

Computer Simulation of Negative and Positive Muon Track Dynamics

A.S. Baturin, V.N. Gorelkin, V.R. Soloviev

Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Talk plan

- Accounting for self-consistent electric field
- Sphere region dynamics at the end of negative muon track
- Dynamics of positive muon linear track
- External electric field influence on track dynamics

Governing Equations

$$\begin{aligned} \frac{\partial n_i}{\partial t} + div \mathbf{J}_i &= -\alpha_r n_e n_i, \quad \mathbf{J}_i = -D_i \nabla n_i + n_i K_i \mathbf{E}, \\ \frac{\partial n_e}{\partial t} + div \mathbf{J}_e &= -\alpha_r n_e n_i, \quad \mathbf{J}_e = -D_e \nabla n_e - n_e K_e \mathbf{E} \\ \mathbf{E} &= -\nabla \varphi \\ \Delta \varphi &= -4\pi e(n_i - n_e) \\ \frac{\partial \varepsilon}{\partial t} &= -\frac{2m}{M} v_e(\varepsilon) \left(\varepsilon - \frac{3}{2}T\right) \qquad \text{for} \quad \frac{eE}{NQ_m} << \frac{2m}{M} (T_e - T) \end{aligned}$$

electron heating by E-field is negligible

Boundary Conditions

For concentrations

$$\frac{\partial n_e}{\partial r}\Big|_{r=0} = 0, \quad \frac{\partial n_i}{\partial r}\Big|_{r=0} = 0, \quad \frac{\partial \varphi}{\partial r}\Big|_{r=0} = -E_r = 0$$
$$J_{ez} = J_{iz} = 0, \quad z \to \pm \infty$$
$$J_{er} = J_{ir} = 0, \quad r \to \infty$$

For electric field

$$E = E_{out}, \quad z \to \pm \infty, r \to \infty$$

Sphere at the end of μ^- track

Initial electron-ion distribution

$$n_{e(i)}(z,r) = n_0 \exp\left(-\frac{z^2 + r^2}{\Delta_0}\right)$$

$$\Delta_0 = \left\langle r^2 \right\rangle = \frac{4}{3} Z_{ei} \lambda_i^2$$

$$n_0 = \left(\frac{3}{\pi}\right)^{3/2} \frac{1}{(2\lambda_i)^3 \sqrt{Z_{ei}}}$$

Definitions for current distribution

Dispersion

$$\Delta = 2\left\langle z^2 \right\rangle = \frac{2}{Z_{ie}} \int \frac{z^2 + r^2}{3} n_e(z, r, t) 2\pi r dr dz$$

for $l_e / r_0 \approx Q_i / Q_m Z_{ei} \approx 1 / Z_{ei} \ll 1$

Continuum media approach is applicable

Characteristic Lengths

$$r_{D}(t) = \sqrt{\frac{\varepsilon(t)}{6\pi e^{2}n_{e}(0,0,t)}}$$
$$e\varphi(r_{onz},t) = \frac{3}{2}T$$

Debay radius

Equation for Onzager radius

$$r_t = \sqrt{\frac{\Delta(t)}{2}}$$

Characteristic linear size of the cloud

Different possible regimes of electron cloud dynamics

1,2,3,4 – decreasing density from liquid to gas phase $\frac{r_{onz}(t_T)}{r_t(t_T)} > 1$ electron coming back condition r_D/r_t solid line r_{onz}/r_t dash line

Internal E-field Is of the Order of Debay Charge Separation Field

Electron running away case; $N = 1 \times 10^{21} \text{ cm}^{-3}$

Negative Mobility in Gaseous Argon

$$K_{e}(\varepsilon) = \frac{2}{3} \frac{e}{mv_{e}(\varepsilon)} \left(1 - \frac{\varepsilon}{Q_{m}(\varepsilon)} \frac{\partial Q_{m}}{\partial \varepsilon} \right)$$

$$D_e(\varepsilon) = \frac{\sqrt{2\varepsilon}}{3\sqrt{m}NQ_m(\varepsilon)}$$

Electron transport cross section – solid line

Mobility – dash line

Recombination changes electron dynamics in dense Ne and do not change in Ar

1 – with no recombination

2 – with recombination, $E_{out}=0$

Red symbols - E_{out} =80kV/cm

External electric field does not influence the result

The rest muon polarization in Ar is due to negative electron mobility

Summary for μ^- spherical region

- Electron cloud dynamics is complex and depends on medium density, initial electron energy and electron-ion pair number
- External electric field ~50kV/cm should not affect muon's polarization
- The rest muon's polarization could be seen in dense gaseous Ar due to negative electron mobility

Analytical results for cylindrical track are close to numerical ones

•Infinite cylindrical track in solid Ar

• Langeven recombination is assumed

ne_fin

Realistic recombination rate is much less then Langeven's limit

Mobility and energy loss frequency due to electron-phonon interaction in solid Ar

Electric Field at the End of Cylindrical Track Is Much Higher Then 2kV/cm

E2

Electrons Should Return to Track in Solid Ar (preliminary result)

Electrons

Re(Frames_cp1)

Ions

Im(Frames_cp1)

Muon Polarization Decrease Is ~2 Times Less for Track End Then for Infinite Track

Summary for cylindrical track

- Applied E-fields can not change the dynamics of electrons in solid Ar
- Additional calculations for greater times are necessary to predict positive muon polarization behavior

Phonon capturing

Phonon generation

Total and momentum collision rate and energy loss rate

$$\nu_{tot}(k) = \frac{\Xi^{2}}{4\pi\rho c} \frac{m}{h^{2}k} \left[\int_{0}^{\max\left(0,2k-\frac{2mc}{h}\right)} (\overline{n}_{q}+1)q^{2}dq + \int_{\max\left(0,\frac{2mc}{h}-2k\right)}^{2k+\frac{2mc}{h}} \overline{n}_{q}q^{2}dq \right]$$

$$\nu_{d}(k) = \frac{\Xi^{2}}{4\pi\rho c} \frac{m}{h^{2}k^{3}} \left[\int_{0}^{\max\left(0,2k-\frac{2mc}{h}\right)} (\overline{n}_{q}+1)q^{2} \left(\frac{mcq}{h}+\frac{q^{2}}{2}\right) dq - \int_{\max\left(0,\frac{2mc}{h}-2k\right)}^{2k+\frac{2mc}{h}} \overline{n}_{q}q^{2} \left(\frac{mcq}{h}-\frac{q^{2}}{2}\right) dq \right]$$

$$\frac{d\varepsilon}{dt}(\varepsilon) = \frac{\Xi^2}{4\pi h\rho} \sqrt{\frac{m}{2\varepsilon}} \begin{bmatrix} \frac{2\sqrt{2m\varepsilon}}{h} + \frac{2mc}{h} & \max\left(0, \frac{2\sqrt{2m\varepsilon}}{h} - \frac{2mc}{h}\right) \\ \int_{\max\left(0, \frac{2mc}{h} - \frac{2\sqrt{2m\varepsilon}}{h}\right)} \overline{n}_q q^3 dq - \int_{0}^{\max\left(0, \frac{2mc}{h} - \frac{2\sqrt{2m\varepsilon}}{h}\right)} \left(\overline{n}_q + 1\right) q^3 dq \end{bmatrix}$$