2) + au G_{\mathit{M}}^2(\mathcal{Q}^2)ig] = rac{\sigma_{\mathsf{red}}}{arepsilon(1+ au)},$$

where $\sigma_{\rm red}$ (reduced cross section) is a linear function of ε if $Q^2 = {\rm const.}$

The proton's form factors, two methods of measuring

$$\sigma_{\mathsf{red}} = \varepsilon (1+ au) \frac{d\sigma}{d\Omega_\ell} = \varepsilon G_E^2 + au G_M^2$$

Polarization transfer method (Akhiezer and Rekalo, 1968)

The ratio G_E/G_M is proportional to the ratio of transverse P_T and longitudinal P_L polarization components of the recoil proton in reaction $\vec{e}p \rightarrow e'\vec{p'}$:

$$\frac{G_E}{G_M} = -\frac{P_T}{P_L} \, \frac{E_\ell + E_\ell'}{2M} \, \operatorname{tg} \frac{\theta}{2}.$$

Rosenbluth method

It consists in measuring of $d\sigma/d\Omega_{\ell}$ for fixed Q^2 , but with different E_{ℓ} , θ_{ℓ} . \Rightarrow Dipole formula for G_E and G_M :

$$egin{aligned} G_E(Q^2) &pprox \left(1 + rac{Q^2}{0.71 \; ext{GeV}^2}
ight)^{-2}, \ &G_{\mathcal{M}}(Q^2) &pprox \mu G_E(Q^2). \end{aligned}$$

Two-photon exchange contribution?

This discrepancy has been explained as the effect of two-photon exchange (TPE) beyond the usual one-photon exchange approximation in the calculation of the elastic electron-proton scattering cross section.

Complications arising in the calculation of the TPE corrections are connected with difficulties in accounting for proton excitations in the intermediate state.

Fortunately, the contribution of two-photon exchange can be measured directly. This is possible due to the fact that the TPE corrections have opposite signs for e^+p and e^-p scattering cross sections, producing a measurable charge asymmetry

$$R = rac{\sigma(e^+
ho)}{\sigma(e^-
ho)} pprox 1 + 4 rac{{
m Re}\left({\cal M}_{
m Born}^{\dagger}{\cal M}_{2\gamma}
ight)}{|{\cal M}_{
m Born}|^2},$$

where $\sigma(e^+)$ and $\sigma(e^-)$ denote elastic cross sections of positron-proton and electronproton scattering, respectively.

It should be taken into account the radiative corrections

Details: in tomorrow's talks of Victor Fadin and Alexander Gramolin

Three experiments aimed at measuring the ratio R

- Novosibirsk experiment ($E_{beam} = 1.6, 1$ and 0.6 GeV)
- CLAS @ JLab experiment ($E_{beam} = 0.5 \div 4 \text{ GeV}$)
- OLYMPUS @ DESY experiment (*E*_{beam} = 2 GeV)

Novosibirsk TPE experiment (run I)

Novosibirsk TPE experiment (runs II, III)

OLYMPUS experiment @ DESY

Details: in the next talk (Rebecca Russell)

CLAS TPE experiment @ JLab

- Primary electron beam: 5.5 GeV and 100 nA
- Radiator: 1% of primary electrons radiate high energy photons
- Tagger magnet: Transport electrons tagger dump
- Converter: 10% of photons are converted to electron/positron pairs
- Chicane: separate the lepton beams
- Remaining photons are stopped at the photon blocker
- e^+ and e^- beams are then recombined and continue to the target
- Target: liquid hydrogen: length = 18 cm (30 cm) & diameter = 6 cm (6 cm)
- Detector: CLAS (DC, TOF)

Details: in the EVO-talk of Robert Bennett

Comparison of the three experiments

	VEPP-3	OLYMPUS	EG5 CLAS
	Novosibirsk	DESY	JLab
beam energy	3 fixed	1(+1?) fixed	wide spectrum
equality of e $^\pm$ beam energy	measured	assumed	reconstructed
e^+/e^- swapping frequency	half-hour	8 hours	simultaneously
e^+/e^- lumi monitor	elastic low-Q ²	elastic low-Q ² , Möller/Bhabha	from simulation
energy of scattered e $^\pm$	EM-calorimeter	mag analysis	mag. analysis
proton PID	$\Delta E/E$, TOF	mag. analysis, TOF	mag. analysis, TOF
e^+/e^- detector acceptance	identical	big difference	big difference
luminosity	$1.0 imes10^{32}$	$2.0 imes10^{33}$	2.5×10^{32}

- Novosibirsk experiment is inferior to the other two in experimental luminosity and in quality of particle ID.
- However, the detector performance is sufficient for reliable identification of elastic scattering events.
- Non-magnetic detector, measurement of beams energy, frequent swapping of e^+/e^- beams allow us to obtain lowest systematic error.

Novosibirsk experiment at the VEPP-3 storage ring

A precision measurement of the ratio $R = \sigma(e^+p)/\sigma(e^-p)$ has been performed recently at the VEPP-3 storage ring at the energy of electron/positron beams of 1.6 GeV (run I), 1.0 GeV (run II) and 0.6 GeV (run III). The smallest angle regions were used for luminosity monitoring only.

Parameter	Run I		Run II		Run III		
	LA	MA	SA	LA	MA	LA	MA
<i>E</i> beam, GeV	1.6		1.0		0.6		
∫ <i>l</i> _{beam} dt, kC	54		100		3		
$ heta_\ell$, °	55÷75	15÷25	8÷15	65÷105	15÷25	75÷110	25÷35
$Q^2, \text{ GeV}^2$	1.26÷	0.16÷	0.05÷	0.71÷	0.07÷	0.36÷	0.06÷
	-1.00	-0.41	-0.10	÷1.00	-0.17	-0.52	-0.12
ε	0.37÷ ÷0.58	0.90÷ ÷0.97	0.97÷ ÷0.99	0.18÷ ÷0.51	0.91÷ ÷0.97	0.18÷ ÷0.44	0.83÷ ÷0.91
$\Delta R/R$, stat.	1.1%	0.1%		0.3%		0.8%	

Kinematic parameters of the experiment are shown in the table:

Milestones of the Novosibirsk experiment

• The proposal was published (Aug 2004): nucl-ex/0408020

Two-photon exchange and elastic scattering of electrons/positrons on the proton. (Proposal for an experiment at VEPP-3). J. Amigton, V.F. Dmitney, R.J. Holt, D.M. Nikolenko, I.A. Rachek, Yu.V. Shestakov, V.N. Stibunov, D.K. Toporkov, H. de Vries. Aug 2004. 13 pp. e-Print: <u>uncl-ave/4040920</u> [uncl-ave] <u>PDF</u>

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote Detailed record - Cited by 45 records

• Data taking:

Run	Duration	E _{beam} , GeV	Number of $e^+ + e^-$ cycles	$\int \text{luminosity,} \text{pb}^{-1}$
Engineering run	May–Jul 2007	1.6	90	12
Run I	Sep-Dec 2009	1.6	1100	324
Run II	Sep 2011 – Mar 2012	1.0	2350	600
Run III	Apr 2012	0.6	220	18

• Some preliminary results were published (Dec 2011): arXiv:1112.5369

Measurement of the two-photon exchange contribution in elastic ep scattering at VEPP-3.

A.V. Gramolin (Novosibirsk, IYF), J. Arrington (Argonne), L.M. Barkov (Novosibirsk, IYF), V.F. Dmitriev (Novosibirsk, IYF & Novosibirsk, IYF, A. Hot (Argonne), V.V. Gauzshtein (Tomsk Polytechnic U.), R.A. Gloivin (Novosibirsk, IYF), R.J. Hot (Argonne), V.V. famisky, B.A. Lazarenko, S.I. Mishnev (Novosibirsk, IYF) *et al.*, Dec 2011. 5 pp. Published in Nucl.Phys.Proc.Suppl. 225-227 (2012) 216 To appear in the proceedings of Conference: <u>C1109-19</u> e-Print: <u>arXiv:112.5389</u> [nucl-ex] PDF References [BibTKY [LaTeX(US)] LaTeX(US)] LaTeX(US) [LaTeX(US)] and [LateX(US)] [LaTeX(U

Detailed record - Cited by 1 record

• Final results of the experiment: expected in 2013

Alexander Gramolin (Budker INP)

Beam integral collection during run I and run II

Alexander Gramolin (Budker INP)

Slow control system of the experiment

Alexander Gramolin (Budker INP)

OLYMPUS Symposium

PNPI, July 9, 2012 15 / 28

Slow control system of the experiment

... and the shift leader during a 12-hour shift:

VEPP-3 electron-positron storage ring

VEPP–3 is a booster for the VEPP–4M electron-positron collider.

VEPP-3 parameters for *e*⁻ beam:

E ₀	2 GeV
I 0	150 m A
$\Delta E/E$	0.05%
U ₇₂	0.8 MV
Т	248.14 ns
σ_L	15 cm
σ_z	0.5 mm
σ_x	2.0 mm
β_z	2 m
β_x	6 m
Einj	350 MeV
İ _{inj}	$1.5 \cdot 10^9 \ s^{-1}$
	$ \begin{array}{c} E_0 \\ I_0 \\ \Delta E / E \\ U_{72} \\ T \\ \sigma_L \\ \sigma_z \\ \sigma_x \\ \beta_z \\ \beta_x \\ E_{inj} \\ \dot{I}_{inj} \end{array} $

parameters in the center of 2nd straight section

Maximal e^+ current: 60 mA

VEPP-3 internal target section

Detector and target at VEPP-3

Selection of the elastic scattering events

- Correlation between polar angles (θ_ℓ vs. θ_ρ)
- Correlation between azimuthal angles (ϕ_ℓ vs. ϕ_p)
- Correlation between lepton scattering angle and proton energy ($heta_\ell$ vs. E_p)
- Correlation between lepton scattering angle and electron energy ($heta_\ell$ vs. E_ℓ)
- $\Delta E E$ analysis
- Time-of-flight analysis for low-energy protons

MC simulation of the background processes

- Geant4 detector model
- MAID2007 and 2-PION-MAID based event generator for single- and double-pion electro-production
- ESEPP event generator for elastic ep scattering with bremsstrahlung

Result for the reconstructed beam energy spectrum (run II, LA-kinematics), after just loose ($\Delta\phi, \Delta\theta$)-cuts applied:

DATA and ESEPP+MAID2007+GEANT4

when all cuts applied: $N_{background}/N_{elastic} < 1\%$

MC simulation of the radiative corrections

- The first-order bremsstrahlung: calculation by Fadin & Feldman instead of the simplified soft-photon one.
- $\bullet\,$ Calculation by Fadin & Gerasimov to account for bremstrahlung with $\Delta\textsc{-isobar}$ excitation.
- New event generator ESEPP is applied to the Monte-Carlo detector simulation using the Geant4 software package.

Ratio R and RC depend both on the kinematic cuts used

Raw data for the ratio R:

Radiatively corrected ratio R:

Experimentally measured ratio R is shown before (left figure) and after (right figure) taking into account the radiative corrections (FF model). Red markers correspond to the cut $\Delta \theta = \Delta \phi = 3^{\circ}$ on the angular correlations, blue markers correspond to the cut $\Delta \theta = \Delta \phi = 6^{\circ}$ (data for LA range of the run II).

Suppression of the systematics: alternation of e^- and e^+

- Data collection with e^- and e^+ beams was alternated regularly. This allows us to suppres effects of slow drift in time of the target thickness, detection efficiency and some other parameters.
- One cycle (e^+ and e^- beams) per 1 hour approximately.
- Starting and ending values of beam currents and beam lifetime for e⁻ and e⁺ beams in each cycle were kept as close as possible.

Alexander Gramolin (Budker INP)

Suppression of the systematics: beam position

- Using the VEPP-3 beam orbit stabilisation system.
- Continuous measurement of the beam position at the entrance and exit of the experimental section by pick-up electrodes.
- Periodical "absolute" beam position measurements using moveable shutters.
- Determination of beam position in the target from data analysis.

Measurement of beam position by the **2P3** pick-up electrode:

Contribution to the systematic error: < 0.1%

Suppression of the systematics: beam energy

- Method of measuring the energy of the laser photons back-scattered by the VEPP-3 beam is used.
- This allows us to tune the VEPP-3 operation regimes and to monitor the beams energy during the experiment.

VEPP-3 energy measurement

Contribution to the systematic error: < 0.1%

Beam energy measurement by Compton backscattering

Already existing system created earlier for the VEPP-4M collider has been used.

Photons from a CO_2 laser are scattered in a head-on collision with the stored beam. From the spectrum of the backscattered photons that are detected by an energycalibrated high purity Ge detector the beam energy can be determined:

$$E = rac{\omega_{ extsf{max}}}{2} \left(1 + \sqrt{1 + rac{m_e^2}{\omega_0 \omega_{ extsf{max}}}}
ight),$$

where ω_{max} — maximal energy of backscattering photons (the edge of spectrum), ω_0 — energy of laser photons, m_e — electron mass.

Preliminary results of the Novosibirsk experiment

Theory: P. G. Blunden, et al., Phys. Rev. C 72 (2005) 034612

Only statistical errors are shown. Systematic errors for both the runs: $\leq 0.3\%$ Note that the radiative corrections have been taken into account. Some minor corrections have not yet been made (for example, corrections related to the variation in time of beam energy and position).

Alexander Gramolin (Budker INP)

Conclusion

 \checkmark The first precision measurement of the ratio $R = \sigma(e^+p)/\sigma(e^-p)$ has been performed. Data taking has been completed and analysis is still ongoing.

 \checkmark Systematic errors of the measurement have been discussed. Here we have some advantages in comparison with OLYMPUS and CLAS.

 \checkmark It is very important to carefully consider the radiative corrections due to bremsstrahlung in this experiment. Procedure of account of RC has been developed (ESEPP event generator + Geant4 simulation).

 \checkmark Some preliminary results have been presented. They are consistent with the theoretical predictions by Blunden et al.

 \checkmark Final results of the experiment are expected in the next year.

Thank you for your attention!

My participation in the Symposium was supported in part by Russian Foundation for Basic Research under the grant 12–02–16065_mob_z_ros.

Alexander Gramolin (Budker INP)

Conclusion

 \checkmark The first precision measurement of the ratio $R = \sigma(e^+p)/\sigma(e^-p)$ has been performed. Data taking has been completed and analysis is still ongoing.

 \checkmark Systematic errors of the measurement have been discussed. Here we have some advantages in comparison with OLYMPUS and CLAS.

 \checkmark It is very important to carefully consider the radiative corrections due to bremsstrahlung in this experiment. Procedure of account of RC has been developed (ESEPP event generator + Geant4 simulation).

 \checkmark Some preliminary results have been presented. They are consistent with the theoretical predictions by Blunden et al.

 \checkmark Final results of the experiment are expected in the next year.

Thank you for your attention!

My participation in the Symposium was supported in part by Russian Foundation for Basic Research under the grant 12–02–16065_mob_z_ros.

Alexander Gramolin (Budker INP)