Search for Two-Hard-Photon Exchange in Elastic *ep*

C.F. Perdrisat The College of William and Mary, Williamsburg, VA 23187, USA

Exp. & Th. Aspects of Nucleon From Factors Gatchina, July 9–10, 2012

Introduction

How we "visualize" the proton has changed remarkably in the last 12 years.

A trigger to this change of "worldview" of the proton has been a series of experiments at Jlab, which established that the ratio of the elastic form factors, G_{Ep} and G_{Mp} , was not constant, but decreased systematically with the invariant mass squared, Q^2 , of the virtual photon in *ep* scattering.

Why the different results?

....Introduction

Cross sections are subject to large radiative corrections; these may not be accurate enough, or incomplete, having missed the two hard photon contribution in the past. Or may be not.

Radiative corrections are weak when the ratio $G_{\rm Ep}/G_{\rm Mp}$ is measured directly, as in double polarization experiments. This is in contrast to cross section measurements, where $G_{\rm Ep}^2$ and $G_{\rm Mp}^2$ are measured.

Here will discuss aspects of elastic *ep* scattering, emphasizing need to determine experimentally the role of higher order radiative corrections and "what we know" we need to know.

The two methods to measure G_E/G_M <u>Cross section</u>

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{T}{\varepsilon}G_{M}^{2} + G_{E}^{2}\right]\frac{1}{(1+\tau)}$$

$$\sigma_{R} = \frac{d\sigma}{d\Omega} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \frac{T}{\varepsilon(1+\tau)} \left[G_{M}^{2} + \frac{\varepsilon}{\tau}G_{E}^{2}\right]$$

$$\tau = Q^{2}/4m_{p}^{2} \text{ with } Q^{2} = -m_{V}^{2} \quad \varepsilon = \frac{1}{1+2(1+\tau)\tan^{2}(\frac{\vartheta_{E}}{2})}$$

$$\frac{G_{Ep}}{G_{Mp}} = -\frac{P_{t}}{P_{\ell}}\sqrt{\frac{\tau(1+\varepsilon)}{2\varepsilon}}$$

 $P_{\rm t}$ and $P_{\rm \ell}$ are the proton polarizations, transverse and longitudinal to the proton momentum, and in the reaction plane.

The first measurement of the proton's $G_{\rm Ep}/G_{\rm Mp}$ ratio for Q²>0.5 GeV² in a double-polarization experiment ran at Jefferson Lab (then known as CEBAF) in 1998.

M.K. Jones et al. PRL 84, 1398 (2000),

The results seemed to disagree with the LT-separation (or Rosenbluth) cross section data available at the time (shown in lower graph only, open symbols).

J. Litt et al. PL B 31 (1970), L. Andivahis et al. PR D 50 5491 (1994)

The data of GEp(I) have been reanalyzed since Punjabi et al, PR C71 055202 (05) Here compared with the LT separation data of the time. Since 2010 we have the results of GEp(III), as well as the reanalyzed data of GEp(II), Puckett et al. PRL, 104, 242307 (2010), Puckett et al. PR C85 045203 (2012), respectively.

Possible causes for the discrepancy

The firsts to suggest that the difference may be to the hitherto neglected two-photon exchange were P.A.M. Guichon and M.Vanderhaeghen, PRL 91, 142303 (2003), and Blunden, Melnitchouk and Tjon, PRL 91, 142304 (2003).: in the same issue of PRL! Cross section data require radiative corrections; polarization data for $G_{\rm Ep}/G_{\rm Mp}$ in first approximation do not.

J. Arrington, Phys. Rev. C 69, 032201 (2004).
A.V. Afanasev, et Phys. Rev. D 72, 013008 (2005).
S. Kondratyuk, P. G. Blunden, et al, Phys. Rev. Lett. 95, 172503 (2005).
Y. M. Bystritskiy et al, Phys. Rev. C 75, 015207 (2007)
C.E. Carlson, M.Vanderhaeghen, Ann. Rev. Nucl. Part. Sci. 57, 171 (2007)

Radiative corrections not accurate enough?

The difference between LT separation (Rosenbluth) and double-polarization is drastic, and it is real. New Rosenbluth separation in Hall A agree with older data. Overlap points in G_E/G_M show that polarization results are independent of spectrometer used to rotate longitudinal polarization. Review articles: PPNP, 59, 694-764 (2007), Perdrisat, Punjabi, Vanderhaeghen.

Rosenbluth results

Information for G_{Ep} starts to become fuzzy at Q²=1 GeV², and has completely disappeared by Q²=3 GeV². Nothing like that for G_{Mp} . No direct or obvious evidence for a "so far neglected" two-gamma contribution!

Gatchina, July 9-10, 2012

Gatchina, July 9-10, 2012

In Fact...

If G_{Ep} approaches zero, or the error bar on the cross section becomes large, then G_{Ep}/G_D becomes 1, (to the extend that $GM \approx GD$).

Hence the behavior of the G_{Ep}/G_D ratio obtained from cross section measurements does not necessarily imply inaccurate or incomplete radiative corrections, in particular does not *a priori* require a significant two-photon contribution.

Never-the-less, of course relevant data will provide the final answer, as to whether two-photon exchange is an important effect in proton form factor measurements.

Currently a large effort is being invested in direct detection of two-photon effects from the ratio $d\sigma^+/d \sigma^-$.

Current attempts to determine the two-gamma contribution from the e^{p}/e^{-p} cross section ratio

$$(d\sigma^+ - d\sigma^-)/(d\sigma^+ + d\sigma^-) = 1 - 2 \frac{d\sigma_{2v}}{(d\sigma^+ + d\sigma^-)}$$

data taking mode

Two-photon term introduces 3^d Form Factor, F₃

$$\begin{split} u(p, \Lambda_{N})(\widetilde{G}_{M} \ \gamma^{\mu} - \widetilde{F}_{2}P^{\mu}/M + F_{3} \ \gamma \cdot KP^{\mu}/M^{2})u(p, \Lambda_{N}) \\ \text{and modifies the } G_{M} \ \text{and } G_{E} \ \text{form factors:} \\ \widetilde{G}_{M} = G_{M} + \widetilde{\delta G}_{M}, \ \text{and} \ \widetilde{G}_{E} = G_{E} + \widetilde{\delta G}_{E}, \\ \end{split}$$
Define

 $\mathbf{Y}_{\mathsf{M}} \equiv Re \left(\widetilde{\boldsymbol{\delta G}}_{\mathsf{M}} / \boldsymbol{G}_{\mathsf{M}} \right); \ \mathbf{Y}_{\mathsf{E}} \equiv Re \left(\widetilde{\boldsymbol{\delta G}}_{\mathsf{E}} / \boldsymbol{G}_{\mathsf{M}} \right); \ \mathbf{Y}_{\mathsf{3}} \equiv (\mathsf{v} / \mathsf{M}^2) Re \left(\mathbf{F}_{\mathsf{3}} / \boldsymbol{G}_{\mathsf{M}} \right)$

Then polarization ratio is G_E/G_M with 3 additional terms:

$$P_{t}/P_{l} = -\sqrt{\frac{2\epsilon}{\tau(1+\epsilon)}} \left\{ \frac{G_{E}}{G_{M}} + Y_{E} - \left(\frac{G_{E}}{G_{M}} \right) Y_{M} + \left(1 - \frac{2\epsilon}{1+\epsilon} \right) \left(\frac{G_{E}}{G_{M}} \right) Y_{3} \right\}$$

Double-polarization Jlab 2-gamma expt.

Measured G_{Ep}/G_{Mp} at Q²=2.5 GeV2 3 values of ε , unprecedentedly small error bars. $R=\mu\sqrt{[T(1+\epsilon)/2\epsilon]}(P_+/P_\ell)$.

Obtained P_{ℓ} for two values of ε , the third being used to determine the analyzing power. Data published: M. Meziane et al. PRL 106, 132501 (2011) COZ BLW nuclear distribution amplitudes: Kivel and Vanderhaeghen GPD Afanasev et al. Hadronic Blunden et al. SF Bystritskiy et al, shifted down.

Soft-colinear effective field

One interpretation for the two-gamma results

The data fitted are cross section at 2.64 GeV², the Hall C G_{Ep}/G_{Mp} ratio and P_l at 2.50 GeV².

The two colors correspond to two different parameterizations of the fit to the $G_{\rm Ep}/G_{\rm Mp}$ and P_{ℓ} ratio.

J. Guttmann, N. Kivel, M. Meziane, and M. Vanderhaeghen Eur. Phys. J. A (2011) 47: 77

Gatchina, July 9-10, 2012

A second two-gamma experiment at Jlab 12 GeV?

Choose 4.1 GeV² because 0.01 statistics possible in 10 days per point.

Cross section with small uncertainty at 4.1 GeV² available: I.A. Qattan et al, PRL 94 (2005), 142301.

Radiative corrections (including two-gamma) tend to get suppressed in the double ratio $r=G_{Ep}/G_{Mp}$, but not in the simple ratio P_{ℓ} :

$$P_{\ell,Born} = \sqrt{(1-\epsilon^2)} / (1+\epsilon r^2/\tau)$$

A possible scenario for a second GEp(2y) at JLab

Assumes that $R = \mu_p G_{Ep} / G_{Mp} \approx 0.474$

$Q^2 (p_p)$	3	E _e	θ _e	θ _p	ΔR	$\Delta P_{\ell}/P_{\ell Born}$	time in
GeV ²		GeV					days
4.1	0.14	2.81	100.	11.9	0.009	used forA _y	10
4.1	0.40	3.37	61.0	20.3	0.008	0.0025&	10
4.1	0.80	5.56	26.9	31.0	0.008	0.0026 ^{&}	10
4.1	0.94	9.56	13.8	36.4	0.012	0.0028&	10

There is still a need to understand the disagreement between cross section (Rosenbluth) data and double polarization data:

a) Higher order graphs like two-hard photon exchange are of intrinsic interest. Standard radiative corrections may need one more revision.

But by itself the discrepancy between cross section and polarization results would not be of major physical importance, provided the polarization data gives us the true Form Factor ratio.

- b) Whether double polarization data truly determines the invariant Born Form Factors F₁ and F₂ is the question that must be checked experimentally. The 2007-8 Hall C Jlab test was at relatively low Q². It should be repeated at larger Q².
- c) A test can be done with good accuracy at Jlab, at Q²=4.1 GeV², once the 11 GeV beam becomes available.

"Experiments are the only means of knowledge at our disposal. The rest is poetry, imagination".

Max Planck