РОССИЙСКАЯ АКАДЕМИЯ НАУК ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им.Б. П. КОНСТАНТИНОВА

Препринт 2717

Ф. Г. Лепехин

Механизм образования двухзарядных фрагментов релятивистского ядра ¹⁴N при его взаимодействии с ядрами в фотоэмульсии

Гатчина-2007

The mechanism of formation two-charge fragments by the relativistic nuclei $^{14}\rm N$ at its interaction with the nuclei in photoemulsion

F. G. Lepekhin

Abstract

Is shown, that at the fragmentation of the nucleus $^{14}\mathtt{N}$ at the momentum 2.86 A GeV/c 73 % of all two-charge fragments in events containing two or three of such fragments, are formed in spatial area noticeably exceeding sizes of the primary relativistic nucleus.

© ПИЯФ, 2007

Аннотация

Показано, что при фрагментации ядер 14 N с импульсом 2.86 А ГэВ/*c* в фотоэмульсии 73 % всех двухзарядных фрагментов в событиях, содержащих два или три таких фрагмента, образуются в пространственной области, заметно превышающей размеры первичного релятивистского ядра.

Введение

В настоящее время механизм фрагментации релятивистских ядер, в общих чертах, известен [1]. Угловые распределения фрагментов определяются импульсом Ферми, или константой r_0 , определяющей радиус ядра как $R = r_0 A^{1/3}$. Обе эти величины определяют дисперсию импульсного распределения нуклонов в ядре в его системе центра масс σ_0 и распределение проекции этого импульса на произвольное направление [2]. В фотоэмульсионных работах этим произвольным направлением является направление оси ОҮ, лежащей в плоскости эмульсии, в то время как ось ОХ совпадает с направлением импульса P₀ первичного ядра. Тогда это есть проекция поперечного импульса $P_{\perp,Y} = A_{Frag} \cdot P_0 \cdot tg \varphi$ на плоскость эмульсии. Для малых углов $P_{\perp,Y} \simeq \varphi$. Поэтому дальше будут обсуждаться в основном распределения углов φ , которые нами измеряются достаточно точно. В работах [3-5] показано, что углы φ при фрагментации ядер ²²Ne, ¹⁰B, ¹¹B распределены нормально с дисперсией, совпадающей с ее оценкой из r_0 или σ_0 этих ядер.

Выходы фрагментов в различных каналах фрагментации легких ядер могут быть рассчитаны [6]. И эти расчеты согласуются с экспериментом [4, 5]. Эмульсионная камера, облученная ионами ¹⁴N с импульсом 2.86 А ГэВ/*c*, изучалась в работах [7, 8]. Поэтому предполагалось, что характеристики распределений углов фрагментов только подтвердят уже хорошо известный статистический механизм фрагментации и этого ядра. Но действительность оказалась немного сложнее.

Эксперимент

Поиск событий по следу первичного ядра был проведен в ЛВЭ ОИЯИ. Из полного набора событий, найденных при просмотре по следу в ЛВЭ ОИЯИ, нами для измерений отобраны 230 событий, содержащих два или три двухзарядных фрагмента релятивистского ядра. Процедура измерений координат точек на первичном следе и следах фрагментов на микроскопе МПЭ-11 описана в [9]. В [10] имеются вся первичная информация этого эксперимента и все процедуры ее обработки.

К сожалению, наклон первичного пучка ионов к плоскости эмульсии и его угловой разброс в этой камере оказались большими. А угол наклона первичного следа в каждом событии используется для перехода в систему координат события, где направление импульса первичного следа совпадает с осью ОХ. Малый угол α следа фрагмента в этой системе координат в плоскости, перпендикулярной плоскости эмульсии, находится как разность двух больших чисел. Ошибки его оказываются большими. Конечно, это не влияет на ошибку и величину угла φ в плоскости

эмульсии. По этой причине измеренные величины углов

$$\theta = Arctg\sqrt{tg^2\varphi + tg^2c}$$

следует использовать с большой осторожностью. Некоторые особенности функций от них могут быть обусловлены разностью величин дисперсий углов $\sigma^2(\varphi)$ и $\sigma^2(\alpha)$. В этой работе используются только распределения углов φ двухзарядных фрагментов релятивистского ядра ¹⁴N.

Результаты

Если предположить, что для ядра ¹⁴N величина r_0 с точностью около 5 % равна 1.2 Фм, то, как следует из [11], распределение углов φ для α -частиц, фрагментов этого ядра, должно быть нормальным, со средним, равным нулю, и константой $\sigma(r_0) = 16.8 \pm 0.8$ мрад. Аналогичное предсказание для двухзарядных фрагментов релятивистских ядер ¹⁰B и ¹¹B в наших же работах [4, 5] подтвердилось.

Но в данном эксперименте оказалось, что эта константа равна $\sigma(e) = 10.7 \pm 0.3$ мрад. Очевидно, что любые случайные ошибки измерения углов φ , вследствие безграничной делимости нормального распределения, могут только увеличить дисперсию экспериментального распределения по сравнению с ожидаемой ее величиной. Это заставило искать возможные причины полученного в эксперименте уменьшения константы χ_2 -распределения поперечных импульсов двухзарядных фрагментов релятивистского ядра ¹⁴N

$$f(p_{\perp}) = \frac{p_{\perp}}{\sigma^2(e)} exp(-\frac{p_{\perp}^2}{2\sigma^2(e)})$$

Наблюдаемый в эксперименте эффект может быть обусловлен неоднородностью выборки. В эксперименте мы имеем дело со смесью, по меньшей мере, двух нормальных распределений с двумя разными дисперсиями, $\sigma^2(1)$ и $\sigma^2(2)$, и средними, равными нулю. Если долю первого из них обозначим через A, то доля второго будет равна 1-A. Если о природе первого распределения еще придется строить какие-то догадки, то можно полагать, что второе описывает ожидаемый статистический механизм фрагментации с константой $\sigma(2) = \sigma(r_0)$. Можно надеяться, что суммарное распределение, в пределах статистических ошибок, будет описывать наблюдаемое в эксперименте распределение.

Тогда возникает задача нахождения состоятельной и эффективной оценки двух параметров, A и $\sigma(1)$, из N величин углов φ , наблюдаемых в эксперименте. Это можно сделать, только используя метод максимального правдоподобия (ММП). Функцию правдоподобия запишем в виде

$$L = \prod_{i=1}^{i=N} \left[\frac{A}{\sigma(1)} exp(-\frac{\varphi_i^2}{2\sigma^2(1)}) + \frac{1-A}{\sigma(r_0)} exp(-\frac{\varphi_i^2}{2\sigma^2(r_0)}) \right]$$

Используя процедуру Given в МАТНСАD [12], получаем, что максимуму нашей функции правдоподобия соответствуют величины параметров A = 0.55 и $\sigma(1) = 6.4$ мрад. С этими параметрами, как видно из рис. 1, плотность смеси двух распределений углов φ хорошо согласуется с экспериментальным распределением.

Рис. 1. Распределение углов φ (мрад). Гистограмма – это эксперимент, а плавная кривая 1 – описание его нормальным распределением. Кривые 2 и 3 представляют два нормальных распределения, смесь которых в определенной пропорции дает наблюдаемое в эксперименте распределение

ММП предоставляет возможность оценить доверительный интервал параметров, при которых достигается максимум функции правдоподобия L_0 . Распределение величин $\Delta = ln(L) - ln(L_0)$ при изменении одного из параметров, в то время как второй параметр соответствует максимуму функции правдоподобия, дает допустимый интервал параметра как расстояние между точками по оси этого параметра, в которых величина Δ справа и слева равна -2.0. Существенно, что такое сечение поверхности правдоподобия по оси одного из параметров может и не быть параболой, как в случае нормального распределения. Однако, как видно из рис. 2, для параметра A отклонение

кривой от параболы мало. Поэтому можно считать, что $A = 0.55 \pm 0.17$. Из такой же кривой для второго параметра получаем, что $\sigma(1) = 6.4 \pm 1.0$ мрад.

Рис. 2. Распределение величины Δ , равной разности логарифмов функции правдоподобия L в максимуме и при величине доли A нормального распределения 2 на рис. 1

Обсуждение результатов

Смесь двух нормальных распределений углов φ , или проекций поперечных импульсов $p_{\perp,Y}$ на плоскость эмульсии двухзарядных фрагментов релятивистского ядра ⁶Li, наблюдалась в работе [11]. Исходя из представлений о структуре этого ядра, для него казалось естественным, что часть двухзарядных фрагментов образуется в центральной области из состояния $s_{1/2}$ четырех нуклонов. А некоторая доля их формируется на периферии ядра ⁶Li в процессе подхвата двумя внешними нуклонами одного или двух нуклонов из его центральной части.

Ядро ¹⁴N, по представлениям оболочечной модели [13], состоит из двух полностью заполненных оболочек $(s_{1/2})^4(p_{3/2})^8$ и двух нуклонов с противоположными спинами в состоянии $p_{1/2}$ на периферии. Возможно, что, как и при фрагментации ядра ⁶Li, они и дают двухзарядные фрагменты с $\sigma(1) \simeq 6 - 8$ мрад при фрагментации ядра ¹⁴N.

Конечно, этому есть альтернатива. Если посмотреть на результаты расчета [6] вероятностей первых, наиболее вероятных, каналов фрагментации ядра ¹⁴N в следующей таблице, то увидим, что это, в основном, каналы с остаточным ядром и нуклоном или дейтоном. Например, это ¹⁴N \rightarrow ¹²C+²H. А эти ядра, например тот же ¹²C, с большой вероятностью фрагментируют через образование промежуточного состояния ⁸Be $\rightarrow 2\alpha$. Но это означало бы существование двойного каскада при фрагментации релятивистских ядер. Экспериментальных доказательств этого до сих пор не получено. А доля его, если на него списать все экспериментально наблюдаемые особенности фрагментации ядра ¹⁴N, должна быть порядка 25 %.

Возможно, что в действительности оба эти механизма фрагментации имеют место в разных событиях, обеспечивая в сумме экспериментально наблюдаемое распределение углов φ при фрагментации ядер ¹⁴N. Сегодня различить их не представляется возможным.

Таблица

<i>N</i> канала	Его фрагменты	Вероятность каналов в %
1	$^{13} extsf{C}+^1 extsf{H}$	11.0
2	$^{12} extsf{C}+^2 extsf{H}$	8.7
3	$^{13}\mathrm{N}+n$	8.5
4	$^{10}{ m B}{+}^{4}{ m He}$	7.2
5	8 Be $+^6$ Li	5.2
6	9 Be $+^5$ Li	3.7
7	$^{11}{ t B}{+}^{3}{ t He}$	3.5
8	$^9{ m B}+^5{ m He}$	3.5
9	$p+n+^{12}{ m C}$	3.2
10	$^{11} extsf{C}+^3 extsf{H}$	3.0

Вероятности первых десяти наиболее вероятных каналов фрагментации ядра $^{14}{\rm N}$

Заключение

После установления общих закономерностей фрагментации релятивистских ядер, о которых говорилось во Введении, нам предстоит теперь более глубокое изучение явления фрагментации ядер. Эта работа показывает, что кроме существования каскадной фрагментации через промежуточное состояние ⁸Ве $\rightarrow 2\alpha$, очевидно, есть фрагменты, формирующиеся в различных пространственных областях первичного ядра. Не исключается и возможность двойного каскада, в котором появляются наблюдаемые в эксперименте фрагменты.

В заключение хотелось бы поблагодарить большой коллектив сотрудниц ЛВЭ ОИЯИ за поиск событий в эмульсионной камере. Автор благодарен Л. Н. Ткач, выполнившей все измерения на микроскопе МПЭ-11 в ПИЯФ.

Литература

- 1. Ф. Г. Лепехин, ЭЧАЯ **36** (2005) 436.
- 2. A. S. Goldhaber, Phys. Lett. **B53** (1974) 306.

3. Ф. Г. Лепехин, в сб. "Основные результаты научных исследований 1990-1991", СПб., 1992, с. 80.

- 4. Ф. Г. Лепехин, Б. Б. Симонов, ЯФ **68** (2005) 2101.
- 5. Ф. Г. Лепехин, ЯФ **70** (2007) вып. 6 (в печати).
- 6. Ф. Г. Лепехин, Письма в ЭЧАЯ N 3 [112] (2002) 25.
- 7. http://arxiv.org/abs/nucl-ex/0605022
- 8. http://becquerel.lhe.jinr.ru/Papers/Shchedrina_RNP.pdf
- 9. http://hepd.pnpi.spb.ru/ofve/nni/b11pre.htm
- 10. http://hepd.pnpi.spb.ru/ofve/nni/odn14.doc
- 11. F. G. Lepekhin, D. M. Seliverstov, B. B. Simonov, Eur. Phys. J. A1 (1998) 137.

12. В. Дьяконов, МАТНСАD 8/2000, Специальный справочник, СПб.: изд. "ПИТЕР", 2001, 592 с.

13. А. С. Давыдов, Теория атомного ядра, М.: ГИЗ "Физ.мат. лит.", 1958, 611 с.