

Figure 1: Trajectories on the (n, M^2) planes for the states with (C = -). Open circles stand for the predicted states.

Figure 2: Trajectories on the (n, M^2) planes for the states with (C = +).

Figure 3: (J, M^2) planes for leading and daughter trajectories: a) π -trajectories, b) a_1 -trajectories, c) ρ -trajectories, d) a_2 -trajectories, e) η -trajectories, f) P'-trajectories.

Figure 4: Complex M plane in the $(IJ^{PC} = 00^{++})$ sector. Dashed line encircle the part of the plane where the K-matrix analysis [8] reconstructs the analytic K-matrix amplitude: in this area the poles corresponding to resonances $f_0(980)$, $f_0(1300)$, $f_0(1500)$, $f_0(1750)$ and the broad state $f_0(1200 - 1600)$ are located. On the border of this area the light σ -meson denoted as $f_0(450)$ is shown (the position of pole corresponds to that found in the N/D method [31]). Beyond the K-matrix analysis area, there are resonances $f_0(2030)$, $f_0(2100)$, $f_0(2340)$ [6].

Figure 5: Complex *M* plane: trajectories of poles corresponding to the states $f_0(980)$, $f_0(1300)$, $f_0(1500)$, $f_0(1750)$, $f_0(1200 - 1600)$ within a uniform onset of the decay channels.

Figure 6: The evolution of normalized coupling constants $\gamma_a = g_a / \sqrt{\sum_b g_b^2}$ at the onset of the decay channels for $f_0(980)$, $f_0(1300)$, $f_0(1500)$, $f_0(1750)$. Curves demonstrate the description of constants by formula (38).

Figure 7: (a,b) Examples of planar diagrams responsible for the decay of the $q\bar{q}$ -state and gluonium into two $q\bar{q}$ -mesons (leading terms in the 1/N expansion).

Figure 8: Correlation curves on the $(\varphi, G/g)$ and $(\varphi, g/G)$ plots for the description of the decay couplings of resonances (Table 4) in terms of quark-combinatorics relations (38). a,c) Correlation curves for the $q\bar{q}$ -originated resonances: the curves with appropriate λ 's cover strips on the $(\varphi, G/g)$ plane. b,d) Correlation curves for the glueball descendant: the curves at appropriate λ 's form a cross on the $(\varphi, g/G)$ plane with the center near $\varphi \sim 30^{\circ}$, $g/G \sim 0$.

Figure 9: Linear trajectories on the (n, M^2) plane for scalar resonances (a) and bare scalar states (b). Open circles correspond to the predicted states.

Figure 10: The (J^P, M^2) planes for kaonic sector (open circles stand for the predicted states).

Figure 11: a) Quark-gluonic comb produced by breaking a string by quarks flowing out in the process $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q} \rightarrow mesons$. b) Convolution of the quark-gluonic combs — an example of diagrams describing interaction forces in the $q\bar{q}$ systems at $r \sim 2.0$ fm.