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Introduction.
Chaos intervention in physics.

� Phenomenon of chaos attracts much attention in various fields of physics.

� Originally it was associated with problems of classical mechanics and statistical physics.
Substantiation of statistical mechanics initiated intensive study of chaos and uncover its basic
properties mainly in classical mechanics.

� One of the main results in this direction is a creation of KAM theory and understanding of
the phase space structure of Hamiltonian systems. ‖A.N. Kolmogorov, DAN SSSR (1954)

‖V.I. Arnold, Izv. AN SSSR (1961)

� It was clarified that the root of chaos is local instability of dynamical system. Local
instability leads to mixing of trajectories in phase space and thus to non-regular behavior of
the system and chaos. ‖ N.S. Krylov (1950)

‖G.M. Zaslavsky, R.G. Sagdeev, (1984)
‖Intr. to Nonl. Phys.

� Large progress is achieved in understanding of chaos in semiclassical regime of quantum me-
chanics via analysis of the spectral properties of the system. ‖T. Prosen, M. Robnik (1994)

‖ B.V. Chirikov (1992)

� Role of chaos in QFT and HEP is a kind of challenge
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There are a lot of footprint of chaos here:
- chaotic solutions of classical Yang-Mills field equations of all fundamental interactions.

Chaos and order in classical YMH models ‖Savvidy PL (1983),
‖Kawabe PRD (1983)

- Investigation of the stability of classical field solutions faces difficulties caused by infinite
number of degrees of freedom. That is why authors often restrict their consideration by
investigation of some model field configurations.

|| Kawabe, Ohta (1991)

- Chaos assisted quantum tunneling: probability of tunneling between wells increases by
several orders in presence of classical driving chaotic force ‖Lin et.al. PRL (1990)

- Chaos assisted instanton tunnelling ‖Kuvshinov, Kuzmin,
‖Shulyakovsky (2002)

- quantum footprints of classical chaos in nuclear physics (energy level spacing distribution)
and stochastic billiards

‖Zaslavskii, Sagdeev,
‖ Introduction in nonlinear physics (1988)

In semiclassics Gutzwiller formula gives connection between level spacing and classical phase
trajectories
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- Chaos simulates confinement ‖Savvidy, PL (1977)

- Higgs field lead YMH system to order (in classics)

- Quantum fluctuations of YM field lead the system chaos-order transition || Kuvshinov,
|| Kuzmin,(2001)

- Intermittency phenomenon in HEP

- Chaos and squeezing are connected: roughly :

the more chaos – the more squeezing ‖Alekseev, Perina
‖chao-dyn/9804041

- Coexistence of C. and S.

(see below) ‖Kuvshinov, Marmysh,
‖Shaparau (2002)

chaos theory is developed in:

- classical mechanics with finite number degrees of freedom and statistical physics

- in semi-classical regime of QM
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- there are papers devoted to chaos in quantum field theory. But there is no generally
recognized definition of chaos for quantum fields. This fact restricts use of chaos theory
in field of elementary particle physics.

||T.S. Biro, B. Muller, S.G. Matinyan (1991)

- the definition was given in ‖Kuvshinov, Kuzmin, PLA (2001)

where new quantum chaos criterion was suggested for QFT in terms of Green function,
true also for QM and which in classical limit goes to known Toda criterion.

5



Wilson loop and stochastic vacuum in QCD

• W (c) = P exp(ig
∮

c dzµA
a
µt

a), TrW (c) - gauge invariant || Yu.A.Simonov 1996, 2004

Aµ = Aa
µt

a,− stochastic ansamble in vacuum over which we should average || ”Uspekhi”

• Averaging + non-abelian Stocks theorem

〈TrW (c)〉 = 〈 1

Nc
PTr exp(ig

∮

C

Aµdzµ)〉 =
1

Nc
〈PTr exp(ig

∫

S

drµv(z)Gµv(z, x0))〉

Gµv(z, x0) = Φ(x0, x)Fµv(x)Φ(x, x0); Fµv = ∂µAv − ∂vAµ − ig[AµAv]

• Van Kampen decomposition =⇒ 〈TrW (c)〉 = exp
∑∞

n=2(i
n)△(n)[s]

△(2)[s] =
1

2

∫

S

dσµv(zn)

∫

dσρσ(z2)g
2D2

µvρσ(z1, zi, z0); D2
µvρσ = 〈TrGµvGρσ〉

• Asumptions: Gauss dominance (stochastic vacuum)

△2[s] ≫ △n[s], n > 2, or gFT
(2)
g ≪ 1; Tg - correlation length

• 〈TrW (s)〉 = exp[−V (r)T ] =⇒ exp(−σSmin), σ = 1
2D(x)d2x; V (µ) = σµ

”Area law” - string tension - cofinement; g2D2
µvρσ = ( )D2(z2) + ( )D1(z

2); D(z2) ∼ exp
(
−|z|
Tg

)

• Tg - correlation length - ”domen size”; σ - string tension =⇒ stochastic vacuum leads to confinement
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Fidelity in Holonomic Quantum Computations

• F(t) has been proposed first by Peres as a measure of stability of || A.Peres. 1984.

quantum motion and then measure of the loss of decoherence in QC; || M.A.Nielsen,

(F |t|)2 - ”Loschmidt echo” (Pastawski H), ”hyperseasitivity” (Shack R) || I.L. Chuang 2000

• F (t) = 〈u−1
δ ut〉, δ - perturbation, 〈 〉 in initial state, F (t) = 1 - stable motion,

0 < F (t) < 1 - unstable motion

• HQC: Non-abelian holonomics used for quantum gates in subspace CN on degenerate

eigenvalue of isospectral Hamiltonian H(λ), λ = (λµ) - control parameters: || P.Zanardi 1999, 2000

Γγ(Aµ) = P exp i

∮

γ

Aµdλµ , (Aµ)mn =

∫

d3xΨ∗
m(x, λ)(−i

∂

∂λµ
)Ψ(x, λ)

• Fidelity HQC

F (t) = tr(ρΓ−1
γ Γγ0) = tr(ρP exp[i

∮

δγ

Aµdλµ])

γ0 - adiabatic loop, γ′ - actuale loop with some errors, δγ = γ′−1 · γ0

FHQC - is mathematically similar to Wilson loop in QCD

”Area law” (confinement) of WL corresponds to exponential decreasing of F || V.Kuvshinov, A.Kuzmin, 2003

- instability of quantum system
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• HQC by analogy with QCD non-abelian Stocks theorem gives

• F (t) = TrρP exp(i
∫

δS

dσχρ(z)Gχρ(z, x0))

Gχρ = ΦFχρΦ; Fχρ = ∂χAρ − ∂ρAχ − [Aχ, Aρ], Φ = P exp i

x0∫

z

Aµdλµ

for δλµ < ‖Aµ‖−1, |δλχλρ| < ‖Fχρ‖−1

F (t) ≈ 1 + iTrρFχρδλχδλρ + . . . |δF
δS

| = Tr(ρFµv)

The less curvature tensor leads the less deviation F(t) from unity = more stable

• Let γ0 - the same,but Aµ −→ A′
µ = Aµ+δAµ =⇒ δAµ = Fµvδλ

v || Buividovich, Kuvshinov, 2004

F (t) = Trρ exp

[∫

Φ(λ, λ0)Fχαλ
αΦ(λ0, λ)

dλχ

ds
ds

]

• Gauss dominance:decomposition, averaging over all possible errors

Assumptions:

√

(δA)2 · λcorr ≪ 1 or
√

G2δλ2 · λcorr ≪ 1, λ - correlation length

F (t) = Trρ exp(−λcorr

∫

γ0

σ2ds σ2 = δA1δA1
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Gauss dominance in systems with noise

QCD, HQC, percolation and other systems are characterized by existence of stochastic

vacuum (noise, random reservoir, . . . ) and have general properties and methods of analysis:

• A = A0 + As

• Gauss dominance

• Van Kampen decomposition

• Averaging over random realisations

• lcorr, σ2, A0lcorr ≪ 1, σlcorr ≪ 1

• exponential decreasing of evolution operator (Wilson loop, fidelity, Green functions)

• similar behaviour of instability, squeezing, entanglement, decoherence

Example

A = A0 + As, A0 - non-perturbed, As - random perturbation

U(t, 0) =
∏

i U(ti+1, ti) = T exp
∫ t

0 (A0 + As)dt

U(ti+1, ti) = I+A0∆t+i

∫ ti+1

ti

Asdt−
∫ ti+1

ti

dt1

∫ t1

ti

dt2As(t1)As(t2)−
A2

0∆t2

2
−i

∫ ti+1

ti

dt1

∫ t1

ti

dt2

∫

dt3As1
As2

As3

︸ ︷︷ ︸

+ .

As = 0, As(t1)As(t2) = σ2f(t2 − t1), f(0) = 1, A2
0∆t2 ≪ σ2∆t

∫
dξf(ξ), ( ) ≫ (︸︷︷︸).

If τcorr - correlation time, τcorr ≪ ∆t

∫ ∞
0 dξf(ξ) = τcorr; A0 · τcorr ≪ 1, στcorr ≪ 1 =⇒ U(ti+1, ti) = I + 1A0∆t + −σ2τcorr∆t

2

U(t, 0) = T exp(
∫ t

0 (iA0 − −σ2τcorr
2 )dt)
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Chaos criterion in QFT, SSB, fidelity

Local instability. Toda criterion.

If the distance between two phase space trajectories initially very close behaves with time as follows:

d(t) = eσt,

σ > 0− Lyapunov exponent ⇒ the system is locally unstable, it leads to mixing and to chaos. Regular stable

motion is characterized by σ = 0

2 degrees of freedom

H =
p2

1

2
+

p2
2

2
+ V (q1, q2),

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
,

where q = (q1, q2) and p = (p1, p2). The linearized equation of motion for the deviations are

dδq

dt
= Iδp,

dδp

dt
= −S(t)δq, Sij(t) =

∂2V

∂qiqj
|q=q(t),

The stability of the dynamical system is then determined by the eigenvalues of the 4 × 4 stability matrix

Γ(q(t)) =

(
0 I

−S(t) 0

)

.

If at least one of the eigenvalues of the stability matrix Γ is real, then the separation of the trajectories grows

exponentially and the motion is unstable. Imaginary eigenvalues correspond to stable motion.
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The eigenvalues are λ = ±[−B ±
√

B2 − 4C]
1
2 , B =

[
∂2V
∂q2

1

+ ∂2V
∂q2

2

]
, C =

[
∂2V
∂q2

1

∂2V
∂q2

2

− ( ∂2V
∂q1q2

)2
]
. Now, if B > 0

then with C ≥ 0 the eigenvalues are purely imaginary and the motion is stable, while with C < 0 the pair

of eigenvalues becomes real and this leads to chaotic motion. The parameter C has the same sign as the

Gaussian curvature KG of the potential–energy surface

KG(q1, q2) =
∂2V

∂q2
1

∂2V

∂q2
2

−
(

∂2V

∂q1q2

)2

/
[

1 +
(∂2V

∂q2
1

)2

+
(∂2V

∂q2
2

)2]2
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Instability of classical YMH fields
and quantum fluctuations.

It was analytically (Savvidy, Matinyan and others) and numerically (Kawabe and others) shown that classical gauge

YM theories are inherently chaotic theories.

1) Example: the SU(2) YMH system ‖Salachnich (1997)

describes the interaction between a scalar Higgs field φ and three non–Abelian Yang–Mills fields Aa
µ, a =

1, 2, 3, µ = 0, 1, 2.

L =
1

2
(Dµφ)+(Dµφ) − V (φ) − 1

4
F a

µνF
µνa,

V (φ) = µ2|φ|2 + λ|φ|4

We choose spatially homogeneous Yang–Mills and the Higgs fields

∂iA
a
µ = ∂iφ = 0, i = 1, 2

When µ2 > 0 the potential V has a minimum at |~φ| = 0, but for µ2 < 0 the minimum is at

|~φ0| =

√

−µ2

4λ
= v ,

which is the non zero Higgs vacuum. This vacuum is degenerated and after spontaneous symmetry breaking the

physical vacuum can be chosen ~φ0 = (0, 0, v). If A1
1 = q1, A2

2 = q2 and the other components of the Yang–Mills

fields are zero, in the Higgs vacuum the Hamiltonian of the system reads (p1 = q̇1, p2 = q̇2)

H =
1

2
(p2

1 + p2
2) + g2v2(q2

1 + q2
2) +

1

2
g2q2

1q
2
2,
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V (q1, q2) = g2v2(q2
1 + q2

2) +
1

2
g2q2

1q
2
2

At low energy the Gaussian curvature is positive and motion is periodic or quasi–periodic. If the energy is

increased, the system will be, for some initial conditions, in a region of negative curvature, where the motion is

chaotic. The energy Ec of chaos–order transition is

Ec = Vmin(KG = 0) = 6g2v4

◮ There is a order–chaos transition by increasing the energy E of the system and a chaos–order transition by

increasing the value v of the Higgs field in the vacuum.

2) Quantum fluctuations influence in SU(2) ⊗ U(1) model

‖ Kuvshinov, Kuzmin, JNMP 9 (2002)

We took into account contributions of all diagrams with one loop of (W, Z, A) gauge fields and all external lines

of Higgs field, with effective Hamiltonian (q1 = r cos ϕ, q2 = r sinϕ, pϕ = r2ϕ̇)

H =
1

2
(p2

r + p2 +
p2

ϕ

r2
) +

1

8
g2 < ρ >2 r2 + u(< ρ >)

We demonstrate that quantum fluctuations of non-abelian gauge fields leading to radiative corrected effective due

to Coleman-Weinberg mechanizm Higgs potential and spontaneous symmetry breaking can generate order region

in phase space of inherently chaotic classical field system.

◮ QF lead to order-chaos transition

◮ For pϕ = 0 : Elr = const exp(2αω − 2λ
g4βω)

(
1 + 1

2 cos4 θω

)

◮ Ecr is liner on pϕ (numerically)

◮ ratio λ/g4 has to be less then some critical value
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Chaos definition in QFT

‖Kuvshinov, Kuzmin, PLA (2001)

- Language of path integrals should be suitable in QM, QFT for

any number of degrees of freedom in terms of classical quantities.

- quantum chaos criterion should also reduce to known

quasiclassical criteria in the limit ~ → 0.

� From statistical mechanics and ergodic theory it is known that chaos in classical systems is a consequence of

the property of mixing. Mixing means rapid (exponential) decrease of correlation function with time.

� In other words, if correlation function exponentially decreases than the corresponding motion is chaotic, if it

oscillates or is constant then the motion is regular.

� We expand criterion of this type for quantum field systems. All stated bellow remains valid for quantum

mechanics, since mathematical description via path integrals is the same.

For field systems the analogue of classical correlation function is two-point connected

Green function

Gik(x, y) = − δ2W [ ~J ]

δJi(x)δJk(y)
| ~J=0 .

Here W [ ~J ] is generating functional of connected Green functions, ~J are the sources of the fields, x, y are

4-vectors.

Chaos criterion for quantum field theory and quantum mechanics is the following:
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◮ If two-point Green function exponentially goes to zero when the distance between its arguments goes to in-

finity then system is chaotic.

◮ If it oscillates or remains constant in this limit then we have regular behavior of quantum system.

• For finite number degree of freedom in quasiclassical approximation two point Green function in real time is

Gi(t1, t2) =
i

2
Re

(
e−λi(t1−t2)

λi

)

, t1 > t2.

We see that

� If motion is locally unstable (chaotic) then according Toda criterion there is real eigenvalue λi. Therefore

Green function exponentially goes to zero for some i when (t1 − t2) → +∞. Opposite is also true. If Green

function exponentially goes to zero under the condition (t1 − t2) → +∞ for some i, then there exists real

eigenvalue of the stability matrix and thus classical motion is locally unstable.

� If all eigenvalues of the stability matrix G are pure imaginary, that corresponds stable motion, then in the

limit (t1 − t2) → +∞ Green function oscillates as a sine. Opposite is also true. If for any i Green functions

oscillate in the limit (t1 − t2) → +∞ then {λi} are pure imaginary for any i and motion is stable and regular.

Thus proposed quantum chaos criterion coincides with Toda criterion in the semi-classical limit (correspond-

ing principle). • Instability and spontaneous symmetry breakdown

�One of possible applications of proposed chaos criterion in field theory is an investigation of the stability of classical

solutions with respect to small perturbations of initial conditions. To study the stability of certain classical

solution of field equations one has to calculate (for instance, using one loop approximation) two-point Green

function in the vicinity of considered classical solution.

Example: real scalar ϕ4-field

L =
1

2
(∂µϕ)2 − 1

2
m2ϕ2 − λ

4!
ϕ4.
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Here λ > 0 is a coupling constant, m2 is some parameter which can be larger or less then zero. In both cases ϕ = 0

is a solution of field equations. Asymptotics of two-point Green function calculated in the vicinity of the classical

solution ϕ = 0 in the zero order of perturbation theory is

G(x, y)ρ̃→∞ρ−
1
2eim

√
ρ, ρ = (x − y)2 > 0.

We can study the stability of considered solution with respect to small perturbations. and have two different

cases

� Green function oscillates and slowly (non-exponentially) goes to zero when ρ → ∞. According proposed

chaos criterion considered solution is stable. Indeed, it follows that parameter m is real in this case. Therefore

ϕ = 0 is a stable vacuum state.

� Green function exponentially goes to zero in the limit ρ → ∞. From proposed chaos criterion it follows that

ϕ = 0 is an unstable solution. That is true since one can see that parameter m has to be pure imaginary. It

is known that in this case state ϕ = 0 becomes unstable, two new stable vacuums are appeared and we obtain

spontaneous symmetry breakdown.

• Correspondence between chaos criterion and confinement criterion in lattice models - Green function, propa-

gator, cumulyant go to zero exponentially.

Connection: Green function, Wilson loop

G(x, y) =

∫ ∞

0

ds

∫ zµ(s)=yµ

zµ(0)=xµ

Dzµ exp

[

−m2s − 1

2

∫ s

0

dτ

(
dzµ(τ )

dτ

)2
]

〈TrW (c)〉
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Squeezing, Entanglement, Instability during evolu-
tion

• Gluons interacting in jets lead to quantum squeezed states || V.Kuvshinov, V.Shaporov, 2001

|| Acta Phys.Pol., 2004

• Squeezed gluon evolution leads to entangled gluons

• Connection and evolution of squeezing and instability || V.Kuvshinov, V.Marmysh, 2003

|| Theor.Math.Phyz

example of quadratic Hamiltonians:
d

dt
gmn = Γm

l gln + Γn
l g

lm,

Γn
l - instability matrix, glm - matrix of dispersions =⇒ more instability - more squeezing

• YMH fields entangle during intension || V.Kuvshinov, V.Shaporov, Letter of JEPNP 2004

• Entangled gluon produce entangled quarks, which interacting with stochastic vacuum give:

pairs of qqs, string tension, confinement
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Conclusion

• There exists connection between stochastic confinement and chaos (instability)

• Wilson loop is mathematically similar to fidelity (stability of quantum motion)

• Gauss dominance and general behaviour of the systems with noise (vacuum, thermostat)

• Gluons and quark squeeze and entangle during evolution

• Entangled quarks interesting with stochastic vacuum give: qq pairs, chaos, decoherence spontaneous

symmetry breaking, masses, string, confinement
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