µSR in PNPI in 2005

- μ SR-studies of local magnetic field distributions in $(Pd_xFe_{1-x})_{0,95}Mn_{0,05}$
- Ferroelectric and magnetic orderings in HoMnO₃
- Crystal structure and magnetic ordering of Mn and Ce in La_{0.7}Ce_{0.15}Ca_{0.15}MnO₃
- Muon depolarization in different plastic scintillates

HoMnO₃

B. Lorenz et all. Physical Review Lettors, v.92(8), 2004.

FIG. 1. Low-temperature dielectric constant of HoMnO₃ showing two anomalies at the onset of magnetic order (T_N) and the spin rotation transition (T_{SR}) . Inset: details of the peak at T_{SR} .

Crystal structure and magnetic ordering of Mn and Ce

in La_{0.7}Ce_{0.15}Ca_{0.15}MnO₃

S.Y. Wu et all. J.Phys.: Condens Matter **14** (2002) 12585-12597

Figure 3. (a) Temperature dependences of χ' and χ'' , measured using a weak driving field rms strength of 1 Oe and a frequency of 100 Hz. Three anomalies marked as T_{m1} , T_S and clearly evident. (b) Effect of applied field on $\chi'(T)$. H_{dc} significantly alters $\chi'(T)$, with and T_{m2} affected differently.

 λ , μs^{-1}

Muon depolarisation in different plastic stintillators

МАТЕРИАЛ	Ρ _μ	Работа
Плекс Полистирол	0.5 0.2÷0.24	Г.Г. Мясищева и др. ЖЭТФ. 56(4), с.1199, (1969) Г.Г. Мясишева и др. ЖЭТФ. 56(4), с.1199, (1969)
Plast1 Plast2 Quartz	0.33 0.15 0.11	

<u>µSR-studies of local magnetic field distributions</u> <u>in $(Pd_xFe_{1-x})_{0,95}Mn_{0,05}$ </u>

S.I. Vorobyev

<u>Abstract</u>

Muon spin relaxation method in transverse and zero field has been used to study $(Pd_xFe_{1-x})_{0,95}$ $Mn_{0,05}$ alloy with random competing exchange interactions. The temperature dependence of dynamic relaxation rate λ and behavior of characteristics of local static field distributions allowed to determinate details of magnetic phase state.

<u>Аннотация</u>

Методом измерения релаксации спина мюона в нулевом и поперечном внешнем магнитном поле проведено исследование сплава $(Pd_xFe_{1-x})_{0,95}Mn_{0,05}$ со случайным конкурирующим взаимодействием. Изучение зависимости скорости динамической релаксации λ и характеристик распределения локальных статических полей позволило уточнить фазовые состояния исследуемого образца.

 $(Pd_{x}Fe_{1-x})_{0.95}Mn_{0.05}$

 Восприимчивость дает два перехода: T=39 K (P→FM), T=7÷10 K (FM→SG).
Уменьшение деполяризации нейтронов: при T < 28 K
Наблюдается гистерезис.

Рис.1. Температурные зависимости угла поворота Ф(а) и деполяризации –ln(/D/) (б).

µSR-метод:

• Измерялись временные распределения позитронов $N_e(t)$, образовавшиеся при распаде: $\mu^+ \to e^+ + \nu_e + \psi_{\mu}^0$

$$N_{e}(t) = [N_{0} \cdot \exp(-t/\tau_{\mu})] \cdot [1 + a_{s} \cdot G_{s}(t) + a_{f} \cdot G_{f}(t)] + \Phi$$

 N_{θ} – нормировочная константа; τ_{μ} ~ 2,197*10⁻⁶с – время жизни мюона;

 a_s, a_f – асимметрия распада мюонов, остановившихся в образце (a_s) и её фоновая компонента (a_f) (в основном в стенках криостата);

 $G_{s}(t), G_{f}(t)$ — соответствующие функции релаксации поляризации для мюонов остановившихся в образце и фоновых источниках;

Ф – фон случайных совпадений (для данного образца ≈ 0,6%);

Полная начальная асимметрия: $a_{tot} = a_s + a_f$

Рис.2. Прецессия спина мюона во внешнем магнитном поле $H_{\perp_{ext}} = 32.2$ Гс при T=61 K, $a_{tot} = a_s + a_f$.

Рис.3. Прецессия спина мюона во внешнем магнитном поле $H_{\perp_{ext}}$ =32.6 Гс при T=35 К.

Для получения параметра a_f начало обработки спектра N_e(t) следует переместить в сторону больших времён (~ на 350ns), где вклад от прецессии спина мюонов, остановившихся в образце мал.

 $a_{f}/(a_{s}+a_{f})\approx 3\%$

Внутри FM появляется SG, т.е. еще один переход FM-ASFM при T<28 К отклонение от ферромагнетика?

Нужно отметить высокую однородность изготовленного образца

Рис.5. Вид функции релаксации спина мюона при T=28 К в H_{ext}=0.

Коллинеарный ферромагнетик: $G_s(t) = [\frac{1}{3} + \frac{2}{3} \cdot (\cos \Omega \cdot t \cdot e^{-\Delta \cdot t})] \cdot e^{-\lambda \cdot t}$ При T≥ 28 К.

Рис.6 и 7. Зависимость разброса Δ статических полей и величины среднего поля H от T.

Кривые есть аппроксимация экспериментальных данных при помощи: $H(или \Delta) \sim (1-T/T_c)^{\beta}$, где $\beta = 0.40 \pm 0.02$ - это соответствует 3d-магнетику Гейзенберговского типа

При Т<28 К отклонение от ферромагнетика.

(Совместный анализ деполяризации нейтрона и мюона использован для определения размеров доменов ~10 мкм)

CFM+SG

Рис.8. Вид функции релаксации спина мюона при T=15 К описанной через сумму двух функций CFM+SG.

К

B

Рис.9. Температурная зависимость доли спин-стекольного вклада в деполяризацию ансамбля мюонов.

$$G_{s}(t) = a_{1} \cdot e^{-\lambda \cdot t} + a_{2} \cdot \cos \Omega t \cdot e^{-\lambda \cdot t} \cdot e^{-\Delta \cdot t}$$

а_f+ а₁+ а₂=а_{tot} -полная начальная асимметрия распада, фоновая составляющая вычтена

Видно, что при Н_⊥~800 Гс происходит почти полная выстройка доменов по направлению приложенного поля

Рис.11. Вид функции релаксации для различных внешних полей.

Заключение:

• Исследование сплава (Pd_xFe_{1-x})_{0,95}Mn_{0,05} с x=0,98 методом µSR еще раз продемонстрировало эффективность этого метода при исследовании магнитных материалов.

• Была отмечена высокая однородность изготовленного образца.

• При температуре ниже **39.5** К в нулевом внешнем магнитном поле образец находится в состоянии коллинеарного ферромагнетика с изотропной ориентацией локальных статических магнитных полей.

• При понижении температуры в образце, на фоне коллинеарного ферромагнетика, появляется фракция спинового стекла, за долго до перехода образца в спин-стекольное состояние при T_a=7-10 K.

• Приложение внешнего поперечного магнитного поля ведет к постепенному, с ростом величины прикладываемого поля, росту анизотропии образца и приводит к переориентации доменов в направлении приложенного поля.