ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ УГЛОВЫХ КОРРЕЛЯЦИЙ ПРОДУКТОВ ТРОЙНОГО ДЕЛЕНИЯ ²³³U И ²³⁵U ПОЛЯРИЗОВАННЫМИ ХОЛОДНЫМИ НЕЙТРОНАМИ

Petersburg Nuclear Physics Institute, Gatchina,	RUSSIA
Physikalisches Institut, Tübingen,	GERMANY
Institut für Kernphysik, TU Darmstadt,	GERMANY
Khlopin Radium Institute, St.Petersburg,	RUSSIA
Department of Physics, University of Juvaskyla,	FINLAND
Institut Laue-Langevin, Grenoble,	FRANCE

Тройное деление

•Деление тяжелых ядер при низких энергиях возбуждения в 2 5⁻¹⁰⁻³ случаев сопровождается испусканием легких заряженных частиц. (1946)

•В ~97% это Не и Н изотопы, а в ~90% – α-частицы.

•Легкие частицы в делении,-«свидетель» разрыва ядерной материи Р возможность получить информацию о конфигурации ядерной системы в момент разрыва Р интенсивно изучались их выходы, энергетические и угловые распределения. **CGURE 1** — Formation of large and small dreplets after the disintegration of a Equility (Horn Planeau, *J., Stabiose Experimentals at Theoretique der Liquider Soume aus Forcer Moliculaines*, Gaudiar-Villars, Paris, 1873, Veth. pennistica ()

Тройное деление поляризованными нейтронами

В 1998 нашей коллаборацией по предложению Г.В.Даниляна было начато исследование асимметрии вида:

 $W(W)d\Omega \sim (1 + D \times s \times [p_f (p_T)])d\Omega$

*p*_f – импульс лёгкого осколка деления (FF),

р_{тр} – импульс тройной частицы (TP),

σ – спин нейтрона.

<u>Первоначально</u> рассматривалась по аналогии с аналогичной корреляцией в распаде нейтрона (s { $p_e \circ p_n$]), как возможный тест Т-инвариантности.

<u>Но</u> в неупругих процессах такая корреляция может возникать в результате взаимодействий в начальном и конечном состояниях. <u>Корреляция связана с механизмом</u> <u>деления</u>.

В первых же экспериментах на пучке холодных поляризованных нейтронов в ИЛЛ (Гренобль) была обнаружена такая асимметрия в тройном деления ²³³U на уровне ~10⁻³!

Это заставило искать менее сенсационное объяснение и предпринимать дальнейшие исследования.

Модель Бунакова

- Есть некоторый вклад начального спина нейтрона в соответствующую проекцию углового момента осколков в момент деления
- ТР уносит угловой из делящейся системы
- В зависимости от направления эмиссии ТР, соответствующая проекция углового момента осколков увеличивается или уменьшается
- плотность уровней системы зависит этой проекции, а в статистической модели плотность уровней определяет вероятность!

А. Гагарский

Модель Бунакова

Выражение для коэффициента асимметрии *і*-фрагмента в статистическом подходе Бунакова:

Экспериментальное исследование

- Измерение коэффициента Т-нечётной корреляции для различных изотопов-мишеней (233U, 235U, 239Pu, 245Cm)
- Исследование зависимостей асимметрии от параметров продуктов деления:
 - типа легкой частицы,
 - её энергии,
 - параметров основных осколков,
 - относительных углов разлета продуктов
- Исследование зависимости эффекта от энергии поляризованного нейтрона
- Измерение Т-нечетной асимметрии для нейтронов деления

Общая схема экспериментов

Экспериментальная величина асимметрии определялась следующим образом:

$$^{exp}_{i} = \frac{N_{i}^{(-)} - N_{i}^{(-)}}{N_{i}^{(-)} + N_{i}^{(-)}}$$

где *N*⁽⁻⁻⁾ счёт совпадений TP–FF для разных критериев отбора по углам, Етр и другим регистрируемым параметрам акта деления; (-) (⁻) – направления спина нейтрона, которое периодически переворачивается (~1 Гц).

- Сравнение величин <**D**>^{ехр}, полученных при эквивалентных параметрах *і*, но для событий, зарегистрированных симметричными комбинациями детекторов, позволяет контролировать ложные систематические эффекты. (Статистически значимое различие означает наличие систематики)
- Дополнительный контроль приборной асимметрии изменением направления ведущего магнитного поля (~раз в сутки). (Различие в абсолютных значениях измеренной асимметрии Р присутствие ложного приборного эффекта.) 23 января 2006 г. XL Зимняя школа ПИЯФ

А. Гагарский

Общая схема экспериментов (разделение осколков на группы)

- В делении два фрагмента испускаются в приблизительно противоположных направлениях. Причём их средние массы существенно отличаются (~ 100 и 140 а.е.м)
- Очевидно, что знаки коэффициентов асимметрий противоположны для них. Р Требуется, как минимум, отделить фрагменты одной массовой группы от другой.
- Разделение проводилось методом времени полета стартом служил сигнал с детектора легких частиц, стоп – сигнал с детекторов осколков :

$$(t_{fragment1} - t_{alpha}) - (t_{fragment 2} - t_{alpha}) = (t_{fragment1} - t_{fragment 2})$$

$$M1/M2 \gg t_{fragment1} / t_{fragment1}$$

15000

100000

5005

-300

-200

(t_{fragment1} - t_{fragment2})

-100

типичное распределение

n.

100

200

TDCi2-TDCf1 (channels)

23 января 2006 г. XL Зимняя школа ПИЯФ А. Гагарский

40D

300

Исследование Т-нечётной асимметрии в зависимости от параметров продуктов деления

- Нейтронный пучок (РF1 в ИЛЛ):
 <λ> ~ 4.5Å; Φ_{сарture} ~6´10⁸ n/cm²s; продольно поляризован ~ 94 ± 1 %; радиочастотный флиппер 1 Гц
- Мишень ~3.4 мг ²³³U (UF₄) ~100 мкг/см² на тонкой титановую пленке (~100 мкг/см²)
- 12 + 12 PIN диодов для TP, каждый 30 30 мм, толщина 380 мкм
- Определение типа частицы по времени нарастания сигналов с PIN диодов
- Координатная чувствительность МWPC (~2 мм по обеим координатам) положение на мишени и углы можно определить:
- -массу осколков : *М1/М2* » *Т1/Т2,*
- (Разрешение невелико L, поскольку *DT/T*~1/10)

Установка (фото)

Исследование Т-нечётной асимметрии в зависимости от параметров продуктов деления (средние *D* для тритонов и альфа-частиц)

Средние значения коэффициента Т-нечетной асимметрии *D* в делении ²³³U холодными нейтронами :

 $\langle D \rangle_a = -3.9 \pm 0.12 \, (10^{-3} \, \text{и} \, \langle D \rangle_{p-d-t} = -2.9 \pm 0.5 \, (10^{-3} \, (После ввода поправок на геометрическую эффективность и поляризацию нейтронного пучка – всего ~1.2; все остальные поправки – на фон случайных совпадений, на смешивание групп осколков – очень малы).$

Исследование Т-нечётной асимметрии в зависимости от параметров продуктов деления (от *Е* _{тР})

Исследование Т-нечётной асимметрии в зависимости от параметров продуктов деления (от массы осколков)

По-видимому, присутствует сильная зависимость от массы FFs (она еще очень замыта разрешением!)..
Зависимость тоже следует из модели – параметры *a_i* и Á в формуле !

$$D_i \approx \frac{\mathbf{h}^2 J l_a \sqrt{a_i}}{2 \mathfrak{I}_i \sqrt{E_{xi}^{sc}}} \cdot \mathbf{m}_{11} P(J)$$

А. Гагарский

Исследование Т-нечётной асимметрии в зависимости от параметров продуктов деления (от углов)

Обнаружение угловой зависимости коэффициента асимметрии *D* в тройном делении ²³⁵U холодными поляризованными нейтронами (ROT эффект) (PF1B, ILL, Гренобль, июль 2005)

Схема эксперимента (²³⁵U, продольная поляризация)

L,R – Детекторы осколков деления (Многопроволочные пропорциональные счетчики низкого давления)

Средние значения коэффициента асимметрии

Комбинация детекторов	1+4+5+8	2+3+6+7
< D > × 10 ³	-3,4 ± 0,19	+3,2± 0,19

$$D_{i} = \frac{N_{i}^{-} - N_{i}^{-}}{N_{i}^{-} + N_{i}^{-}}$$

23 января 2006 г.

ХL Зимняя школа ПИЯФ

А. Гагарский

ROT эффект (поперечная поляризация - 1)

Средние значения коэффициента асимметрии (исправить!!!)		
Комбинация детекторов	2+4+5+7	1+3+6+8
< D > × 10 ³	+0,92 ± 0,26	-1,39 ± 0,23

17

$$D_{i} = \frac{N_{i}^{-} - N_{i}^{-}}{N_{i}^{-} + N_{i}^{-}}$$

ROT эффект (поперечная поляризация - 2)

Средние значения коэффициента асимметрии		
Комбинация детекторов	1+4+5+8 u 2+4+5+7	2+3+6+7 u 1+3+6+8
< D > × 10 ³	~ 0	~ 0

$$D_{i} = \frac{N_{i}^{-} - N_{i}^{-}}{N_{i}^{-} + N_{i}^{-}}$$

Гипотеза вращения плоскости углового распределения легких частиц

Полученное значение D соответствует сдвигу углового распределения альфа-частиц относительно легкого осколка на ~0,1° при переключении спина Угловая зависимость асимметрии (²³⁵U, продольная поляризация)

20

Угловая зависимость асимметрии (²³³U, продольная поляризация)

22

23 января 2006 г. XL Зимняя школа ПИЯФ А. Гагарский

24

Механизм возникновения ROT эффекта

Траектории продуктов деления для двух направлений вращения ядра (схематически)

Механизм возникновения TRI эффекта

$$F_{Cori} = -2m [v \land \omega]$$

$$F_{catap} = m [r \land d\omega/dt]$$

$$F_{centr} = m\omega \land [r \land \omega]$$

23 января 2006 г. XL Зимняя школа ПИЯФ А. Гагарский

Заключение

- Обнаружена и исследована корреляция s×[p_f ´ p_{TP}] в тройном делении 233U, 235U
- B 233U
 - Средний коэффициент асимметрии для альфа частиц -3.9±0.12⁻³
 - Практически нет зависимости коэффициента асимметрии от угла между легким осколком и третьей частицей (вариация ~ 1⁻¹0⁻³)
 - Обнаружена сильная зависимость коэффициента асимметрии от *Е*_{тр}
 - Обнаружена сильная зависимость коэффициента асимметрии от массы осколков
- B 235U
 - Средний коэффициент асимметрии для третьих частиц +0.66±0.13⁻³
 - Очень сильная зависимость коэффициента асимметрии от угла между легким осколком и третьей частицей
 - Среднее абсолютное значение коэффициента асимметрии для третьих частиц 3.3±0.13⁻³
 - Обнаружена сильная зависимость коэффициента асимметрии от *Е_{тр}*, но совершенно отличная от наблюдаемой в 233U!
 - Не обнаружено зависимости коэффициента асимметрии от массы осколков

Заключение

- Высказана гипотеза о том, что подобные корреляции возникают как результат вращения делящегося ядра вблизи точки разрыва
- На основании экспериментальных фактов сделано предположение о существовании двух эффектов возникающих в результате этого вращения:
 - ROT: движение в кулоновском поле <u>после разрыва</u> вращающегося ядра, прямой индикатор этого вращения, позволяет определить его скорость и направление
 - TRI: влияние вращения на внутреннее движение нуклонов в шейке прямо перед разрывом или в момент разрыва.
 - Оба эффекта связаны с динамикой деления, с конфигурацией в момент разрыва … → новый инструмент в физике деления
- Планируется выполнить более детальные измерения для 235U :
 - Координатная чувствительность для детекторов осколков, меньший размер детекторов легких частиц → угловое разрешение 5÷10 °
 - Улучшенные спектрометрические качества детекторов третьей частицы
 - Улучшенное разрешение по массам осколков

23 января 2006 г. XL Зимняя школа ПИЯФ А. Гагарский

Ссылки

- K. Schreckenbach, Internal ILL Report 88SCO9T, ILL, Grenoble, 1988
- K. Schreckenbach et al., in *Time Reversal Invariance and Parity Violation in Neutron Reactions*, C.R. Gould et al (Ed.), World Scientific, Singapore, 1994, p. 187
- P. Jesinger et al., *Proc. of the International Workshop "Nuclear fission and fission product spectroscopy"*, Seyssins, France, AIP Conference Proceedings 447, Woodbury, New York, 1998, p. 395
- P. Jesinger et al., Nucl. Instr. Methods, A440 (2000), 618
- P. Jesinger et al., Yad. Fiz., 65 (2002), 662 [Phys. At. Nucl., 65 (2002), 630]
- A. Gagarski et al., Proc. International Seminar ISINN-9, Dubna, Russia, 2001, 214-218
- V.E. Bunakov et al., Internal ILL Repor, ILL01BU03T, ILL, Grenoble, 2001
- V.E. Bunakov, Yad. Fiz., 65 (2002), 648 [Phys. At. Nucl., 65 (2002), 616]
- V.E. Bunakov, F. Gönnenwein, Yad. Fiz., 65 (2002), 2096 [Phys. At. Nucl., 65 (2002), 2036]
- V.E. Bunakov, S.G. Kadmensky, Yad. Fiz., 66 (2003), 1894 [Phys. At. Nucl. 66 (2003), 1846]
- E.M. Rastopchin et al., Yad. Fiz., 55 (1992), 310
- C. Budtz-Jorgensen, H.-H. Knitter, Nucl. Phys., A490 (1988), 307
- V.E. Bunakov, L. Pikelner, Prog. Part. Nucl Phys., 39 (1997), 337
- Yu. Kopach et al., Yad. Fiz., 62 (1999), 900 [Phys .At. Nucl. 62 (1999), 840]
- M. Mutterer et al., IEEE Trans. Nucl. Science, 47 (2000), 756
- C. Guet et al., Nuclear Physics, A314 (1979), 1
- J. Pannicke et al., *Proc. Journees d'Etudes sur la Fission*, Arcachon, France, Report CENBG 8722, 1987, D13
- P. Heeg et al., in "Proc. Conf. on 50 Years with Nuclear Fission, Gaithersburg, 1989" (La Grange Park, IL:American Nuclear Society), Vol.1, p.299
- V.E. Bunakov, Proc. Intern. Seminar ISINN-12, Dubna, Russia, 2004, this book
- V.P. Alfimenkov, G.V. Val'ski, A.M. Gagarski et al., Yad. Fiz., 58 (1995), 799
- Fig. 1. Asymmetry *D* vs. α-particle energy
- A.Barabanov, V.E.Bunakov et al., Proc. International Seminar ISINN-9, Dubna, Russia, 2001, 104.
- A.Gagarski, G.Petrov, F.Goennenwein et al., *Proc. XVI International Conference on Fission*, IPPE, Obninsk, Russia, 2003, (in press)
- A.Gagarski, G.Petrov et al., Proc. International Seminar ISINN-12, Dubna, Russia, 2004, (in press)
- N.Kornilov et al., Nucl.Phys. A686 (2001), 187
- G.Val'ski, Yad. Fiz., 24 (1976), 140 [Phys. At. Nucl., 24 (1976), ?]
- V.E.Sokolov, A.Gagarski, G.Petrov et al., Proc. International Seminar ISINN-12, Dubna, Russia, 2004, (in press)

Исследование Т-нечётной асимметрии в различных ядрах

- Можно ожидать изменения величины коэффициента *D* для разных изотопов.
- Количественные оценки Т нечетной корреляции для ²³⁵U и ²³³U сделаны Бунаковым и они находятся в хорошем согласии с экспериментальными результатами.

	233U	235 U	
D _{theo}	-2´10 ⁻³ ,+3´10 ⁻³	+1.5´10-3	

23 января 2006 г.

Сравнительное измерение среднего значения *D* в ²³³U и ²³⁹Pu (установка)

- Нейтронный пучок (PF1 в ИЛЛ):
 <λ> ~ 4.5Å; Φ_{capture} ~6´10⁸ n/см²с; продольно поляризован ~ 94 ± 1 %; флиппер «фольга с током» (1 Гц).
- Мишени: ~0.5 мг²³³U (слой с толщиной ~140 мкг/см²) и ~1.1 мг²³⁹Pu (слой с толщиной ~300 мкг/см²) на толстой 0.3 мм титановой фольге <u>непрозрачной для осколков</u>. Мишени помещались в камеру одновременно как "сэндвич"
- (t _{fragment1(or2)} t_{alpha}) использовалось для разделения групп осколков № ~6% примеси тяжелого осколка к лёгкому.
- 4 + 4 поверхностно барьерных диода в каждом массиве, охлаждаемые до +5 С⁰, 70 мм диаметр, толщина ~350 мкм
- НЕТ идентификации частиц по времени нарастания, НЕТ координат на МWPC

Сравнительное измерение среднего значения *D* в ²³³U и ²³⁹Pu (результаты)

В результате ~30 дней измерений получены следующие результаты :

	²³³ U	²³⁹ Pu	
<d> _{exp}</d>	-4.6 \pm 0.7 $^{-10^{-3}}$	-0.2 ± 0.3 (10^{-3})	

(Поправлено на геометрию регистрации, перекрытие массовых групп, поляризацию холодных нейтронов – всего ~ 1,3).

Практически нулевая асимметрия для ²³⁹Ри может быть объяснена в модели Бунакова:

 $- J^- = 0$ в ²³⁹Pu (I = 1/2) \triangleright нет спина – нет асимметрии!

- J + = 1 № поляризация компаунд-ядра высока (~0.67), но спин маленький №
- ⇒ результирующая проекция, которая определяет плотности уровней осколков и , следовательно, вероятности конечных состояний, образована главным образом орбитальным моментом ТР
- ⇒ взаимная ориентация импульса TP, и начальное спина ядра становится не важной
- ⇒ нет причины для большой Т-Нечетной асимметрии.

Измерение Т-нечетной асимметрии в ²³³U при делении горячими нейтронами 0.16 eV

Играют ли роль *р*резонансы в механизме формирования Т–нечетной корреляции?

Р-нечетная и Р-четная левоправая асимметрии в делении получаются в результате интерференции *s*и *p*- резонансов в компаундядре.

Их сильная зависимость от энергии в ²³³U объясняется наличием *р* - резонанса в окрестности 0.16 eV.

Если Т - Нечетная корреляция также связана с *s-р* интерференцией, можно ожидать увеличения эффекта вплоть до 10 раз.

Лево-правая (слева) and Р-нечетная (справа) асимметрии в делении ²³³U в зависимости от энергии нейтрона Измерение Т-нечетной асимметрии в ²³³U при делении горячими нейтронами 0.16 eV (установка)

- Нейтронный пучок (D3 дифрактометр в ИЛЛ) : ~ 0.711 Å (0.16 eV); Ф ~1´10⁷ n/см²с; иридиевый фильтр гармоник; поляризация ~ 89 ± 1 %; спин-флип 0,2 Hz, "cryo"- флиппер
- Мишень: ~15 мг²³³U, два слоя с толщинами ~500 мкг/см² на двух сторонах 22 мкм Алюминиевой фольге (не прозрачная для осколков!)
- (t fragment1(or2) talpha) использовалось для разделения групп осколков Р ~6% примеси тяжелого осколка к лёгкому
- 4 + 4 поверхностно барьерных диода в каждом массиве, охлаждаемые до +5 С⁰, 70 мм диаметр, толщина ~350 мкм
- НЕТ идентификации частиц по времени нарастания, НЕТ координат на МWPC

Измерение Т-нечетной асимметрии в ²³³U при делении горячими нейтронами 0.16 eV (результат)

Предварительная (on-line) величина асимметрии :

$-2.4 \pm 0.8\,\hat{}\,10^{-3}$

(С учетом поправки на геометрию регистрации, перекрывание массовых групп осколков и нейтронную поляризацию – всего ~ <u>1,4).</u>

•Отличие от величины для холодных нейтронов < 2σ

•Это подтверждает существующие модели для Т-нечетная корреляции, где асимметрия (в отличие от PNC и LR асимметрий в двойном делении) возникает в выходом канале реакции, а не в результате *s*-и *p*-интерференции в составном ядре.

РNС и LR корреляции в тройном делении (холодные нейтроны)

 Установка позволяла исследовать и другие корреляции в тройном делении:

- Р-нечётной для осколков $W(W)d\Omega \sim (1 + \alpha PNC \times (s \times p_f)) d\Omega$ - лево-правой для осколков $W(W)d\Omega \sim (1 + \alpha LR \times p_f \times [s \uparrow p_n]) d\Omega$ - Р-нечётной для α -частиц $W(W)d\Omega \sim (1 + A^{PNC} \times (s \times p_{TP})) d\Omega$ - лево-правой для α -частиц $W(W)d\Omega \sim (1 + A^{LR} \times p_{TP} \times [s \uparrow p_n]) d\Omega$

• Для ²³³U было получено $<\alpha^{LR}> = -(0.31 \pm 0.18)$ ´10⁻³ (-0.233 \pm 0.025) ´10⁻³ - бинарное) $<\alpha^{PNC}> = +0.37 \pm 0.10)$ ´10⁻³ (+ 0.365 \pm 0.006) ´10⁻³ - бинарное) $A^{PNC} = -(0.06 \pm 0.04)$ ´10⁻³ $A^{LR} = -(0.08 \pm 0.08)$ ´10⁻³ (равны 0 в пределах ошибок)

alfa energy / channels

Исследование Т-нечётной асимметрии в зависимости от параметров продуктов деления (от полной энергии осколков)

•Зависимость от полной энергии осколков – (если она тут есть...) – тоже может быть связана с известной корреляцией $E_{TP} - E_{tot_kin_FF}$ В тройном делении.

•Чтоб «распутать клубок» требуется увеличить качество экспериментальных данных, а также построить модель с учётом всей имеющейся информации по тройному делению.

FIGURE (5). Currelation between the termary α energy and the total kinetic energy of the corresponding fission fragments for 16 U(n_{4n} f). The interrupted heavy fines topesent E_{α} as a function of E_{α} and b_{β} as a function of E_{α} . (From Fannicke, J., Heeg, P., Koczen, P., Kraske, F., Mutterm, M., Schalt, P., Thenhald, J., Weingärtner, K., Berreau, G., Laoux, B., and Goennenwein, F., in *Proc. Journets of Euclor one in Fusion*, Aracham (BR), Report CENBG 8722, 1987. D13, With permission.)

А. Гагарский

Сравнение Т-нечётной, PNC и LR корреляции в тройном делении

	PNC		TRI	
	bin tern		rn	tern
	FF	FF	TP	TP+FF
Величина	~10 ⁻⁴	» ~10 ⁻⁴ ;	> ~ 0	~10 ⁻³
Зависимость от характеристик продуктов	нет	нет	нет	сильная
Зависимость от <i>E</i> _n	сильная	сильная	сильная	нет

- Р-нечётные и лево-правые эффекты формируются на стадии компаунд-ядра, на которой присутствуют также различные механизмы их усиления.
- Т-нечётная асимметрия формируется близко к разрыву.
- Угловое распределение осколков формируется барьере (переходные состояния Бора)
- Детали распределения характеристик продуктов определяются на спуске и в момент разрыва.
- Процессы двойного и тройного деления отличаются только после прохождения барьера
- ТР рождается на последней стадии деления в результате двойного разрыва шейки

Т-нечётная асимметрия при испускании нейтронов

- •Поиск подобного эффекта для нейтронов, сопровождающих деление, не только естественное продолжение работы, но и заслуживает особого внимания по следующим причинам:
- •наблюдение эффекта для электрически нейтральных частиц существенно для детального понимания асимметрии.
- •отличная от нуля асимметрия для нейтронов прямо свидетельствовала бы о существовании «scission» нейтронов – поскольку показано, что такая корреляция может иметь место только если частица испускается одновременно с осколками.

На 6 пучке реактора ВВР-М: (~10⁷ n/см²с, поляризация ~80%) ²³³U: $<D_n > = -(0.46 \pm 1.03)^{-10^{-4}},$ ²³⁵U: $<D_n > = -(1.65 \pm 0.87)^{-10^{-4}}$ После всех поправок на 95% уровне достоверности: ²³³U: $|<D_n > | < 1,8^{-10^{-3}},$ ²³⁵U: $|<D_n > | < 1,9^{-10^{-3}}$

Заключение и планы

- Обнаружена и исследована корреляция s×[p_f ´ p_{TP}] в тройном делении
 - Измерено <*D*> в ²³³U, ²³⁵U, ²³⁹Pu и ²⁴⁵Cm
 - Обнаружена сильная зависимость асимметрии от *E_т*
 - Обнаружена сильная зависимость асимметрии от массы осколков
 - Измерено <*D*> для ²³³U при делении 'горячими' нейтронами
 - Измерены LR и PNC асимметрии в тройном делении.
 Проверено отсутствие зависимости PNC от *Е*_{тр}
 - Проведён первый эксперимент по измерению Т-нечетной асимметрии для нейтронов
- Полученные экспериментальные данные удовлетворительно объясняются в рамках существующей модели
- Надо измерять:
 - Более точно *<D>* в ²³⁵U, т.к. это хороший 'репер' для теории
 - Исследовать более точно зависимость от параметров осколков...
 - Измерить более точно <*D*> для тритонов (сравнить с альфачастицами)...
 - Повысить точность в эксперименте с нейтронами...