## (Nonlinear) $k_{\perp}$-factorization in Saturation Regime

N.N. Nikolaev ${ }^{a, b)}$, W. Schäfer ${ }^{a)}$, B.G. Zakharov ${ }^{b)}$, V.R. Zoller ${ }^{c}{ }^{\text {( }}$

# ${ }^{\text {a) }}$ Institut f. Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany <br> ${ }^{b)}$ L.D.Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia <br> ${ }^{c}$ Institute for Theoretical and Experimental Physics, 11259 Moscow, Russia 

Workshop On Hadron Structure And QCD:<br>From Low To High Energies (HSQCD 2004)<br>18-22 May 2004, St. Petersburg, Repino, Russia

principal references:
N. N. Nikolaev, W. Schäfer. and G. Schwiete, Phys. Rev. D 63, 014020 (2001)
N.N. Nikolaev, W.Schäfer. , B.G. Zakharov, V.R. Zoller, JETP Lett. 76 (2002) 195;
N.N. Nikolaev, W. Schäfer., B.G. Zakharov, V.R. Zoller, JETP 97 (2003) 441.

- the Lorentz-contracted ultrarelativistic nucleus becomes thinner that the longitudinal spatial localization of soft partons:

$$
R_{A} \rightarrow R_{A} \frac{m_{N}}{p_{N}}<\lambda=\frac{1}{k_{z}}=\frac{1}{x p_{N}} .
$$

- a spatial overlap of partons with

$$
x \lesssim x_{A}=\frac{1}{R_{A} m_{N}}
$$

from all the nucleons at the same impact parameter $\Longrightarrow$ FUSION \& NUCLEAR SHADOWING.


- Nuclear parton density (if it can be meaningfully defined!) is a nonlinear functional of the free nucleon parton density: the same sea is shared by two \& more parent nucleons.
- Scattering theory: shadowing as a manifestation of unitarity for dipole amplitudes:
the major strategy in this talk.
- DIS can be viewed as an interaction of frozen multiparton Fock states of the photon with the target nucleon or nucleus. Quantum mechanics of color factorization (NNN, B.Zakharov '91)
$\sigma_{T}\left(x, Q^{2}\right)=\left\langle\gamma^{*}\right| \sigma(x, \mathrm{r})\left|\gamma^{*}\right\rangle=\int_{0}^{1} d z \int d^{2}{ }_{\mathrm{r}} \Psi_{\gamma^{*}}{ }^{*}(z, \mathrm{r}) \sigma(x, \mathrm{r}) \Psi_{\gamma^{*}}(z, \mathrm{r})$
- $z_{+}=z$ and $z_{-}=1-z \longrightarrow$ energy \& momentum partition between $q \& \bar{q} ; \mathbf{r}=$ size \& orientation of the color dipole.
- Connection to the unintegrated gluon SF of the target \& equivalence between color dipole and $k_{\perp}$-factorization:

$$
\sigma(x, \mathbf{r})=\frac{4 \pi}{N_{c}} \alpha_{S}(r) \int d^{2} \kappa[1-\exp (i \kappa \mathbf{r})] \cdot \frac{1}{\kappa^{4}} \cdot \frac{\partial G_{N}}{\partial \log \kappa^{2}}
$$

- A convenient definition:

$$
\begin{aligned}
& f(\kappa)=\frac{4 \pi}{N_{c} \sigma_{0}(x)} \cdot \frac{1}{\kappa^{4}} \cdot \frac{\partial G_{N}(x, \kappa)}{\partial \log \kappa^{2}}, \quad \int d^{2} \kappa f(\kappa)=1 \\
& \sigma_{0}(x)=\left.\sigma(x, \mathbf{r})\right|_{r \rightarrow \infty}
\end{aligned}
$$

- Color dipole BFKL equation (NnN,B.Zakharov, Zoller '94)

$$
\begin{gathered}
\frac{\partial \sigma(x, \mathrm{r})}{\partial \log \frac{1}{x}}=K_{0} \int d^{2} \boldsymbol{\rho} \frac{\mathrm{r}^{2}}{\rho^{2}(\rho-\mathrm{r})^{2}}[\sigma(x, \boldsymbol{\rho})+\sigma(x, \boldsymbol{\rho}-\mathrm{r})-\sigma(x, \mathrm{r})] \\
K_{0}=\frac{1}{2 \pi^{2}} N_{c} \alpha_{S}
\end{gathered}
$$

$\left\langle\gamma^{*}\right| \sigma(\mathbf{r})\left|\gamma^{*}\right\rangle$ sums 4 Feynman diagrams with the two-gluon tower in the $t$-channel

$\star f(\boldsymbol{\kappa})$ defines the Pomeron $\mathbb{P}$ for a free nucleon target
$\star f(\boldsymbol{\kappa})$ and the final states:

- Forward dijets: $x_{\gamma}=z_{+}+z_{-} \approx 1$
- Forward jets have transverse momentum $\mathbf{p}$ or $\mathbf{p}-\kappa$
- Jet-jet azimuthal decorrelation momentum $\Delta=\mathbf{p}_{+}+\mathrm{p}_{-}$
- $k_{\perp}$-factorization for the jet-jet decorrelation:

$$
\begin{gathered}
\frac{d \sigma_{N}}{d z d^{2} \mathbf{p}_{+} d^{2} \boldsymbol{\Delta}}= \\
\frac{\sigma_{0}}{2} \cdot \frac{\alpha_{S}\left(\mathbf{p}^{2}\right)}{(2 \pi)^{2}} f(\Delta)\left|\left\langle\gamma^{*} \mid z, \mathbf{p}_{+}\right\rangle-\left\langle\gamma^{*} \mid z, \mathbf{p}_{+}-\Delta\right\rangle\right|^{2} \\
=\frac{\alpha_{S}\left(\mathbf{p}^{2}\right)}{2 \pi N_{c}} \cdot \frac{\mathcal{F}\left(x, \Delta^{2}\right)}{\Delta^{4}} \cdot\left|\left\langle\gamma^{*} \mid z, \mathbf{p}_{+}\right\rangle-\left\langle\gamma^{*} \mid z, \mathbf{p}_{+}-\Delta\right\rangle\right|^{2} .
\end{gathered}
$$

* The jet-jet decorrelation distribution is a linear functional of the unintergrated gluon density of the target.
* Diffractive and truly inelastic DIS off nuclei:
the dipole is coherent over the whole nucleus for $x \lesssim x_{A}$ :
$\Longrightarrow$ Glauber-Gribov formalism:

$$
\sigma_{A}(\mathbf{r})=2 \quad d^{2} \mathbf{b} \Gamma_{A}(\mathbf{b}, \mathbf{r})=2 \quad d^{2} \mathbf{b}\left[1-\exp \left(-\frac{1}{2} \sigma(\mathbf{r}) T(\mathbf{b})\right)\right]
$$



Unitarity cuts for DIS off free nucleons


Amplitude of diffractive DIS $\gamma^{*}$ A Compton amplitude



Incoherent diffractive cut


Truly inelastic DIS:
Single color excitation
Multiple color excitation


Diffractive DIS off nuclei defines collective nuclear glue

$$
\left.\frac{d \sigma_{D}\left(\gamma^{*} A\right)}{d^{2} \mathbf{b} d z d^{2} \mathbf{p}}=\frac{1}{(2 \pi)^{2}}\left|\left\langle\gamma^{*}\right|\left\{1-\exp \left[-\frac{1}{2} \sigma(\mathbf{r}) T(\mathbf{b})\right]\right\}\right| \mathbf{p}\right\rangle\left.\right|^{2}
$$

- Nuclear thickness $T(\mathbf{b})=\int d z n_{A}(\mathbf{b}, z)$ sets a new scale.

$$
\Gamma_{A}(\mathbf{b}, \mathbf{r})=d^{2} \kappa \phi(\mathbf{b}, \kappa)\{1-\exp [i \kappa \mathbf{r}]\}
$$

- Nuclear flux of glue per unit area in the impact parameter space

$$
\begin{gathered}
\phi(\mathbf{b}, \kappa)=\sum_{j=1}^{\infty} w_{j}(\mathbf{b}) f^{(j)}(\kappa) \\
w_{j}(\mathbf{b})=\frac{\nu_{A}^{j}(\mathbf{b})}{j!} \exp \left[-\nu_{A}(\mathbf{b})\right], \quad \nu_{A}(\mathbf{b})=\frac{1}{2} \alpha_{S}(r) \sigma_{0} T(\mathbf{b})
\end{gathered}
$$

- $w_{j}$ is the probability to find $j$ overlapping nucleons at impact parameter $\mathbf{b}$ in a Lorentz-contracted nucleus, $f^{(j)}$ is a collective glue of $j$ overlapping nucleons:

$$
f^{(j)}(\kappa)=\prod_{i}^{j} d^{2} \kappa_{i} f\left(\kappa_{i}\right) \delta\left(\kappa-\sum_{i}^{j} \kappa_{i}\right), \quad f^{(0)}(\kappa) \equiv \delta(\kappa)
$$

- Hard glue per bound nucleon is not shadowed: ( NNN,Schäfer, Schwiete '00)

$$
\begin{aligned}
& f_{A}(\mathbf{b}, \kappa)=\frac{\phi(\mathbf{b}, \kappa)}{\nu_{A}(\mathbf{b})} \\
& =f(\kappa)\left[1+\frac{\gamma^{2}}{2} \cdot \frac{\alpha_{S}\left(\kappa^{2}\right) G\left(\kappa^{2}\right)}{\alpha_{S}\left(Q_{A}^{2}\right) G\left(Q_{A}^{2}\right)} \cdot \frac{Q_{A}^{2}(\mathbf{b})}{\kappa^{2}}\right]
\end{aligned}
$$

- $\gamma=$ exponent of the large $-\kappa^{2}$ tail $f(\kappa) \sim \alpha_{S}\left(\kappa^{2}\right) /\left(\kappa^{2}\right)^{\gamma}$
- Width of the plateau ( saturation \& higher twist scale)

$$
Q_{A}^{2}(\mathbf{b}) \approx \frac{4 \pi^{2}}{N_{c}} \alpha_{S}\left(Q_{A}^{2}\right) G\left(Q_{A}^{2}\right) T(\mathbf{b})
$$

(The saturation scale of Mueller '90)

- Manifestly positive-valued nuclear higher twist correction with nuclear antishadowing property. No dependence on soft parameters. ( NNN,Schäfer, Schwiete '00)
- Antishadowing is an origin of the Cronin effect.
- Plateau for softer collective glue per unit area in the impact parameter plane:

$$
\phi(\mathbf{b}, \kappa) \approx \frac{1}{\pi} \frac{Q_{A}^{2}(\mathbf{b})}{\left(\kappa^{2}+Q_{A}^{2}(\mathbf{b})\right)^{2}},
$$

- Nuclear dilution of the collective glue at small $\kappa^{2} \ll Q_{A}^{2}(\mathbf{b})$ :

$$
\phi(\mathbf{b}, \kappa) \propto \frac{1}{\nu_{A}(\mathbf{b})}
$$

- Numerical evaluation for $A^{1 / 3}=6$ gives the saturation scale $\left\langle Q_{A}^{2}(\mathbf{b})\right\rangle_{A u} \approx 0.8(\mathrm{GeV} / \mathrm{c})^{2}$.


Dilution for soft, and broadening for hard, of the collective glue of $j$ overlapping nucleons $f^{(j)}(\boldsymbol{\kappa})$ for DIS at $x=0.01$.

- The $k_{\perp}$-factorization for the total DIS cross section in terms of the same collective glue:

$$
\sigma_{\gamma^{*} A}=\int d^{2} \mathbf{b} \int \frac{d^{2} \mathbf{p}}{(2 \pi)^{2}} \alpha_{S}\left(\mathbf{p}^{2}\right) \int d^{2} \kappa \phi(\kappa)\left|\left\langle\gamma^{*} \mid \mathbf{p}\right\rangle-\left\langle\gamma^{*} \mid \mathbf{p}-\kappa\right\rangle\right|^{2}
$$

- Identical to the free nucleon case: $\phi(\kappa) \Longleftrightarrow f(\kappa)$, the exchange by a single nuclear Pomeron.
?? Any nuclear $k_{\perp}$-factorization in terms of $\phi(\kappa)$ ??
?? Any similarity between nuclear and free-nucleon Pomerons ??

- 'decay' of a virtual particle $a \rightarrow b c$, with a weak, perturbative $a b c$-coupling $g:|a\rangle_{\text {phys }}=|a\rangle_{0}+g \psi(\mathbf{r})|b c\rangle_{0}$
- Simple action of $S$-matrix on bare partons. Scattering state:

$$
\begin{aligned}
& \mathrm{S}|a\rangle_{p h y s}=S_{a}(\mathbf{b})|a\rangle_{0}+g S_{b}\left(\mathbf{b}_{+}\right) S_{c}\left(\mathbf{b}_{-}\right) \psi(\mathbf{r})|b c\rangle_{0} \\
& =S_{a}(\mathbf{b})|a\rangle_{p h y s}+g\left[S_{b}\left(\mathbf{b}_{+}\right) S_{c}\left(\mathbf{b}_{-}\right)-S_{a}(\mathbf{b})\right] \psi(\mathbf{r})|b c\rangle
\end{aligned}
$$

- $S_{b} S_{c} \Leftrightarrow$ scattering after and $S_{a} \Leftrightarrow$ scattering before the decay. Amplitude for inelastic excitation vanishes if $S_{b} S_{c}=S_{a}$.
- The nuclear $S$-matrix $S_{A}(\mathrm{~b})=\prod_{j=1}^{A} S_{N}\left(\mathrm{~b}-\mathbf{b}_{j}\right)$ ( ordering along the longitudinal path is understood)
- 2-particle inclusive spectrum for $a \rightarrow b\left(\mathbf{p}_{+}\right) c\left(\mathbf{p}_{-}\right)$ $\mathrm{b}=z \mathrm{~b}_{+}+(1-z) \mathbf{b}_{-}$

$$
\begin{aligned}
& \quad \frac{d \sigma}{d z d^{2} \mathbf{p}_{+} d^{2} \mathbf{p}_{-}}=\frac{1}{(2 \pi)^{4}} \int d^{2} \mathbf{b}_{+} d^{2} \mathbf{b}_{-} d^{2} \mathbf{b}_{+}^{\prime} d^{2} \mathbf{b}_{-}^{\prime} \\
& \times \exp \left[i \mathbf{p}_{+}\left(\mathbf{b}_{+}-\mathbf{b}_{+}^{\prime}\right)+i \mathbf{p}_{-}\left(\mathbf{b}_{-}-\mathbf{b}_{-}^{\prime}\right)\right] \Psi\left(\mathbf{b}_{+}-\mathbf{b}_{-}\right) \Psi^{*}\left(\mathbf{b}_{+}^{\prime}-\mathbf{b}_{-}^{\prime}\right) \\
& \left\{S^{(4)}\left(\mathbf{b}_{+}, \mathbf{b}_{-}, \mathbf{b}_{+}^{\prime}, \mathbf{b}_{-}^{\prime}\right)+S^{(2)}\left(\mathbf{b}, \mathbf{b}^{\prime}\right)-S^{(3)}\left(\mathbf{b}_{+}, \mathbf{b}_{-}, \mathbf{b}^{\prime}\right)-S^{(3)}\left(\mathbf{b}_{+}^{\prime}, \mathbf{b}_{-}^{\prime}, \mathbf{b}\right)\right\}
\end{aligned}
$$

- Application of closure on the nuclear side in the square of the amplitude.

$S^{(4)}$ describes scattering of a 4-body system of dipoles off the target $\rightarrow$ evaluated in Glauber-Gribov approximation. The 4-parton system is in an overall color singlet state.
Dipole states: $|R \bar{R}\rangle=\left|(b \bar{b})_{R} \otimes(c \bar{c})_{\bar{R}}\right\rangle$
e.g. $R=1,8$ for $b c=q \bar{q}, R=1,8_{A}, 8_{S}, 10+\overline{10}, 27$ for $b c=g g$.
- $\Rightarrow S^{(4)}$ is an element of the matrix $\hat{S}^{(4)}=$ $\exp \left\{-\frac{1}{2} \sigma_{4}\left(\mathbf{b}_{+}{ }^{\prime}, \mathbf{b}_{-}{ }^{\prime}, \mathbf{b}_{+}, \mathbf{b}_{-}\right) T(\mathbf{b})\right\}$, whose eigenvalues can be expressed through the free nucleon color dipole cross section.
- The color-coupled channel aspect of intranuclear dipole propagation cannot be absorbed in a universal unintegrated glue of the nucleus. No $k_{\perp}$-factorisation of two particle-spectra.
- $\Rightarrow$ a whole density matrix of gluons in color space is called upon.
- Exceptional case of forward quark jets in DIS: back to $\sigma_{\gamma^{*} A}$ $\sigma_{\gamma^{*} A}=\int d^{2} \mathbf{b} \int \frac{d^{2} \mathbf{p}}{(2 \pi)^{2}} \alpha_{S}\left(\mathbf{p}^{2}\right) \int d^{2} \kappa \phi(\kappa)\left|\left\langle\gamma^{*} \mid \mathbf{p}\right\rangle-\left\langle\gamma^{*} \mid \mathbf{p}-\kappa\right\rangle\right|^{2}$ the single-quark $\mathbf{p}$ distribution is calculated through $\phi(\kappa)$ as if struck quarks have no FSI: an analogy between nuclear and free-nucleon pomerons for certain observables .
(similar quasi-abelian special cases of single particle spectra: Kopeliovich et al. '99, Mueller '99, Wiedemann '00, Kovchegov '01)
- The single particle spectrum for $g^{*} \rightarrow Q \bar{Q}$
differential version of NNN, Piller, Zakharov '94
- On the free nucleon target:

$$
\begin{gathered}
\frac{d \sigma}{d z d^{2} \mathbf{p}}=\frac{1}{2(2 \pi)^{2}} \quad d^{2} \mathbf{r} d^{2} \mathbf{r}^{\prime} \exp \left[i \mathbf{p}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right] \Psi(\mathbf{r}) \Psi^{*}\left(\mathbf{r}^{\prime}\right) \\
\left\{\sigma_{3}\left(z \mathbf{r}^{\prime}, \mathbf{r}\right)+\sigma_{3}\left(z \mathbf{r}, \mathbf{r}^{\prime}\right)-\sigma_{2, Q \bar{Q}}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)-\sigma_{2, g g}\left(z\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right)\right\}
\end{gathered}
$$

- Three-body cross section (Nikolaev,Zakharov '94)

$$
\begin{aligned}
\sigma_{3}(\boldsymbol{\rho}, \mathrm{r}) & =\frac{C_{A}}{2 C_{F}}\left[\sigma_{2}(\boldsymbol{\rho})+\sigma_{2}(\mathrm{r}-\boldsymbol{\rho})-\frac{1}{N_{c}^{2}} \sigma_{2}(\mathrm{r})\right] \\
& \equiv F\left[\sigma_{2}\right]
\end{aligned}
$$

- For the nuclear cross section substitute:

$$
\begin{gathered}
\sigma_{2}(\mathbf{r}) \rightarrow \sigma_{2 A}(\mathbf{r})=2 \quad d^{2} \mathbf{b}\left[1-\exp \left(-\frac{1}{2} \sigma_{2}(\mathbf{r}) T(\mathbf{b})\right)\right] \\
\sigma_{3}(\mathbf{r}, \boldsymbol{\rho}) \rightarrow \sigma_{3 A}(\mathbf{r}, \boldsymbol{\rho})=2 d^{2} \mathbf{b}\left[1-\exp \left(-\frac{1}{2} \sigma_{3}(\mathbf{r}, \boldsymbol{\rho}) T(\mathbf{b})\right)\right] \\
!!\text { But: } \sigma_{3 A}(\mathbf{r}, \boldsymbol{\rho}) \neq F\left[\sigma_{2 A}\right]!!
\end{gathered}
$$

$\Longrightarrow$ if the decaying particle $a$ is not a passive state, $k_{\perp}-$ factorization is in general violated already for the single particle spectrum.

- Breakup of virtual photon into dijets $\gamma^{*}\left(Q^{2}\right) \rightarrow q\left(\mathbf{p}_{+}\right) \bar{q}\left(\mathbf{p}_{-}\right)$ in truly inelastic DIS
- Coherent diffractive DIS $=50$ per cent of total for heavy nucleus (NNN, Zakharov, Zoller '94). Diffractive dijets are exactly back-to-back, $\Delta=\mathrm{p}_{+}+\mathrm{p}_{-} \sim \frac{1}{R_{A}} \sim 0$
- For hard dijets $\Rightarrow$ linear dependence on the nuclear unintegrated glue in terms of: $\Phi\left(\nu_{A}(\mathbf{b}), \kappa\right)=\exp \left(-\nu_{A}(\mathbf{b})\right) \delta^{(2)}(\kappa)+\phi\left(\nu_{A}(\mathbf{b}), \kappa\right)$ for grey nuclei includes a numerically important no-rescattering term $\propto \delta^{(2)}(\kappa)$

- Nuclear dijet spectrum is a convolution of $\Phi$ with the free nucleon cross section ( $\lambda_{c} \equiv C_{A} / 2 C_{F}$ ):

$$
\frac{d \sigma_{i n}}{d^{2} \mathbf{b} d z d^{2} \mathbf{p}_{+} d^{2} \Delta}=T(\mathbf{b}) \times \int d^{2} \kappa \int_{0}^{1} d \beta \Phi\left(2 \beta \lambda_{c} \nu_{A}(\mathbf{b}), \Delta-\kappa\right) \frac{d \sigma_{N}}{d z d^{2} \mathbf{p}_{+} d^{2} \kappa} .
$$

- Dependence on $\Phi$ is different from the $k_{\perp}$-factorization for the free nucleon case $\Longrightarrow$ breaking of the $k_{\perp}$-factorization for nuclei
* Semihard dijets below the saturation scale: $\left|\mathbf{p}_{ \pm}\right|^{2} \lesssim Q_{A}^{2}$ $\Longrightarrow$ complete azimuthal decorrelation of dijets and a highly nonlinear dependence on the nuclear unintegrated glue with no resemblance of the free-nucleon formula.
- Simple closed form in the large- $N_{c}$ approximation:

$$
\begin{aligned}
& \frac{d \sigma_{i n}}{d^{2} \mathbf{b} d z d \mathbf{p}_{-} d \boldsymbol{\Delta}}=\frac{1}{2(2 \pi)^{2}} \alpha_{S} \sigma_{0} T(\mathbf{b}) \\
& \times \quad{ }_{0}^{1} d \beta \quad d^{2} \boldsymbol{\kappa}_{3} d^{2} \kappa f(\kappa) \\
& \times \Phi\left(\beta \nu_{A}(\mathbf{b}), \Delta-\boldsymbol{\kappa}_{3}-\kappa\right) \Phi\left(\beta \nu_{A}(\mathbf{b}), \kappa_{3}\right) \\
& \times \mid \quad d^{2} \boldsymbol{\kappa}_{1} \Phi\left((1-\beta) \nu_{A}(\mathbf{b}), \boldsymbol{\kappa}_{1}\right) \\
& \left.\left\{\left\langle\gamma^{*} \mid z, \mathbf{p}_{-}+\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{3}\right\rangle-\left\langle\gamma^{*} \mid z, \mathbf{p}_{-}+\boldsymbol{\kappa}_{1}+\kappa_{3}+\kappa\right\rangle\right\}\right|^{2}
\end{aligned}
$$

- What are the universality properties of such a nonlinear $k_{\perp^{-}}$ factorization?
- The slice $(1-\beta)$ in which the dipole was in the color-singlet state $\Longrightarrow$ Initial State Interaction (distortion of the WF)
- The slice $\beta$ in which the dipole is in the color-octet state $\Longrightarrow$ Final State Interaction (broadening) .
$\star \phi\left((1-\beta) \nu_{A}(\mathbf{b}), \boldsymbol{\kappa}\right), \phi\left(\beta \nu_{A}(\mathbf{b}), \boldsymbol{\kappa}\right) \neq \phi\left(\nu_{A}(\mathbf{b}), \boldsymbol{\kappa}\right)$
* Dijets are described by a "four nuclear Pomeron exchange".
- Soft dijets, $\left|\mathrm{p}_{-}\right|,|\Delta| \lesssim Q_{A}$ : a complete disappearance of the azimuthal correlation

Small-x evolution of the nuclear DIS cross section and nuclear Pomeron.

* The free-nucleon target:
the effect of the $q \bar{q} g$ and higher Fock states can be reabsorbed in the linear BFKL evolution for the dipole cross section or the unintegrated glue, with the photon treated as the $q \bar{q}$ state.
* Similar reabsorption is possible for nuclei, but without a closedform evolution equation!!
*The first iteration of the $\log \frac{1}{x}$ evolution:

$$
\begin{aligned}
& \frac{\partial \Delta \sigma_{A}(x, \mathrm{r})}{\partial \log \frac{1}{x}}=K_{0} \int d^{2} \boldsymbol{\rho} \frac{\mathrm{r}^{2}}{\boldsymbol{\rho}^{2}(\boldsymbol{\rho}-\mathbf{r})^{2}} \\
& \times 2 \int d^{2} \mathbf{b}\left[\Gamma_{3 A}(\mathbf{b}, \boldsymbol{\rho}, \mathrm{r})-\Gamma_{2 A}(\mathbf{b}, \mathbf{r})\right]=2 \int d^{2} \mathbf{b} \frac{\partial \Gamma_{A}(x, \mathbf{b}, \mathbf{r})}{\partial \log \frac{1}{x}} \\
& \Gamma_{3 A}(\mathbf{b}, \boldsymbol{\rho}, \mathbf{r})=1-S_{3 A}(\mathbf{b}, \boldsymbol{\rho}, \mathbf{r})=1-\exp \left[-\frac{1}{2} \sigma_{3}(\boldsymbol{\rho}, \mathrm{r}) T(\mathbf{b})\right]
\end{aligned}
$$

- Simplified Glauber formulas in the large- $N_{c}$ approximation:

$$
\begin{aligned}
& S_{3 A}(\mathbf{b}, \boldsymbol{\rho}, \mathbf{r})=S_{2 A}(\mathbf{b}, \boldsymbol{\rho}-\mathbf{r}) S_{2 A}(\mathbf{b}, \boldsymbol{\rho}) \\
& \Gamma_{3 A}(\mathbf{b}, \boldsymbol{\rho}, \mathbf{r})-\Gamma_{2 A}(\mathbf{b}, \mathbf{r})= \\
& \Gamma_{2 A}(\boldsymbol{\rho}-\mathbf{r})+\Gamma_{2 A}(\mathbf{b}, \boldsymbol{\rho})-\Gamma_{2 A}(\mathbf{b}, \mathbf{r})-\Gamma_{2 A}(\mathbf{b}, \boldsymbol{\rho}-\mathbf{r}) \Gamma_{2 A}(\mathbf{b}, \boldsymbol{\rho})
\end{aligned}
$$

- $\partial \Gamma_{A}(x, \mathbf{b}, \mathbf{r}) / \partial \log \frac{1}{x}$ is a nonlinear functional of $\Gamma_{2 A}$, the identification of $\Gamma_{A}(x, \mathbf{b}, \mathbf{r})$ with $\Gamma_{2 A}(x, \mathbf{b}, \mathbf{r})$, and the extension of the first iteration to the closed-form nonlinear equation, would be utterly erroneous.

The momentum-space analysis is illuminating:

- Define nuclear transparency for large dipoles:

$$
S_{A}\left(\mathbf{b}, \sigma_{0}\right)=\exp \left[-\frac{1}{2} \sigma_{0} T(\mathbf{b})\right]=1-\int d^{2} \mathbf{k} \phi(\mathbf{k})
$$

- The first iteration for unintegrated nuclear glue:

$$
\begin{array}{r}
\frac{\partial \Delta \phi_{A}(x, \mathbf{b}, \boldsymbol{\Delta})}{\partial \log \frac{1}{x}}=S_{A}\left(\mathbf{b}, \sigma_{0}\right) \mathcal{K}_{B F K L} \otimes \phi(\boldsymbol{\Delta}) \\
+K_{0} \quad d^{2} \mathbf{p} d^{2} \mathbf{k} \phi(\mathbf{k})\{K(\boldsymbol{\Delta}+\mathbf{p}, \boldsymbol{\Delta}+\mathbf{k}) \phi(\mathbf{p}) \\
-K(\mathbf{p}, \mathbf{p}-\boldsymbol{\Delta})-\mathbf{k}) \phi(\boldsymbol{\Delta})\} \\
=S_{A}\left(\mathbf{b}, \sigma_{0}\right) \mathcal{K}_{B F K L} \otimes \phi(\boldsymbol{\Delta})+\mathcal{K}_{N o n L i n}[\phi(\boldsymbol{\Delta})]
\end{array}
$$

- Contains an absorption suppressed linear BFKL term.
- For central DIS off heavy nuclei $S_{A} \rightarrow 0$. The evolution is entirely driven by the nonlinear term quadratic in $\phi(\mathbf{k})$.
- The connection to the $\mathcal{K}_{B F K L}$ :

$$
\begin{gathered}
K(\mathbf{p}, \mathbf{k})=\frac{(\mathbf{p}-\mathbf{k})^{2}}{\mathbf{p}^{2} \mathbf{k}^{2}} \\
\mathcal{K}_{B F K L} \otimes f(\boldsymbol{\Delta})= \\
K_{0} \quad d^{2} \mathbf{p}[2 K(\boldsymbol{\Delta}, \boldsymbol{\Delta}-\mathbf{p}) f(\mathbf{p})-K(\mathbf{p}, \mathbf{p}-\boldsymbol{\Delta}) f(\boldsymbol{\Delta})]
\end{gathered}
$$

$\star$ Hard gluons, $\Delta^{2}>Q_{A}^{2}$ :

$$
\begin{gathered}
\mathcal{K}_{\text {NonLin }}[\phi(\boldsymbol{\Delta})]=\left[d^{2} \mathbf{p} \phi(\mathbf{p})\right] \cdot \mathcal{K}_{B F K L} \otimes \phi(\boldsymbol{\Delta}) \\
\frac{\partial \Delta \phi_{A}(x, \boldsymbol{\Delta})}{\partial \log \frac{1}{x}}=\mathcal{K}_{B F K L} \otimes \phi(\boldsymbol{\Delta})
\end{gathered}
$$

- A remarkable recovery of the linear BFKL evolution for hard gluons from the nonlinear component of the nuclear X-section. The related color dipole derivation to all orders of DLLA by B.Zakharov (Zakharov '98).
- An expected result in view of unshadowed hard collective glue: $\phi(\boldsymbol{\Delta})=\nu(\mathbf{b}) f(\boldsymbol{\Delta})$.
* Heavy nucleus, soft gluons, $\Delta^{2} \ll Q_{A}^{2}$ :

$$
\frac{\partial \phi_{A}(x, \mathbf{b}, \Delta)}{\partial \log \frac{1}{x}}=-2 C \pi K_{0} \phi(x, \mathbf{b}, 0)
$$

- $C \sim 1$, depends on the form of the collective nuclear glue.
- Because $\phi(x, \mathbf{b}, 0) \sim 1 / Q_{A}^{2}(\mathbf{b})$, this entails an expanding plateau with the rising saturation scale

$$
Q_{A}^{2}(\mathbf{b}) \Longrightarrow Q_{A}^{2}(\mathbf{b})\left[1+2 C \pi K_{0} \log \frac{1}{x}\right]
$$

- The full-fledged nonlinear evolution for $\Delta^{2} \sim Q_{A}^{2}$.
* Diffractive DIS: still a marginal $\lesssim 10 \%$ of total DIS at HERA, but $50 \%$ for heavy nuclei (NNN,Zakharov,Zoller '94). A manifestly nonlinear observable. First a free nucleon target:
- $\gamma^{*} \rightarrow q \bar{q}$ : excitation of low diffractive masses, $M^{2} \sim Q^{2}$ :

$$
\left.\frac{d \sigma_{D}}{d t}\right|_{t=0}=\frac{1}{16 \pi}\left\langle\gamma^{*}(q \bar{q})\right| \sigma^{2}(x, \mathbf{r})\left|\gamma^{*}(q \bar{q})\right\rangle
$$

- $\gamma^{*} \rightarrow q \bar{q} g$ : excitation of high diffractive masses, $M^{2} \gg Q^{2}$,

$$
\begin{gathered}
\beta=\frac{x}{x_{\mathbb{P}}}=\frac{Q^{2}}{Q^{2}+M^{2}} \ll 1 \\
\left.M^{2} \frac{d \sigma_{D}}{d M^{2} d t}\right|_{t=0}=\left.\frac{\partial}{\partial \log \frac{1}{\beta}} \frac{d \sigma_{D}}{d t}\right|_{t=0} \\
=\frac{1}{16 \pi}\left\langle\gamma^{*}(q \bar{q} g)\right|\left(\sigma_{3}\left(x_{\mathbb{P}}, \boldsymbol{\rho}, \mathrm{r}\right)-\sigma\left(x_{\mathbb{P}}, \mathrm{r}\right)\right)^{2}\left|\gamma^{*}(q \bar{q} g)\right\rangle
\end{gathered}
$$

- Color dipole factorization representation \& definition of unintegrated diffractive glue:

$$
\begin{aligned}
\left.\frac{d \sigma_{D}}{d t}\right|_{t=0} & =\frac{\sigma_{0}\left(x_{\mathbb{P}}\right)}{16 \pi}\left\langle\gamma^{*}(q \bar{q})\right| \sigma_{D}(\mathbf{r})\left|\gamma^{*}(q \bar{q})\right\rangle \\
\sigma_{D}(\mathbf{r}) & =\sigma_{0}\left(x_{\mathbb{P}}\right) \quad d^{2} \Delta f_{D}(\Delta)[1-\exp (i \Delta \mathbf{r})]
\end{aligned}
$$

- The $q \bar{q}$ excitation: the manifestly nonlinear

$$
f_{2 D}(\Delta)=2 f(\Delta)-f \otimes f(\Delta)=2 f(\Delta)-f^{(2)}(\Delta)
$$

* Diffraction as inclusive DIS off a pomeron: the $q \bar{q} g$ excitation defines a gluon density in the valence $g g$ state of the diffractive Pomeron.
* Also a definition of the triple-pomeron vertex $A_{31 \mathrm{P}}$.
* The diffractive glue $f_{D}(\beta, \mathbf{b}, \boldsymbol{\Delta})$ is related to the diffractive Pomeron $\mathbb{P}_{D}$ in precisely the same way as $f(\boldsymbol{\Delta})$ to the Pomeron IP of inclusive DIS.


$$
\begin{aligned}
& \frac{\partial f_{D}(\beta, \mathbf{b}, \boldsymbol{\Delta})}{\partial \log \frac{1}{\beta}}=\mathcal{K}_{B F K L} \otimes f_{2 D}(\boldsymbol{\Delta}) \\
& +2 K_{0} \quad d^{2} \mathbf{p} d^{2} \mathbf{k}\{[2 K(\boldsymbol{\Delta}+\mathbf{p}, \boldsymbol{\Delta}+\mathbf{p}+\mathbf{k}) \\
& +K(\boldsymbol{\Delta}+\mathbf{p}, \boldsymbol{\Delta}+\mathbf{k})] f(\mathbf{p}) f(\mathbf{k}) \\
& +[K(\boldsymbol{\Delta}+\mathbf{p}, \boldsymbol{\Delta}+\mathbf{k})-K(\mathbf{p}, \mathbf{p}-\mathbf{k})] f(\boldsymbol{\Delta}) f(\mathbf{k}) \\
& -K(\mathbf{p}, \mathbf{p}-\mathbf{k}) f(\boldsymbol{\Delta}-\mathbf{k}) f(\mathbf{k})\} \\
& =\mathcal{K}_{B F K L} \otimes f_{2 D}(\boldsymbol{\Delta})+\mathcal{K}^{(\mathcal{D})}{ }_{\text {NonLin }}[f(\boldsymbol{\Delta})]
\end{aligned}
$$

- Large $\Delta^{2}$ : the contribution from $\mathcal{K}^{(\mathcal{D})}{ }_{\text {NonLin }}$ vanishes faster than the usual perturbative $1 / \Delta^{4}$.
- The DLLA regime of large $\Delta^{2}$ : the linear BFKL contribution matches the DLLA to DGLAP

$$
\left.\mathcal{K}_{B F K L} \otimes f_{2 D}(\Delta)\right|_{D L L A}=\frac{2 K_{0}}{\Delta^{4}} \int^{\Delta^{2}} d^{2} \mathbf{p} \mathbf{p}^{2} f_{2 D}(\mathbf{p})
$$

- The standard case: $\int \Delta^{2} d^{2} \mathbf{p} \mathbf{p}^{2} f(\mathbf{p}) \propto G\left(\Delta^{2}\right) \propto \log \Delta^{2}$.
- Diffraction is a special case: $f_{2 D}(\boldsymbol{\Delta})$ is not positive-defined, satisfies the sum rule

$$
d^{2} \mathbf{p} \mathbf{p}^{2} f_{2 D}(\mathbf{p})=0
$$

Hard diffractive glue $f_{D}(\beta, \boldsymbol{\Delta})$ has a vanishing leading twist component $\propto 1 / \Delta^{4}$. Recall valence quarks in the nucleon before DGLAP evolution.

- The effect of depletion of $f^{(2)}(\mathbf{p})$ at small $\mathbf{p}^{2}$ is compensated for by higher twist effects at large $\mathrm{p}^{2}$.
- The related absence of $\log \frac{1}{\mathrm{r}^{2}}$ in $\sigma_{D}(\mathrm{r})$ has been noticed earlier in the color dipole DLLA treatment of high-mass diffraction (NNN,Zakharov '93).
-     * The single-particle inclusive spectrum of diffractive gluons from $\gamma^{*} \rightarrow q \bar{q} g$ excitation (NNN' 99):

$$
\frac{d N_{g}}{d^{2} \mathbf{p}_{g}} \propto \frac{G^{2}\left(x_{\mathbb{P}}, \mathbf{p}_{g}^{2}\right)}{p_{g}^{4}}
$$



A naive treatment of the Pomeron as a particle suggests:

$$
p_{g}=\Delta
$$

and is at best misleading

$$
\begin{array}{r}
\frac{\partial \Delta \phi_{D}(\beta, \mathbf{b}, \Delta)}{\partial \log \frac{1}{\beta}}=2 K_{0}\left[\int d^{2} \boldsymbol{\kappa} \phi(\boldsymbol{\kappa})\right] \int d^{2} \mathbf{p} d^{2} \mathbf{k} d^{2} \mathbf{q} \phi(\mathbf{k}) \phi(\mathbf{q}) \\
\times\{K(\Delta+\mathbf{p}+\mathbf{k}, \Delta+\mathbf{q}+\mathbf{k}) \phi(\mathbf{p}) \\
-K(\mathbf{p}, \mathbf{p}-\mathbf{k}-\mathbf{q}) \phi(\Delta-\mathbf{q}) \\
+K_{0} \int d^{2} \mathbf{p} d^{2} \mathbf{k} \phi^{(2)}(\mathbf{k})\left\{K(\mathbf{p}, \mathbf{p}-\mathbf{k}-\mathbf{q}) \phi^{(2)}(\Delta)\right. \\
\left.-K(\mathbf{p}, \mathbf{p}-\mathbf{k}-\Delta) \phi^{(2)}(\mathbf{p})\right\}
\end{array}
$$



Reinterpretation with certain reservations: the pomeron in nuclear high-mass diffraction evolves from four nuclear pomerons

- High mass diffraction off heavy nuclei can not be described by the same triple pomeron coupling as in the free nucleon case.
- Color dipole representation for the low-mass diffraction off nuclei is identical to that for a free nucleon target:

$$
\begin{aligned}
& f_{2 D}(\Delta) \Longrightarrow \phi_{2 D}(\Delta) \\
& =2 \phi(\Delta)-\phi \otimes \phi(\boldsymbol{\Delta})=2 \phi(\boldsymbol{\Delta})-\phi^{(2)}(\boldsymbol{\Delta})
\end{aligned}
$$

- Heavy nuclei, hard diffractive glue: $\Delta^{2}>Q_{A}^{2}$.

$$
\begin{aligned}
\frac{\partial \Delta \phi_{D}(\beta, \mathbf{b}, \Delta)}{\partial \log \frac{1}{\beta}} \simeq & K_{0} \quad d^{2} \mathbf{p} d^{2} \mathbf{k} K(\boldsymbol{\Delta}-\mathbf{p}, \Delta-\mathbf{k}) \\
& \times\left[2 \phi(\mathbf{p}) \phi(\mathbf{k})-\phi^{(2)}(\mathbf{p}) \phi^{(2)}(\mathbf{k})\right] \\
\simeq & \mathcal{K}_{B F K L} \otimes \phi_{2 D}(\boldsymbol{\Delta})
\end{aligned}
$$

- Coincides with the free nucleon case subject to

$$
f(\boldsymbol{\Delta}) \Longleftrightarrow \phi(\boldsymbol{\Delta})
$$

- The sum rule $\int d^{2} \mathbf{p} \phi_{2 D}(\mathbf{p})=0$ holds for nuclei too: entails a vanishing leading twist component, $\propto 1 / \Delta^{4}$, of nuclear diffractive unintegrated glue.
- Experience with color dipole DLLA for diffraction : DGLAP properties of hard diffractive glue will be recovered to higher orders of evolution (NNN, Zakharov '93).
$\star$ Soft gluons, $\Delta^{2}>Q_{A}^{2}$ :

$$
\frac{\partial \Delta \phi_{D}(\beta, \mathbf{b}, 0)}{\partial \log \frac{1}{\beta}}=2 \pi\left[B_{D} \phi(\mathbf{b}, 0)+C_{D} \phi^{(2)}(\mathbf{b}, 0)\right]
$$

$B_{D}, C_{D} \sim 1$ are model-dependent factors.

- Saturation $\Longleftrightarrow$ opacity of heavy nuclei to large color dipoles.
- Expansion of nuclear unintegrated glue in terms of collective glue of overlapping nucleons in the Lorentz-contracted ultrarelativistic nucleus.
- A framework for the non-abelian aspects of intranuclear evolution of color dipoles/multiparton systems.
- Collective nuclear glue (nuclear Pomeron) is a useful concept, but color coupled channels destroy $k_{\perp}$ factorization for twoparticle spectra, and for certain single-particle spectra .
- Nonlinear $k_{\perp}$-factorization for forward dijet production off nuclei in terms of the collective nuclear glue: a semblance of the four nuclear Pomeron exchange.
- Complete first step of $\log \frac{1}{x}, \log \frac{1}{\beta}$ evolution for nuclear DIS and diffraction. No closed-form evolution for (nuclear Pomeron) because of broken $k_{\perp}$-factorization.
- Recovery of linear BFKL evolution for hard collective nuclear gluons (nuclear Pomeron) beyond the saturation scale even for strongly absorbing nuclei.
- Recovery of linear BFKL evolution for unintegrated diffractive gluon density (diffractive Pomeron) in the hard regime.
- Unusual sign-indefinite boundary condition for diffractive unintegrated glue (diffractive Pomeron).

