GLUEBALLS, HYBRIDS, PENTAQUARKS:

A Survey of Exotic Hadrons

Eberhard Klempt

Helmholtz-Institut für Strahlen- und Kernphysik Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY e-mail: klempt@hiskp.uni-bonn.de

Glueballs, Hybrids, Pentaquarks

- Pentaquarks or hybrid baryons
- Tetraquarks or hybrid mesons
- Glueballs and the $\eta(1440)$
- Is there a scalar glueball ?
- Gluon exchange versus instanton-induced forces
- Conclusions

CLAS	$\gamma p \rightarrow nK^+K^-\pi^+$	$\sim 4.0\sigma$	41	< 26	$1555\pm1\pm10$
CERN, FNAL	u-induced	$\sim 4.0\sigma$	27	< 20	${\bf 1533}\pm{\bf 5(\pm3)}$
SAPHIR	$\gamma p \rightarrow n K^+ K_s^0$	4.8σ	63 ± 13	< 25	$\bf 1540 \pm 4 (\pm 3)$
CLAS	$\gamma d \rightarrow pnK^+K^-$	$\sim 3.5\sigma$	43	< 21	$1542 \pm 2 \pm 5$
DIANA	$\gamma {\rm p} ightarrow {\rm nK^+K_s^0}$	$\sim 3.0\sigma$	29	6 > 6	$\bf 1539 \pm 2 \pm 2$
LEPS	$\gamma \mathrm{C} ightarrow \mathrm{C}'\mathrm{K}^+\mathrm{K}^-$	$\sim 2.7\sigma$	19 ± 2.8	~ 25	$1540\pm10\pm5$
					$\Theta^+(1540)$
		signif.		(MeV)	(MeV)
Experiment	Reaction	Statist.	N_{event}	Width	Mass
		small.	to be		
timated	papers but were es	ed in the p	e not quot	leses ar	given in parenth
errors	(s. The systematic	entaquark	ments of p	easurer	Summary of m

HERA	γ^* –induced	5.4σ			$3099 \pm 3 \pm 5$
					$\Theta_{c}(3099)$
NA49	u–induced	4.6σ		< 21	1862
					三(1862)
ZEUS	Fragmentation	4.6σ	221	6	$1521.5 \pm 1.5^{+2.8}_{-1.7}$
YEREVAN	p-A reaction	$\sim 4\sigma$	~ 100	$^{\wedge}$ 35	1545 ± 12
COSY	p-p reaction	3.7σ		< 18	1530 ± 5
SVD-2	p-p reaction	3 .50	50	< 24	$1526\pm3\pm3$
HERMES	γ^* –induced	$\sim 4\sigma$	2 60	< 19	1528 ± 4
		signif.		(MeV)	(MeV)
Experimer	Reaction	Statist.	N_{event}	Width	Mass

photoproduction from the neutron," Phys. Rev. Lett. 91 (2003) 012002. T. Nakano *et al.* [LEPS Collaboration], "Evidence for a narrow S=+1 baryon resonance in

photoproduction with the Saphir detector at Elsa," Phys. Lett. B 572 (2003) 127. J. Barth *et al.* [SAPHIR Collaboration], "Evidence for the positive-strangeness pentaquark Θ^+ in

in K $^+$ collisions with Xe nuclei," Phys. Atom. Nucl. 66 (2003) 1715. V. V. Barmin et al. [DIANA Collaboration], "Observation of a baryon resonance with positive strangeness

69 (2004) 011501 R. N. Cahn and G. H. Trilling, "Experimental limits on the width of the reported $\Theta(1540)^+$," Phys. Rev. D

photoproduction from the deuteron," Phys. Rev. Lett. 91 (2003) 252001 S. Stepanyan *et al.* [CLAS Collaboration], "Observation of an exotic S = +1 baryon in exclusive

photoproduction from the proton," arXiv:hep-ex/0311046 V. Kubarovsky et al. [CLAS Collaboration], "Observation of an exotic baryon with S = +1 in

resonance with mass near 1533 MeV in neutrino interactions," arXiv:hep-ex/0309042 A. E. Asratyan, A. G. Dolgolenko and M. A. Kubantsev, "Evidence for formation of a narrow $K^0_{
m s}{
m p}$

E. Lesquoy, A. Muller, F. A. Triantis, A. Berthon, L. Montanet, E. Paul and P. Saetre, "Partial waves in the $m K^+p$ interaction between 1.2 GeV/c and 1.7 GeV/c," Nucl. Phys. B 99 (1975) 346.

1528-MeV in quasi-real photoproduction," arXiv:hep-ex/0312044 A. Airapetian *et al.* [HERMES Collaboration], "Evidence for a narrow |S| = 1 baryon state at a mass of

interactions at 70-GeV/c with SVD-2 setup," arXiv:hep-ex/0401024. A. Aleev et al. [SVD Collaboration], "Observation of narrow baryon resonance decaying into pK_s^0 in p A

M. Abdel-Bary *et al.* [COSY-TOF Collaboration], "Evidence for a narrow resonance at 1530-MeV/c² in the $m K^0p$ system of the reaction $m pp
ightarrow \Sigma^+ K^0p$ from the COSY-TOF experiment," arXiv:hep-ex/0403011.

the system $K^0_s p$ from p+ $C_3 H_8$ collision at 10 GeV/c," arXiv:hep-ex/0403044. P. Z. Aslanyan, V. N. Emelyanenko and G. G. Rikhkvitzkaya, "Observation of S=+1 narrow resonances in

scattering at HERA," arXiv:hep-ex/0403051 [ZEUS Collaboration], "Evidence for a narrow baryonic state decaying to $m K^0_sp$ and $K^0_sar{p}$ in deep inelastic

167 (1980) 61. J. J. Engelen $et\,a\!l$, "Multichannel analysis of the reaction ${
m K}^-{
m p} o {
m K}^0\pi^-{
m p}$ at 4.2 GeV/c," Nucl. Phys. B

K. T. Knöpfle, M. Zavertyaev and T. Zivko [HERA-B Collaboration], "Search for Θ^+ and

 $\Xi_{(3/2)}$ -pentaquarks in HERA-B," arXiv:hep-ex/0403020.

J. Z. Bai *et al.* [BES Collaboration], "Search for the pentaquark state in $\psi(2S)$ and J/ ψ decays to $m K^{0}_{s}pK^{-}ar{n}$ and $m K^{0}_{s}ar{p}K^{+}n$," arXiv:hep-ex/0402012.

proton collisions at the CERN SPS," arXiv:hep-ex/0310014 C. Alt *et al.* [NA49 Collaboration], "Observation of an exotic S = -2, Q = -2 baryon resonance in proton

[H1 Collaboration], "Evidence for a narrow anti-charmed baryon state," arXiv:hep-ex/0403017.

Observation o			baryon	meson	Fock space ex
f multi	m	qı	 Q		pansic
quark s	odel	ıark	bbb	$\chi q \bar{q}$ -	on of m
states of		m	$+ \beta_1$	$+ \beta_1$	inimun
or hybr		ultiqu	qqqqq	$bar{q}qar{q}$	n quark
ids red		ıark	+	+	(-mode
uced by $\sim 10:$		hybrid	$+ \gamma_1 q q q g + .$	$+ \gamma_1 q \bar{q} g +$	el configuration:
			:		

 $eta_1 \sim 0.3$

or

 $\gamma_{1}\sim 0.3$

Extension of the quark model:

Two pictures of hadrons

Quarks and gluons **9** the vaccuum and condensates

play the decisice role in low-energy QCD

Instanton-induced interactions

Multiquarks

Quarks interact via exchange of gluons:

The self-energy leads to constituent quarks.

At low energies the gluon field is concentrated in a flux tube.

Consequences:

- The flux tube connecting a $q\bar{q}$ pair can rotate around the axis, with angular momentum Λ in the direction of axis.
- Such excitations are called hybrids
- Hybrids, baryonic hybrids, and glueballs are predicted
- The $ho \pi$ and ΔN mass splittings are color-magnetic in origin.
- The interaction between constituent quarks can be described by a

confinement plus effective one-gluon exchange

Quark interact via changes of the QCD vaccuum

Quarks and sea quarks are dynamically coupled.

Constituent quarks require their mass by spontaeous symmetry

breaking.

Consequences:

- Hybrids or glueballs do not need to exist.
- The see quarks might carry flavor quantum numbers: \Rightarrow

Exotic quark configurations should exist

- organized into multiplets. The equations of motion support soliton solutions which can be
- The lowest lying multiplets are 8 and 10 and 10.
- The interaction between constituent quarks can be described by a

confinement plus instanton-induced interactions

Pentaquarks or hybrid baryons

Does the $\Theta^+(1540)$ exclude the gluonic picture ?

"The evidence for a pentaquark signal and kinematic reflections," Phys. Rev. D 69 (2004) 051901

Tetraquarks or hybrid mesons

What abou	t mesons ? Hybrids	s or multiquarks	? Evidence for	J ^{PC} = 1 ⁻⁺ exotics
Experiment	mass (MeV/c 2)	width (MeV/c 2)	decay mode	reaction
BNL	1370 \pm 16 $^+_{-}$ $^{50}_{30}$	385 \pm 40 $^+_{-105}$ $^{65}_{-105}$	$\eta\pi$	$\pi^- p ightarrow \eta \pi^- p$
BNL	1359 $\begin{array}{c} + & 16 \\ - & 14 \end{array} \begin{array}{c} + & 10 \\ - & 24 \end{array}$	314 $^{+31}_{-29}$ $^{+9}_{-66}$	$\eta\pi$	$\pi^- p ightarrow \eta \pi^- p$
CBar	1400 \pm 20 \pm 20	310 \pm 50 $^{+50}_{-30}$	$\eta\pi$	$ar{p}n o \pi^- \pi^0 \eta$
CBar	1360 ± 25	220 ± 90	ηπ	$ar{pp} o \pi^0 \pi^0 \eta$
CBAR	∼ 1440	~ 400	ρπ	$ar{pn} o \pi^- 3 \pi^0$
BNL	1593 \pm 8 $^{+29}_{-47}$	168 \pm 20 $^{+150}_{-12}$	ρπ	$\pi^- p ightarrow \pi^+ \pi^- \pi^- p$
BNL	1596 土 8	387 \pm 23	$\eta'\pi$	π^- p $ ightarrow \pi^-\eta'$ p
VES	1610 \pm 20	290 ± 30	$ ho\pi,\eta'\pi$	$\pi^- N \rightarrow \pi^- \eta' N$
BNL	1709 ±24 ±41	403 \pm 80 \pm 115	$f_1(1285)\pi$	$\pi^- \mathbf{p} ightarrow \eta \pi^+ \pi^- \pi^- \mathbf{p}$
BNL	1664 土8土4	185 \pm 25 \pm 12	$b_1(1235)\pi$	$\pi^- \mathbf{p} ightarrow \omega \pi^0 \pi^- \mathbf{p}$
CBAR	1590±50	280 ±75	$b_1(1235)\pi$	$\bar{p}p \rightarrow \pi^+\pi^-\pi^0\omega$
BNL	\sim 2003 \pm 88 \pm 148	306±132±121	$f_1(1285)\pi$	$\pi^- p \rightarrow \eta \pi^+ \pi^- \pi^- p$
BNL	2000 ±20 ±10	230±32±15	$\omega \pi^0 \pi^-$	$\pi^- \mathbf{p} \rightarrow \omega \pi^0 \pi^- \mathbf{p}$

Hybrids or Tetraquarks ?

- The $\pi_1(1360)$ must be a tetraquark.
- SU(3) argument: assume $8_1 \rightarrow 8 \otimes 8$ decay.
- $\pi_1(1360) \rightarrow \eta \pi$ requires symmetric SU(3) d_{ijk} structure functions.
- $\pi_1(1360) \rightarrow \eta \pi$ requires (antisymmetric) $\mathbf{l} = \mathbf{1}$.
- $\pi_1(1360)$ cannot be a member of 8, it must be 10 or 10.
- The multitude of states suggests tetraquarks.
- $(\overline{\mathbf{3}}+\mathbf{6})\otimes(\mathbf{3}+\overline{\mathbf{6}})=\overline{\mathbf{3}}\otimes\mathbf{3}+\overline{\mathbf{3}}\otimes\overline{\mathbf{6}}+\mathbf{6}\otimes\mathbf{3}+\mathbf{6}\otimes\overline{\mathbf{6}}$
- = 1 + 8 + 8 + 10 + 8 + 10 + 1 + 8 + 27
- Four octets plus one $10 + \overline{10}$ expected !
- Only one or two hybrids predicted.
- the crowd of tetraquarks (and no argument in favour neither) There is no arguments against the possibility that a hybrid hides in

Glueballs and the $\eta(1440)$

Glueballs

The glueball spectrum froman anisotropic lattice study(Morningstar).The scalarglueball is expected at1.7 GeV, the tensor glueballat 2.3 GeV.Pseudoscalarglueball should have a massof about 2.6 GeV.

We discuss first the $\eta(1440)$

$(1405) \rightarrow$		same	$nar{n}$	$\pi(1300)$	7
$a_{0}(080)\pi$		masses	$nar{n}$	$\eta(1295)$	η
ר ב ב	ideally mix		glueball	$\eta(1405)$	
n(1475) -	xed		SS	$\boldsymbol{\eta}(1475)$	η'
$\rightarrow K\bar{K^*} \pm$			$n\bar{s}$	$oldsymbol{K}(1460)$	K

The $\eta(1440)$ is split

Pseudoscalar mesons:

Selection rules:

A first warning !

A pseudoscalar states can be produced also at small and high q^2 . $J^{PC} = 1^{++}$ is forbidden for $q^2 \rightarrow 0$. $\gamma \gamma^* \rightarrow K_s^0 K^{\pm} \pi^{\mp}$ from L3. At low and high q^2 , peak at 1440 MeV, high q^2 , required to produce peak at 1285 MeV. Peak at 1285 MeV is due to the $f_1(1285)$ and not due to

No $\eta(1295)$ in $\gamma\gamma$

 $\eta(1295).$

Scan for a 0^+0^{-+} resonance with different widths. The likelihood optimizes for for a second pseudoscalar resonance (right panel) gives evidence for the η_H with $M=1407\pm5, \Gamma=57\pm9$ MeV. The resonance is identified with the η_L . A search

 $M=1490\pm15, \Gamma=74\pm10$ MeV.

final squared transition matrix element (right).

squared decay amplitudes (center)

Breit-Wigner functions (left)

Splitting of $\eta(1440)$ due to wave function node

Amplitudes for $\eta(1440)$ decays to

mass interval. The $\sigma\eta$ (not shown) exhibits the same behaviour. phase varies by π indicating that there is only one resonance in the annihilation into $4\pi\eta$. In the mass range from 1300 to 1500 MeV the Complex amplitude and phase motion of the $a_0(980)\pi$ isobars in $\mathrm{p}ar{\mathrm{p}}$

Phase motion of $\eta(1440)$

Summary on $\eta(1440)$.

- The $\eta(1295)$ is not a $q\bar{q}$ meson.
- different states $\eta(1405)$ and $\eta(1475)$. The $\eta(1440)$ wave function has a node leading to two appearantly
- allows K^*K decays. The node suppresses OZI allowed decays into $a_0(980)\pi$ and
- There is only one η state, the $\eta(1440)$ in the mass range from 1200 to 1500 MeV and not 3 !
- The $\eta(1440)$ is the radial excitation of the η .
- The radial excitation of the η' is expected at about 1800 MeV; it

```
might be the \eta(1760).
```

No.	
2	
an	
bu	
d	
dn	
a	٤
cas	arr
, e	lin
CO	0 0
N	BSS
nc	ön
e ti	fro
ne	m
<u><u> </u></u>	th
nn	e /
IUL	1
hity	44
ar	0
p	
stil	
D D	
₽ ≶	
Iro	
Вu	

$2^1\mathrm{S}_0$	1^1S_0
$\pi(1300)$	٦
$\eta(1760)$	η^{\prime}
$\eta(1440)$	n
K(1460)	∽

Summary on radial excitations of pseudoscalar mesons.

Is there a scalar glueball ?

oo state			
$\mathbf{q}\overline{\mathbf{q}}$ state	$f_0(2100)$		
$\mathbf{q}\overline{\mathbf{q}}$ state			$_{0}^{*}(1950)$
$\mathbf{q}\overline{\mathbf{q}}$ state	$f_0(1710)$		
2 ${ m q}{ar { m q}}$ states, glueb	$f_0(1500)$	$a_0(1490)$	$_{0}^{*}(1430)$
qq state	$f_0(1370)$		
KK molecules	$f_0(980)$	$a_0(980)$	
chiral partner of the			K(900)
$\sigma({f 600})~{f meson}$	$f_0(600)$		
	l = 0	= 1	l = 1/2

The $\pi\pi$ scattering amplitude measured in the GAMS experiment.

First row: S-wave in $2\pi^+2\pi^-$; second row S-wave in $\pi^+\pi^-2\pi^0$; third row: $\sigma\sigma$ S-wave in $4\pi^0$.

	$f_0(2100)$		
$2^3 \mathrm{P}_0$ states			${ m K}^{*}_{0}(1950)$
	$f_0(1710)$		
		$a_0(1490)$	
$1^{3}P_{0}$ states	$f_0(1500)$		$K_0^*(1430)$
dynamically generate	$f_0(1370)$		
	$f_0(980)$	$a_0(980)$	
chiral partner of the			K(900)
$\sigma({f 600}) { m meson}$	$f_0(600)$		
	I = 0	l=1	l = 1/2

Gluon exchange versus instanton-induced forces

scalar mesons. The spectra are calculated using a confinement potential and the mass shifts resulting from instantons. The action of instantons in the mass spectrum of pseudoscalar and

The UA(1) anomaly and instantons

Instanton-induced interactions in baryons ?

Total	L oN	*	**	* * *	****	Singlet	Decuplet	Octet
22	ı	2	6	ω	1 1			z
22	ı	6	6	ω	7		\triangleright	
26	Сı	œ	œ	4	6		\sum	\square
18	ı	ω	<u>د</u>	G	9	Λ		Λ
1	œ	ယ	N	4	N		[1]	[1]
4	4	0	N	-	-		Ω	
						M ²	[GeV	²]

Regge trajectory for Δ^* resonances with intrinsic spin S = 1/2 and and for N^{*}'s with spin S = 3/2.

A baryon mass formula

$$M^2 = M_{\Delta}^2 + \frac{n_s}{3} \cdot M_s^2 + a \cdot (L + N) - s_i \cdot I_{sym},$$

where

$$\mathrm{M}^2_\mathrm{s} = \left(\mathrm{M}^2_\Omega - \mathrm{M}^2_\Delta
ight), \qquad \mathrm{s_i} = \left(\mathrm{M}^2_\Delta - \mathrm{M}^2_\mathrm{N}
ight),$$

(which can undergo instanton-induced interactions.) fraction of wave function with qq pair antisymmetric in spin and flavor is the Regge slope as determined from the meson spectrum. I_{sym} M_N, M_Δ, M_Ω are input parameters taking from PDG, a = 1.142/GeV²

spectroscopy !

Very good evidence for instanton-interactions in hadron

All 100 (but 2) known baryon resonances reproduced

Conclusions

There is more evidence for tetraquark and pentaquark states than

for hybrids and glueballs

There is more evidence for the role of instanton-induced

interactions in light hadron spectroscopy than for gluon exchange