РОССИЙСКАЯ АКАДЕМИЯ НАУК ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им.Б.П.КОНСТАНТИНОВА

УДК 539.17

На правах рукописи

ВОРОПАЕВ Николай Иванович

ПРЕЦИЗИОННОЕ ИЗМЕРЕНИЕ СКОРОСТИ ПОГЛОЩЕНИЯ МЮОНА ЯДРАМИ $^3\mathrm{He}$ и $^4\mathrm{He}$

01.04.16 — физика ядра и элементарных частиц

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидат физико-математических наук

Санкт-Петербург 1998

Работа выполнена в Петербургском институт им.Б.П.Константинова РАН.	е ядерной физики
Научные руководители —	
кандидат физико-математических наук, ведущий научный сотрудник	Г.Г.СЕМЕНЧУК,
доктор физико-математических наук, профессор, член-корр. РАН	А.А.ВОРОБЬЕВ.
Официальные оппоненты:	
доктор физико-математических наук, профессор	В.Г.ЗИНОВ,
доктор физико-математических наук, профессор, член-корр. РАН	С.С.ГЕРШТЕЙН,
Ведущая организация — Российский Научный	Центр Курчатовский

Ведущая организация — Российский Научный Центр Курчатовский Институт

Защита состоится " " " 199 г. в _____час на заседании диссертационного совета Д - 002.71.01 при Петербургском институте ядерной физики им.Б.П.Константинова РАН по адресу: 188350, г.Гатчина, Ленинградской области.

С диссертацией можно ознакомится в библиотеке ПИЯФ РАН.

Автореферат разослан <u>"</u> 199 г.

Ученый секретарь диссертационного совета

И.А.Митропольский

Актуальность проблемы. Явление поглощения отрицательного мюона (μ^{-}) ядром, открытое более 40 лет назад, несет уникальную информацию о структуре слабого тока ядра. Самым простым ядром является протон (р). Слабый ток протона параметризуется шестью форм-факторами $g_V, g_M, g_A, g_P, g_S, g_T,$ каждый из которых является функцией квадрата переданного четырехимпульса q^2 ($q_0^2 = -0.88m_{\mu}^2$ — при поглощении мюона протоном, $\mu^- + p \rightarrow n + \nu_{\mu}$). Векторный и магнитный форм-факторы g_V и g_M , в силу гипотезы сохранения векторного тока, равны соответствующим электромагнитным форм-факторам, которые надежно определяются из экспериментов по рассеянию электронов на протоне. Форм-факторы второго класса q_S и q_T для всех значений q^2 считаются пренебрежимо малыми. Аксиальный форм-фактор g_A , при $q^2 = 0$, определяется по времени жизни нейтрона, а его зависимость от q^2 хорошо изучена в экспериментах по квазиупругому рассеянию антинейтрино на нуклоне. Экспериментально не исследованным остался наведенный псевдоскалярный форм-фактор нуклона *g*_P. Интерес к *g*_P вызван и тем, что измерение этого форм-фактора дает возможность проверки теории, основанной на фундаментальном принципе в Квантовой Хромо-Динамике — киральной симметрии. Киральная теория возмущения предсказывает значение g_P с точностью 1 - 3%: $g_P(q_0^2) = 8.21 \pm 0.09[1]$, $g_P(q_0^2) = 8.44 \pm 0.23[2]$. Для того, что бы экспериментально определить g_P с такой точностью, необходимо измерить скорость поглощения μ^{-} протоном (Λ_{c}) с точностью 0.1 – 0.3%, что является на сегодня не выполнимой задачей. Существующие эксперименты по измерению Λ_c не превышают по своей точности 7%, чего явно недостаточно для проверки теории.

Реакция поглощения мюона ядром ³Не по каналу образования тритона $\mu^- + {}^3$ Не $\rightarrow \nu_{\mu} + t$ (1.9 МэВ) является аналогом реакции поглощения мюона протоном. Квадрат переданного четырех-импульса в этом процессе q_1^2 близок к q_0^2 : $q_1^2 = -0.954m_{\mu}^2$. В Модели Элементарной Частицы (ЕРМ), ядра ³Не и ³Н рассматриваются как члены одного изотопического дублета, в полной аналогии с дублетом протоннейтрон (p, n), с заменой форм-факторов нуклона на соответствующие форм-факторы ядра ³Не-³Н — $F_V, F_M, F_A, F_P, F_S, F_T$. Аналогично нуклонным, форм-факторы F_V и F_M определены в экспериментах по рассеянию электронов. Аксиальный форм-фактор F_A при $q^2 =$ 0 определен с точностью ~ 0.5% по времени жизни тритона (³H). Экстраполяция F_A в область q_1^2 осуществляется с точностью ~ 1%. Теоретические расчеты форм-фактора F_P , выполненные на основе

гипотезы Частичного Сохранения Аксиального Тока (PCAC), приводят к значению $F_P^{PCAC} = 20.7 \pm 0.2$. Необходимо отметить, что значение F_P^{PCAC} получено в предположении одинаковой q^2 зависимости формфактора F_A и псевдоскалярного параметра π^{-3} He-³H взаимодействия F_{π} . Имеющаяся до настоящего момента экспериментальная точность измерений скорости поглощения μ^- ядром ³He (λ_t) составляет ~ 3%, что дает возможность оценить F_P с точностью не лучше 30%. Это явно недостаточно для проверки гипотезы PCAC, являющейся следствием киральной симметрии сильного взаимодействия.

В связи с созданием в ПИЯФ новой экспериментальной методики, основанной на ионизационной камере высокого давления, появилась возможность существенного повышения точности измерения скорости поглощения мюона ядром ³He.

Цель работы. Основной целью данной работы является измерение скорости поглощения отрицательного мюона ядром ³Не по каналу образования тритона:

$$\mu^- + {}^3 \operatorname{He} \rightarrow \nu_{\mu} + t (1.9 \text{ M} \circ \text{B}) ,$$

 (λ_t) с точностью не хуже достигнутой в теории, т.е. ~ 1%.

Научная новизна работы. Создана оригинальная экспериментальная установка на основе спектрометрической многоанодной ионизационной камеры (ИК) высокого давления с сеткой, являющейся мишенью и детектором одновременно. Впервые данная методика применена для исследования процесса поглощения мюона ядрами. Уникальные характеристики установки позволили в десять раз улучшить экспериментальную точность значений скорости поглощения мюона ядром ³Не по каналу образования тритона, а также получить другие параметры, характеризующие как сам процесс поглощения, так и сопровождающие его процессы. Прецизионное измерение λ_t позволило проверить теоретические предсказания наведенного псевдоскалярного форм-фактора F_P , дало возможность проверки существования мезонных обменных токов в ядре, позволило определить псевдоскалярный параметр π -³He-³H взаимодействия с рекордной точностью.

Практическая ценность. Полученные результаты демонстрируют большие возможности использованной методики, которые заключаются в выделении остановок мюона в чувствительной области камеры с точностью лучше 10^{-4} и регистрации заряженных частиц с эффективностью 100%. Уникальные возможности новой методики, стимулируют ее применение в других экспериментах.

Структура и объем диссертации. Предлагаемая диссертация состоит из 5-и глав, которые включают в себя 11 таблиц и 24 рисунка.

<u>В первой главе</u> представлен обзор теоретических и экспериментальных работ в области поглощения мюона ядрами и поставлена задача исследований.

Во второй главе описывается экспериментальная установка. Основными частями установки являются (см. рис. 1):

1) Ионизационная камера с системой газового наполнения и с системой подачи высокого напряжения.

2) Мониторный блок входного пучка.

3) Электронные и нейтронные счетчики.

4) Аппаратура, обеспечивающая регистрацию событий, чтение и запись информации.

Основой установки является спектрометрическая многоанодная ионизационная камера (ИК) высокого давления с сеткой. ИК предназначена для регистрации и спектрометрического анализа сигналов от мюонов и появившихся после них тритонов с эффективностью 100%. Камера работала при давлении газа P = 120 атм и температуре T=300 K, при электрическом напряжении на катоде 30 кВ и на сетке 3.5 кВ. Мониторные счетчики S1 и S2 регистрировали мюоны пучка. Электронные Е и нейтронные N счетчики предназначены для регистрации электронов от распада мюонов и нейтронов от канала развала ядра соответственно.

В третей главе описывается логика работы online триггера, методика выделения полезных сигналов с ИК при offline анализе и условия отбора событий для статистического анализа. Триггер обеспечивал запись только таких событий, когда в течении 8 мкс перед влетевшим в камеру мюоном и 9 мкс после него не было другого мюона, при этом на одном из центральных анодов камеры должен появиться хотя бы один сигнал. Для преобразования аналоговой информации с ИК в цифровую использовались 8-битные аналогоцифровые преобразователи — FADC, с ценой канала 10 нс. Методику выделения полезных сигналов с FADC на фоне электронического шума, можно разделить на 3 этапа. На первом этапе — сигналы с FADC сглаживались с помощью двух последовательных цифровых фильтров по шести и тринадцати каналам FADC соответственно. На втором этапе — определялся пъедестал FADC в каждом событии и осуществлялся поиск полезных сигналов. И на третьем этапе — вычислялись основные характеристики сигналов — заряд, начало сигнала и его конец, по которым отбирались события для статистического анализа. Условия отбора событий, описанные в этой главе, обеспечивают низкую примесь мюонов, остановившихся за пределами чувствительной области камеры или в непосредственной близости от катода или сетки. Примесь таких событий, как показано в работе, не привышает уровня 10^{-4} .

<u>В четвертой главе</u> описывается методика статистической обработки экспериментальных данных и приводятся полученные результаты. Поглощение мюона ядром ³Не идет по трем каналам:

$${}^{3}\mathrm{He} + \mu^{-} \longrightarrow \begin{cases} t + \nu_{\mu} \\ d + n + \nu_{\mu} \\ p + n + n + \nu_{\mu} \end{cases} .$$
(1)

Скорость поглощения мюона по каналу образования тритона определялась по формуле

$$\lambda_t = \frac{N_t}{N_{\mu \to e}} \cdot \lambda_0 , \qquad (2)$$

где N_t — количество тритонов, $N_{\mu\to e}$ — количество мюонов, не захватившихся ядром, $\lambda_0 = 0.45516 \text{ мкc}^{-1}$ — скорость распада мюона. Тритоны считались в узком энергетическом окне (см. рис. 2). Фон под пиком тритонов полностью связан с каналом развала ядра и определялся линейной интерполяцией. Основная поправка к скорости поглощения λ_t составляет +6.45% и связана с ограничением времени появления тритона (≤ 6 мкс). Остальные поправки к λ_t , рассмотренные в работе, связаны с потерей тритонов при отборе событий и составляют 0.74%.

Все источники опибок, учтенные при определении λ_t приведены в таблице 1. Статистическая опибка λ_t равная 0.136%, связана с погрешностью определения количества мюонов. Эта опибка возникает из-за необходимости пересчета остановившихся мюонов, чтобы не загружать излишней информацией аппаратуру. Основная систематическая опибка связана с погрешностью интерполяции фона в энергетическом спектре вторых сигналов под пик тритонов (см. рис. 2) и составляет 0.15%. В результате эксперимента была набрана следующая статистика: количество тритонов — $N_t = 1141263$, количество пересчитанных мюонов с распадом — $N_{\mu\to e}^k = 349479$ (k — коэффициент пересчета). В эксперименте были использованы три коэффициента пересчета k=500, 1000 и 2000, с учетом которых полное количество мюонов равно $N_{\mu\to e}^0 = 374028500$. Поправляя тритоны на 7.18% и используя формулу (2), для скорости поглощения получим:

$$\lambda_t = 1496.2 \pm 2.6$$
(стат.) ± 2.5 (сис.) $\pm_{0.0}^{3.4}$ (кин.) с⁻¹

Статистические ошибки , %			
1	Ошибка определения числа мюонов	± 0.136	0.17
2	Ошибка определения числа тритонов	± 0.100	
Систематические ошибки , %			
3	Ошибка определения количества фона под пиком тритона	± 0.15	
4	Ошибка поправок к числу тритонов	± 0.07	0.17
5	Ошибка определения числа мюонов	± 0.02	
Неопределенности связанные с кинетикой, %			
6	Влияние квазистабильного 2s-уровня	+0.16	0.22
7	Влияние переворота спина	+0.16	

Таблица 1: Рассмотренные источники ошибок и вычисленные их значения для измеренной скорости λ_t .

Ошибка, связанная с кинетикой $\pm_{0.0}^{3.4}$ (кин.), вызвана экспериментальной погрешностью для скорости переворота спина в 1s-состоянии и времени жизни 2s-состояния мезоиона (³Heµ)⁺ и вычислена на основании данных этого же эксперимента. Если опираться на теорию, которая предсказывает скорость разрядки 2s-состояния $\lambda_{2s} = 30 \text{ мкc}^{-1}$ [3], тогда эта ошибка перейдет в поправку к λ_t равную +1.4 c^{-1} . Теория для скорости переворота спина в 1s-состоянии дает пренебрежимо малое значение.

Кроме тритонов в эксперименте регистрировались и другие два канала поглощения μ^- . Скорость поглощения мюона по каналам развала λ_b определялась так же по формуле (2), однако процедура вычисления количества этих событий отличается от вычисления количества тритонов. Вторые сигналы для событий развала ядра отбирались в диапазоне времени $2.2 \div 6$ мкс, чтобы полностью исключить фон случайных совпадений от двойных и повторных мюонов. Эффективность регистрации каналов развала ядра камерой вычислялась экстраполяцией энергетического спектра вторых сигналов в ноль и составила $\varepsilon_b = 17 \pm 2\%$. В итоге для скорости поглощения по каналам развала было получено значение:

$$\lambda_b = 632 \pm 4$$
(стат.) ± 14 (сист.) с⁻¹.

 $\rm B\,$ этом же эксперименте проводились измерения скорости поглощения мюона ядром $^4\rm He,$ которое идет по трем каналам:

$${}^{4}\mathrm{He} + \mu \longrightarrow \begin{cases} t + n + \nu_{\mu} \\ d + n + n + \nu_{\mu} \\ p + n + n + n + \nu_{\mu} \end{cases}$$
(3)

Все три канала имеют заряженную частицу, что позволяет регистрировать их ионизационной камерой. Процедура вычисления скорости поглощения по этим каналам была аналогична вычислению скорости поглощения по каналам развала ³Не. Эффективность регистрации каналов развала ⁴Не составила

$$\varepsilon_b({}^4\text{He}) = 12.0 \pm 0.3(\text{стат.}) \pm 2.6(\text{сист.})\%.$$

Таким образом, для скорости поглощения мю
она ядром ${}^{4}\mathrm{He}$ получено значение:

$$\lambda_b(^4\text{He}) = 383 \pm 4(\text{стат.}) \pm 10(\text{сист.}) \text{ c}^{-1}.$$

Все приведенные скорости поглощения мюона впервые измерены с высокой точностью одной методикой.

<u>В пятой главе</u> (Заключение) суммируются преимущества экспериментальной методики, позволившие измерить скорость поглощения мюона ядром ³Не с точностью 0.3%. Таковыми являются: 1) эффективное выделение остановок мюонов в чувствительной области камеры, изолированной от катода и сетки, с точностью лучше чем 10^{-4} .

2) 100% эффективность регистрации тритонов от захвата мю
она ядром $^{3}\mathrm{He}.$

3) высокое энергетическое разрешение установки ($\Delta E = 30$ кэВ), позволяющее значительно снизить фоновое количество событий от канала развала ядра под пиком тритонов.

4) возможность определения в самом эксперименте параметров кинетики, влияющих на результат измерения, таких как скорость переворота спина в 1s-состоянии и время жизни 2s-состояния мезоиона ${}^{3}He\mu$.

Основным результатом проведенных исследований стала скорость поглощение мюона по каналу образования тритона, измеренная с высокой точностью $\lambda_t = 1496 \pm 4 \text{ c}^{-1}$, и как следствие определение псевдоскалярного форм-фактора $F_P = 20.8 \pm 2.8$ по плоту $F_A(F_P)$, приведенному на рисунке 3. Значение для F_P в точности совпало с предсказанием РСАС, подтверждая правильность гипотезы и то, что q^2 зависимость параметров F_P и F_{π} приблизительно одинакова для малых значений q^2 .

Кроме основных результатов данной работы, приведенных в качестве защищаемых пунктов, в заключении приводятся также и другие результаты, которые появились как следствие представляемой работы:

1) На основе результата измерения λ_t , в "микроскопическом"
описании

ядра ³Не, определен форм-фактор нуклона $g_P(q^2) = 8.53 \pm 1.53$ [4], значение которого хорошо согласуется с теорией [2],[1]. Вычисления проведены в импульсном приближении с учетом обменных мезонных токов ядра. 2) На основании результата измерения λ_t , в работе [5] вычислен эффективный параметр π^{-3} Не-³Н взаимодействия $G^{eff} = 45.8 \pm 2.4$. Точность G^{eff} в этих расчетах почти на порядок превосходит точность экспериментов по рассеянию π -мезонов на ядре ³Не-³Н.

3) Используя энергетический спектр тритонов (см. рис. 2), вычислена новая граница для примеси тяжелого мюонного нейтрино в диапазоне масс 28 - 40 МэВ [6].

Апробация работы. Результаты данной работы были доложены на следующих конференциях:

1) На 15-ой Европейской конференции по проблемам малонуклонных систем (Пенискола, Испания, 5-9 июня 1995),

2) На Международном симпозиуме по мюонному катализу и физике экзотических атомов и молекул (Дубна, 19-24 июня 1995 Россия),

 На Международном симпозиуме по электро-слабым взаимодействиям и объединенным теориям (Морионд, Франция, 1998),

4) На Международном совещании по экзотическим атомам, молекулам и мюонному катализу (19-24 июль, 1998, Аскона, Швейцария).

Публикация результатов эксперимента. Результаты данной работы опубликованы в следующих изданиях:

1) D.V. Balin et al., // Few-Body Systems Suppl. 8, Springer-Verlag, Wien (1995) 248.

2) D.V. Balin et al., // Precision Measurement of Nuclear Muon Capture by ³He, Preprint 2067 (1995), PNPI, Russia, Gatchina, p. 12.

3) A.A. Vorobyov et al., // Hyperfine Interactions 101/102 (1996) 413.

4) P. Ackerbauer et al., // Preprint PSI-PR-97-21 (August 1997) p. 13.

5) P. Ackerbauer et al., // Phys. Lett. B417 (1998) 224.

На защиту выносятся следующие результаты:

- 1. Впервые для исследования реакции поглощения мюона ядрами ³He(⁴He) применена ионизационная камера высокого давления, служащая одновременно мишенью и детектором остановившихся мюонов и заряженных продуктов реакций поглощения. Методика обеспечивает высокую эффективность и прецизионность в измерении скорости поглощения. С помощью созданной в ПИЯФ экспериментальной установки выполнены измерения скорости поглощения мюона ядрами ³Не и ⁴Не на пучке Швейцарской мезонной фабрики.
- 2. Измерена скорость поглощения мюона ядром ³Не по каналу образования тритона: $\mu^- + {}^3$ Не $\rightarrow t + \nu_{\mu}$. Результат измерения: $\lambda_t = (1496 \pm 4) \ c^{-1}$. Достигнутая точность измерения более чем на порядок превзошла точность предыдущих экспериментов.
- 3. Показано экспериментально, что скорость разрядки 2s метастабильного состояния в мезоатоме ³Hе μ в условиях данного эксперимента высока ($\tau_{2s} < 48$ нс) и, наоборот, скорость перехода между состояниями мезоатома F=0 \rightarrow F=1 мала ($\tau > 0.15$ мкс). Эти результаты доказывают, что измеренное значение λ_t соответствует статистической заселенности уровней сверхтонкой структуры ³Hе μ - атома.
- 4. Прецизионное измерение скорости μ захвата λ_t позволило надежно определить значение псевдоскалярного форм-фактора слабого заряженного тока F_P для изотопического дублета ³He ³H: $F_P(q_c^2) = 20.8 \pm 2.8 (q_c^2 = -0.954m_{\mu}^2)$. Эта величина оказалась в точном соответствии с предсказанием, основанном на гипотезе частичного сохранения аксиального тока (PCAC): $F_P^{PCAC}(q_c^2) = 20.7$.
- 5. Измеренное значение λ_t оказалось на 30% выше скорости поглощения мюона на ядре ³Не, вычисленной в импульсном приближении, что указывает на большую роль мезонных токов в этом процессе. В последних теоретеческих расчетах, учитывающих мезонные токи в ядре ³Не, удалось добиться хорошего согласия с полученном в диссертации значением скорости λ_t .

6. Измерены скорости поглощения мюона ядрами ³Не и ⁴Не по каналам развала этих ядер, с точностью в 10 и 4 раза (соответственно) превышающую точность предыдущих экспериментов:

$$\lambda_b({}^{3}He) = 632 \pm 15 \text{ c}^{-1}, \ \lambda_b({}^{4}He) = 383 \pm 11 \text{ c}^{-1}.$$

Список литературы

- [1] H.W.Fearing и др. // Phys.Rev. D56(1997)1783.
- [2] V.Bernard и др. // Phys.Rev. D50(1994)6899.
- [3] L.I.Menshikov и др.,// Z.Phys.D-Atoms,Molecules and Clusters 7 (1987) 203-211.
- [4] J.G.Congleton, E.Truhlik. // Phys.Rev. C53(1996)956.
- [5] N.C. Mukhopadhyay and K. Junker, PSI-PR-96-36 RPI-96-N112 (Nov.1996).
- [6] W. Schott и др., // Hyperfine Interactions 101/102 (1996) 445-449.

Рис. 1: Схема экспериментальной установки. Обозначения: ИК — ионизационная камера (1, 2, 3, 4 — катод, сетка, анод, беррилевое окно); 5 — охранный объем; S1 и S2 — мониторные счетчики; К — коллиматор пучка; Е — электронные счетчики; N — нейтронные счетчики; ПУ — предусилители.

Рис. 2: Энергетический спектр сигналов от продуктов поглощения мюона ядром 3 Не, соответствующих основному типу событий, в которых трек от тритона полностью уложился на одном аноде.

Рис. 3: Ограничения на возможные значения аксиального F_A и псевдоскалярного F_P форм-факторов. Коридор из сплошных кривых это результат измеренной нами λ_t с учетом только ошибки эксперимента $(\pm 1\sigma)$, пунктиром показано как расширяется коридор если учесть ошибки F_V и F_M . Вертикальные линии — экстраполяция для F_A из β -распада ³Н. Горизонтальная линия соответствует гипотезе частичного сохранения аксиального тока (PCAC).