Experimental Aspects of Polarization Observables in ep→ep at Large Momentum Transfer

Andrew Puckett

Jefferson Lab

Experimental and theoretical aspects of the proton form factors *St.Petersburg, Gatchina, Petersburg Nuclear Physics Institute (PNPI), July 9 - 11, 2012*

Outline

- Introduction: Born Approximation for $ep \rightarrow ep$
- Polarization transfer method
- Cross-section/polarization discrepancy and the GEp crisis
- The GEp-III and GEp-2γ experiments in Hall C
 - Kinematics
 - Experiment Apparatus
 - Data Analysis
 - Results
- Re-analysis of GEp-II data (Hall A)
- Future prospects at JLab
 - New recoil polarization measurements
 - Polarized target measurements
 - A_N in ep→ep

ep→ep in the Born Approximation

$$\begin{aligned}
\mathcal{J}^{\mu}(0) &= \bar{u}(P') \left[F_{1}(Q^{2})\gamma^{\mu} + F_{2}(Q^{2}) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} \right] u(P) \\
G_{E} &= F_{1} - \tau F_{2} \\
G_{M} &= F_{1} + F_{2} \\
\frac{d\sigma}{d\Omega_{e}} &= \frac{\alpha^{2}}{Q^{2}} \left(\frac{E'}{E} \right)^{2} \left[\frac{G_{E}^{2} + \tau G_{M}^{2}}{1 + \tau} \cot^{2} \frac{\theta_{e}}{2} + 2\tau G_{M}^{2}}{1 + \tau} \right] \\
&= \left(\frac{d\sigma}{d\Omega_{e}} \right)_{Mott} \times \frac{\epsilon G_{E}^{2} + \tau G_{M}^{2}}{\epsilon(1 + \tau)} \\
\tau &= \frac{Q^{2}}{4M^{2}}, \epsilon = \left(1 + 2(1 + \tau) \tan^{2} \frac{\theta_{e}}{2} \right)^{-1} \\
\end{aligned}$$

$$\begin{aligned}
\mathbf{P}_{t} &= -\sqrt{\frac{2\epsilon(1 - \epsilon)}{\tau}} \frac{r}{1 + \frac{\epsilon}{\tau}r^{2}} \\
P_{\ell} &= \frac{\sqrt{1 - \epsilon^{2}}}{1 + \frac{\epsilon}{\tau}r^{2}} \\
R &= -\frac{P_{\ell}}{P_{\ell}} \sqrt{\frac{\tau(1 + \epsilon)}{2\epsilon}} \equiv \frac{R}{\mu} \\
A &= -\frac{1}{1 + \frac{\epsilon}{\tau}r^{2}} \left[\sqrt{\frac{2\epsilon(1 - \epsilon)}{\tau}} \sin \theta^{*} \cos \phi^{*} r + \sqrt{1 - \epsilon^{2}} \cos \theta^{*} \right] \\
\end{array}$$

Thomas Jefferson National Accelerator Facility

Polarization Transfer Method

- Measure the transferred polarization to the recoil proton in the scattering of longitudinally polarized electrons on unpolarized protons
 - Transferred polarization has longitudinal and transverse components parallel to the reaction plane
 - Normal component is zero
- Ratio of polarization components is directly proportional to ratio of form factors, G_E/G_M .
 - Original motivation: enhanced sensitivity to G_E at large Q^2 (relative to Rosenbluth, for which G_E sensitivity vanishes as $Q^2 \rightarrow \infty$).
 - Experimentally robust: most systematic errors cancel in the ratio or with fast beam helicity flip

The G_{Ep} "Crisis"

Guichon and Vanderhaeghen, PRL 91, 142303 (2003): "This discrepancy is a serious problem as it generates confusion and doubt about the whole methodology of lepton scattering experiments."

• Shockingly, polarization data of unprecedented precision completely inconsistent with existing x. sec. data!

Thomas Jefferson National Accelerator Facility

Why the PT data are more reliable

- The plot at right shows the *maximum* fractional contribution of the G_E^2 term to the reduced Born cross section vs. Q^2
- Sensitivity of the *Born* cross section to G_E becomes comparable to, or smaller than, the sensitivity of the *measured* cross section to higher-order effects that grow with Q²
- PT ratio is directly proportional to G_E/G_M at any Q², and thus more robust against higher-order QED effects

Design Considerations for PT Experiments

At large
$$Q^2$$
, $\frac{d\sigma}{d\Omega} \rightarrow \frac{4\alpha^2 E^2}{Q^4} \left(\frac{E'}{E}\right)^3 \frac{G_M^2}{\epsilon} \propto \frac{E^2}{Q^{12}}$
 $A_y \propto \frac{1}{p_p} \propto \frac{M}{Q^2}$
Statistical FOM $\propto NA_y^2 \propto \frac{E^2}{Q^{16}}$
 $P_t \propto \sqrt{2\epsilon(1-\epsilon)}$

• Naive figure-of-merit for a given E,
$$Q^2$$
 scales as E^2/Q^{16}

- For a given Q^2 , higher $E \rightarrow$ higher count rate
- Energy dependence of P_t at fixed Q² leads to an optimal FOM at $\varepsilon \sim 0.5$, or typically $\theta_e \sim 45^\circ$.
- Coincident detection of scattered electron is usually required to suppress backgrounds at large Q²
 - In a coincidence measurement, acceptance-matching is critical!

Jefferson Lab

Figure 3-1: Schematic of the CEBAF accelerator

- CW, recirculating linac, up to 6 GeV, ~85% polarized, 100 μA
- Upgrade to 12 GeV in progress

JLab Site Aerial

Jefferson Lab

- CW, recirculating linac, up to 6 GeV, ~85% polarized, 100 μA
- Upgrade to 12 GeV in progress

JLab Site Aerial

The GEp-III and GEp-2y Experiments

Polarization Transfer in 1 H(e,e'p): Nominal *ep* luminosity ~4 × 10³⁸ Hz/cm²

7/8/2012

Thomas Jefferson National Accelerator Facility

The GEp-III/GEp-2γ Collaboration

Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to $Q^2=8.5~{\rm GeV^2}$

A. J. R. Puckett,^{1,*} E. J. Brash,^{2,3} M. K. Jones,³ W. Luo,⁴ M. Meziane,⁵ L. Pentchev,⁵ C. F. Perdrisat,⁵ V. Punjabi,⁶ F. R. Wesselmann,⁶ A. Ahmidouch,⁷ I. Albayrak,⁸ K. A. Aniol,⁹ J. Arrington,¹⁰ A. Asaturyan,¹¹ H. Baghdasaryan,¹² F. Benmokhtar,¹³ W. Bertozzi,¹ L. Bimbot,¹⁴ P. Bosted,³ W. Boeglin,¹⁵ C. Butuceanu,¹⁶ P. Carter,² S. Chernenko,¹⁷ E. Christy,⁸ M. Commisso,¹² J. C. Cornejo,⁹ S. Covrig,³ S. Danagoulian,⁷ A. Daniel,¹⁸ A. Davidenko,¹⁹ D. Day,¹² S. Dhamija,¹⁵ D. Dutta,²⁰ R. Ent,³ S. Frullani,²¹ H. Fenker,³ E. Frlez,¹² F. Garibaldi,²¹ D. Gaskell,³ S. Gilad,¹ R. Gilman,^{3,22} Y. Goncharenko,¹⁹ K. Hafidi,¹⁰ D. Hamilton,²³ D. W. Higinbotham,³ W. Hinton,⁶ T. Horn,³ B. Hu,⁴ J. Huang,¹ G. M. Huber,¹⁶ E. Jensen,² C. Keppel,⁸ M. Khandaker,⁶ P. King,¹⁸ D. Kirillov,¹⁷ M. Kohl,⁸ V. Kravtsov,¹⁹ G. Kumbartzki,²² Y. Li,⁸ V. Mamyan,¹² D. J. Margaziotis,⁹ A. Marsh,² Y. Matulenko,¹⁹ J. Maxwell,¹² G. Mbianda,²⁴ D. Meekins,³ Y. Melnik,¹⁹ J. Miller,²⁵ A. Mkrtchyan,¹¹ H. Mkrtchyan,¹¹ B. Moffit,¹ O. Moreno,⁹ J. Mulholland,¹² A. Narayan,²⁰ S. Nedev,²⁶ Nuruzzaman,²⁰ E. Piasetzky,²⁷ W. Pierce,² N. M. Piskunov,¹⁷ Y. Prok,² R. D. Ransome,²² D. S. Razin,¹⁷ P. Reimer,¹⁰ J. Reinhold,¹⁵ O. Rondon,¹² M. Shabestari,¹² A. Shahinyan,¹¹ K. Shestermanov,^{19,†} S. Širca,²⁸ I. Sitnik,¹⁷ L. Smykov,^{17,†} G. Smith,³ L. Solovyev,¹⁹ P. Solvignon,¹⁰ R. Subedi,¹² E. Tomasi-Gustafsson,^{14,29} A. Vasiliev,¹⁹ M. Veilleux,² B. B. Wojtsekhowski,³ S. Wood,³ Z. Ye,⁸ Y. Zanevsky,¹⁷ X. Zhang,⁴ Y. Zhang,⁴ X. Zheng,¹² and L. Zhu¹

The GEp-III/GEp-2_γ Collaboration

GEp-III/2 Xinematics

Q^2, GeV^2	ε	E_{beam}, GeV	θ_p, \circ	p_p, GeV	E_e, GeV	$ heta_e,^\circ$
2.5	0.154	1.873	14.495	2.0676	0.532	105.2
2.5	0.633	2.847	30.985	2.0676	1.51	44.9
2.5	0.789	3.680	36.10	2.0676	2.37	30.8
5.2	0.377	4.053	17.94	3.5887	1.27	60.3
6.8	0.507	5.714	19.10	4.4644	2.10	44.2
8.5	0.236	5.714	11.6	5.407	1.16	69.0

- GEp-2 γ : High-precision measurements of ε -dependence of PT ratio at $Q^2 = 2.5 \text{ GeV}^2$
- GEp-III: Three new measurements at high Q²
- Collected data from Oct. 2007-June 2008 in Hall C at JLab.

High Momentum Spectrometer (HMS)

- QQQD superconducting, 25° vertical bend magnetic spectrometer
- Acceptance:
 - 6.74 msr solid angle (~2:1 vertical/horizontal aspect ratio)
 - ±9% momentum bite
 - $\pm 5 \text{ cm/sin } \vartheta$ extended target acceptance
- Resolution:
 - $\delta p/p \sim 0.1\%$
 - Angular resolution ~1 mrad
 - Vertex resolution ~2 mm

Detector package for GEp-III

- Drift chambers: track scattered protons for kinematics reconstruction and incident FPP track definition
- Scintillator hodoscopes: trigger and timing (resolution ~250 ps)
- FPP: measure proton polarization

Hall C Focal Plane Polarimeter (FPP)

$$N^{\pm}(p, \vartheta, \varphi) = N_0^{\pm} \frac{\varepsilon(p, \vartheta)}{2\pi} \Big[1 + \big(\pm A_y P_x^{\text{FPP}} + c_1 \big) \cos \varphi \\ + \big(\mp A_y P_y^{\text{FPP}} + s_1 \big) \sin \varphi \\ + c_2 \cos(2\varphi) + s_2 \sin(2\varphi) + \cdots \Big], \qquad (4)$$

- Proton polarimetry based on spin-orbit coupling in p+CH₂ scattering
- Double FPP provides ~50% efficiency gain relative to single polarimeter of equivalent thickness.
- The FPP after installation in Hall C in 2007
- Dual role of HMS drift chambers:
 - Measure kinematics of the scattered proton in ep→ep
 - Define the "beam" for the secondary scattering in CH₂

FPP Angular Distributions in GEp-III/2 γ

- Correlation between scattering vertex and scattering angle for events passing "cone test":
 - Full geometric acceptance for scattering angles up to 30-60 deg. (z-dependent)

Thomas Jefferson National Accelerator Facility

FPP Tracking Performance—Resolution

- 100-200 μ m coordinate resolution \rightarrow 1-2 mrad angular resolution (momentum-dependent due to multiple-scattering contribution
- "Straight-through" data with analyzers removed were obtained to provide for software alignment of the FPP drift chambers

BigCal—Electromagnetic Calorimeter

BigCal in Hall C, 2007

- TF1 lead-glass, 1744 bars, $\sim 4 \times 4 \times 40$ cm³.
- Russian FEU84 PMTs
- 4" Aluminum absorber in front to mitigate rad. damage

- At large Q² and fixed E, Jacobian in elastic ep scattering grows large
- At $Q^2 = 8.5 \text{ GeV}^2$, $\Delta \Omega_e / \Delta \Omega_p$ grows large (~140)
- To match the proton acceptance (fixed by HMS), a large-acceptance electron arm is needed
- Lead-glass calorimeter is a natural solution
 - Efficient trigger for electrons with threshold of ~ ½ ep elastic energy→reduce DAQ rate
 - Excellent coordinate/angular resolution for offline elastic event selection via angular correlations

BigCal Performance in GEp-III

- Top right: BigCal energy resolution $\sim 10\%/\sqrt{E}$ after two beam-weeks (with 4" Al absorber)
- Bottom right: BigCal timing resolution ~1.5 ns

Thomas Jefferson National Accelerator Facility

Data Analysis—Elastic Event Selection

Elastic event selection, $Q^2 = 8.5 \text{ GeV}^2$

- Cuts applied to three kinematic correlations to select elastic events:
- 1. Electron polar angle vs. proton momentum (Δx)
- Coplanarity
 (Δy)
- 3. Proton angle vs.protonmomentum

Data Analysis—Background Subtraction

- Above: Monte Carlo calculation of signal/backgrounds
- Below: Stability of backgroundsubtracted R wrt cut variations

- Fits to 2D shape of background distribution in Δx , Δy plot
- Fit method agrees with Monte Carlo calculations (top right)

Analysis—Focal Plane Asymmetry

Beam helicity reversal cancels false asymmetry

Analysis—FPP Analyzing Power

 Analyzing power of Hall C FPP increased relative to previous expts—ability to differentiate single/multi-track events

7/8/2012

Analysis—Spin Precession I

$$\frac{d\mathbf{S}}{dt} = \frac{e}{m\gamma}\mathbf{S} \times \left[\frac{g}{2}\mathbf{B}_{\parallel} + \left(1 + \gamma\left(\frac{g}{2} - 1\right)\right)\mathbf{B}_{\perp}\right]$$

BMT Equation

$$\frac{d\mathbf{S}}{dt} = \gamma \left(\frac{g}{2} - 1\right) \left[\frac{e}{m\gamma} \mathbf{S} \times \mathbf{B}_{\perp}\right]$$

BMT equation in comoving coordinates, assuming $B_{\parallel} = 0$

Q^2, GeV^2	$p_0, \mathrm{GeV/c}$	$\chi_ heta, \circ$
2.5	2.0676	108.5
5.2	3.5887	177.2
6.7	4.4644	217.9
8.5	5.4070	262.2

Central precession angles in GEp-III/2y Experiments

- FPP asymmetry measures proton polarization *after* undergoing precession in HMS magnets
 - Precession makes P_L measurement possible by rotating longitudinal into transverse
- Calculation of spin transport through HMS is the largest source of systematic uncertainty in all PT experiments to date.

Analysis—Spin Precession II

• $Q^2 = 5.2 \text{ GeV}^2$ kinematics chosen for overlap with Hall A *and* for central χ near 180°--important consistency check of spin transport calculation

Analysis—Spin Precession, III

- Extracted ratio P_T/P_L is very sensitive to ۲ quadrupole effects
- Absence of anomalous dependence of R on ۲ reconstructed proton kinematics is a powerful data quality check for spin transport calculation

 $Q^2 = 2.5 \ GeV^2$

0.4

2.0 3.0

1.2 2.0

Analysis—Spin Precession, III

- Extracted ratio P_T/P_L is very sensitive to quadrupole effects
- Absence of anomalous dependence of R on reconstructed proton kinematics is a powerful data quality check for spin transport calculation

 $Q^2 = 2.5 \; GeV^2$

3.0

5.0

Analysis—Spin Precession, III

- Extracted ratio P_T/P_L is very sensitive to quadrupole effects
- Absence of anomalous dependence of R on reconstructed proton kinematics is a powerful data quality check for spin transport calculation

 0.085 ± 0.0002 χ^2 / d.o.f = 0.834

<^{^0.10} 0.05

 $Q^2 = 2.5 \; GeV^2$

GEp-III Results: PRL 104, 242301 (2010)

- Increased Q^2 coverage of the data by ~50%
- \bullet All three points at least 1.5σ above Gayou linear fit to GEp-I/II data
- Rate of decrease of G_{Ep}/G_{Mp} slowing down
- Error bars in high-Q²/asymptotic G_{Ep}/F_{2p} reduced by ~factor of 2 in a global analysis using the Kelly fit.

• As the first high-Q² data outside Hall A, did these results point to a consistency issue between Halls A and C?

Jefferson Lab

Reanalysis of GEp-II Data

- Elastic event selection in GEp-II: similar to GEp-III but with different dominant sources of resolution
- $\gamma p \rightarrow \pi^0 p$ background led to important corrections in GEp-III; proton $p(\theta) p$ cut found crucial, but *no such cut* was applied in original GEp-II analysis

Effect of the underestimated background

- Most events outside the elastic peak of $\delta p = p(\theta) p$ are background-dominated.
- The observed polarization components evolve from those of the signal to those of the background as δp increases
- Net systematic effect is ~15% in P_T, 2% in P_L
- Conclusions borne out by Monte Carlo:

Thomas Jefferson National Accelerator Facility

Final Results of GEp-II

Summary of results

- Reanalyzed three highest-Q² points (electron detected in calorimeter)
- Lowest $Q^2 = 3.5 \text{ GeV}^2$ not reanalyzed (electron detected in HRSR).
- Three highest-Q² R values systematically increase, by several times the originally quoted systematics.
- Increase mainly due to previously underestimated background
- Addition of $p(\theta) p$ cut suppresses background to <0.4%, remaining correction and uncertainty small
- Consistency of GEp-I/II/III/2γ data (Hall A vs. Hall C) is now excellent in a wide Q² range
 Updated analysis and results now published
- in Phys. Rev. C, PRC 85, 085, 045203

Current Status of Nucleon FF Data/Theory

Thomas Jefferson National Accelerator Facility

How to go to higher Q²?

FOM vs. Q^2 at E = 11 GeV (a. u.) FOM vs. ε at $Q^2 = 10$ GeV² (a. u.)

• Must increase luminosity and acceptance to compensate for E^2/Q^{16} dependence of (cross section * A_v^2 contributions to) figure of merit

GEp-V: The Final Frontier

Figure 5.1: The location and dimension of the GEp(5) experiment components.

Figure 3.2: The concept of the beam path through the dipole.

Jefferson Lab

7/9/2012

- At large Q², the proton in ep elastic scattering goes to forward angles at high momentum.
- New "Super BigBite" spectrometer: Open-geometry, vertical-bend dipole spectrometer
- High-rate tracking based on GEM technology.
- New FPP with full geometric acceptance for angles up to 10°
- Spokespersons: B. Wojtsekhowski (contact), L. Pentchev, C. F. Perdrisat, V. Punjabi, M. K. Jones, E. Cisbani, E. Brash, ...

Projected Results Approved by JLab PAC

Projected results as $Q^2 F_2/F_1$

OPPORTUNITIES WITH CLAS12 @ JLAB HALL B

ep→ep in CLAS12 @ 11 GeV

Elastic ep \rightarrow ep in gemc

- Standard detector/magnetic field configuration (inbending e⁻)
- ELRADGEN2.0 rad. corr. (internal only)

- Scattered electron and proton kinematics vs. Q^2 at $E_{beam} = 11$ GeV
- Forward CLAS12 acceptance ~2-14 GeV² (electrons)

Normal Single-Spin Asymmetry in $ep \rightarrow ep$

Elastic and GPD A_N vs θ , fixed E

Elastic A_N vs θ , fixed Q^2

- A_N = single-spin asymmetry in elastic scattering when proton polarization is normal to the scattering plane
- Identically zero in one-photon-exchange approximation—clean signal for Im(TPEX)
- Equal to induced normal recoil polarization in unpolarized $ep \rightarrow ep$ (time reversal)
- No data currently exist (due to challenges of tranversely polarized targets).
- Induced recoil polarization very difficult to measure due to polarimeter false asymmetries

CLAS12 acceptance for $ep \rightarrow ep$ @ 11 GeV

Transversely Polarized HD-Ice Target

HD-ice ran from Nov/11 to May/12 at Jlab with 15mm Ø ×50 mm long HD cells

Asymmetry Projections

- Assumptions:
 - 100 days @ 10^{34} Hz/cm² (for various reasons this may be overly optimistic)
 - Target Polarization = 60% up vertical
 - Beam Polarization = 85% longitudinal
- Measured asymmetries depend on both Q² and azimuthal scattering angle:
 - A_N is modulated by the cosine of the angle between the scattering plane and the target spin
 - Beam-target double-spin asymmetry A_{beam} depends on orientation of target spin relative to ${\bf q}$

$$A_{beam} = -\frac{P_e P_p}{1 + \frac{\epsilon r^2}{\tau}} \left[\sqrt{\frac{2\epsilon(1-\epsilon)}{\tau}} \sin \theta^* \cos \phi^* r + \sqrt{1-\epsilon^2} \cos \theta^* \right]$$
$$r = \frac{G_E^p}{G_M^p}$$

 $A_N \propto P_r \sin \theta^* \sin \phi^*$

Advantage of transverse target: sensitivity to r increases with Q^2

Thomas Jefferson National Accelerator Facility

A_N Q² Dependence

G_{Ep:} Recoil vs. Polarized Target

	Polarization Transfer	Polarized Beam-Target Asymmetry
Luminosity (Hz/cm ²)	~10 ³⁹	$<\sim 10^{35}$ max.
Asymmetry Magnitude	$\sim P_{beam} A_y (A_y \sim 1/Q^2)$	$\sim P_{\text{beam}} P_{\text{target}}$
Acceptance	Limited by proton arm: ~6 msr (HRS/HMS) or ~40 msr (SBS)	~4\pi (CLAS12)
Polarimeter efficiency	~25%	N/A
Systematics	Spin precession	Polarimetry/relative lumi.
Rad. Corr.	Very small	Small
TPEX Corr.	Small (GEp-2y expt)	??

G_E/**G**_M: **Projected Results**

Summary/Conclusions

- The GEp-III experiment has significantly enhanced the knowledge of high- $Q^2 G_{Ep}$ —and the motivation for a reanalysis of GEp-II which found improved consistency between Halls A/C
- The GEp-2 γ experiment, in combination with precise Rosenbluth data, has placed unprecedented constraints on the TPEX amplitudes at Q² = 2.5 GeV².
- The Super BigBite Spectrometer (SBS) project, now funded by DOE/JLab, will provide the best, highest-Q² G_{Ep} data following the 12 GeV upgrade of JLab.
- Depending on performance in an electron beam, CLAS12+HDice has the potential to make world's first A_N measurement in ep \rightarrow ep at high Q², and also measure G_{Ep}/G_{Mp} using a third method (polarized target) with competitive precision and Q² coverage.

Acknowledgements

- GEp-III/GEp-2γ Collaborations
- US DOE
- MIT Nuclear Interactions Group
- Jefferson Lab Hall B Group and the CLAS Collaboration
- Thanks to the organizers for this opportunity!

BACKUP SLIDES

7/9/2012

Thomas Jefferson National Accelerator Facility

A_N in GPD framework—handbag mechanism

PRD 72, 013008 (2005)

The TPEX occurs at the parton level in eq → eq box diagram
Parton process embedded in the nucleon via GPDs:

$$A_{n} = \sqrt{\frac{2\varepsilon(1+\varepsilon)}{\tau}} \frac{1}{\sigma_{R}} \left\{ G_{E}I(A) - \sqrt{\frac{1+\varepsilon}{2\varepsilon}} G_{M}I(B) \right\},$$

$$A = \int_{-1}^{1} \frac{dx}{x} \frac{\left[(\hat{s} - \hat{u})\tilde{f}_{1}^{\text{hard}} - \hat{s}\,\hat{u}\,\tilde{f}_{3}\right]}{(s - u)} \sum_{q} e_{q}^{2}(H^{q} + E^{q}),$$
$$B = \int_{-1}^{1} \frac{dx}{x} \frac{\left[(\hat{s} - \hat{u})\tilde{f}_{1}^{\text{hard}} - \hat{s}\,\hat{u}\,\tilde{f}_{3}\right]}{(s - u)} \sum_{q} e_{q}^{2}(H^{q} - \tau E^{q}),$$

$$B \equiv \int_{-1} \frac{1}{x} \frac{e^{-\pi s + 1} - s + s + 1}{(s - u)} \sum_{q} e^{2}_{q} (H^{q} - \tau E^{q}),$$

$$I(\tilde{f}_{1}^{\text{hard}}) = -\frac{e^{2}}{4\pi} \left\{ \frac{Q^{2}}{2\hat{u}} \ln\left(\frac{\hat{s}}{Q^{2}}\right) + \frac{1}{2} \right\},$$

$$I(\tilde{f}_3) = -\frac{e^2}{4\pi} \frac{1}{\hat{u}} \left\{ \frac{\hat{s} - \hat{u}}{\hat{u}} \ln\left(\frac{\hat{s}}{Q^2}\right) + 1 \right\}.$$

Thomas Jefferson National Accelerator Facility

Counts for 100 days@10³⁴ Hz/cm²

BigCal Radiation Damage

- Radiation Damage: relative gain vs. cumulative beam charge:
 - Energy resolution degraded from $10\%/\sqrt{E}$ to $\sim 21\%/\sqrt{E}$ at end of experiment due to radiation damage
 - Coordinate resolution not strongly affected

Maximum-likelihood Method

$$\begin{aligned} \mathcal{L}(P_{t}, P_{\ell}) &= \prod_{i=1}^{N_{event}} \frac{1}{2\pi} \{ 1 + \lambda_{0}(\varphi_{i}) + h_{i} P_{\ell} A_{y}^{(i)} \\ & \times \left[\left(S_{xt}^{(i)} P_{t} + S_{x\ell}^{(i)} P_{\ell} \right) \cos \varphi_{i} \\ & - \left(S_{yt}^{(i)} P_{t} + S_{y\ell}^{(i)} P_{\ell} \right) \sin \varphi_{i} \right] \}, \end{aligned} \qquad \lambda_{t}^{(i)} &\equiv h_{i} P_{\ell} A_{y}^{(i)} \left(S_{x\ell}^{(i)} \cos \varphi_{i} - S_{y\ell}^{(i)} \sin \varphi_{i} \right), \\ & - \left(S_{yt}^{(i)} P_{t} + S_{y\ell}^{(i)} P_{\ell} \right) \sin \varphi_{i} \right] \}, \end{aligned}$$

- P_T, P_L are extracted using an unbinned maximum likelihood method, which reduces to a system of linear equations for small asymmetries, as typically observed in this experiment.
- Beam polarization and analyzing power appear in estimators for P_T , P_L , but cancel in the ratio P_T/P_L
- Accounts for spin precession in a straightforward way

GEp-2*γ***: See C. F. Perdrisat for more details**

7/9/2012

Jefferson Lab

 $Q^2 = 3.20 \text{ GeV}^2$

0.6

0.4

 $Q^2 = 2.64 \text{ GeV}^2$

0.8

1.0