Rotation of Nuclei

following capture of cold polarised neutrons as observed in experiments on ternary fission

- A.Gagarski, I.Guseva, G.Petrov, V.Sokolov, T.Zavarukhina: PNPI, Gatchina, Ru
- F. Gönnenwein, P.Jesinger: Univ. Tübingen, D
- M. Mutterer, J. von Kalben: Tech. Univ. Darmstadt, D
- W. Traska: Univ. Jyväskylä, Fin
- S. Khlebnikov, G.Tiourine: KRI, St. Petersburg, Ru
- V. Bunakov: Univ. St. Petersburg, Ru
- S. Kadmenski: Univ. Voronezh, Ru
- V. Nesvichevski, A. Petukov, O.Zimmer: ILL, Grenoble, Fr

Ternary Fission

In ternary fission besides the two Fission Fragments (LF +HF) a third light charged particle (TP) is emitted. Most Ternary Particles (TP) are α `s. Based on the characteristics of angular distributions, two categories of TPs are distinguished : Equatorial and polar TPs, the fission axis serving as polar axis. TP emission angles θ are given relative to the direction of flight of the LF. The average θ is $\langle \theta \rangle \approx 82^{\circ}$.

Transition States

For fission induced in fissile nuclei by thermal neutrons the transition states at the saddle point of deformation lie in the gap between the barrier and single-particle excitation. The transition states are hence collective in character

From "Nuclear Fission"

Vandenbosch-Huizenga

Experimental Setup

The polarised cold neutron beam hits the ²³⁵U target and defines the **+z** axis.

DOWN

Fission fragments are detected by MWPCs mounted on the x axis.

Ternary Particles are intercepted by 8 SBDs which are positioned on the y axis.

Reference reaction: Light Fragment towards **+x** Ternary particles towards **+y**

The ROT EFFECT in experiment

Reference reaction: Light Fragment to the Left Ternary Particle Upwards For neutron spin polarized along the z-axis the **Asymmetry**

$$A_{z} = (N_{+z} - N_{-z}) / (N_{+z} + N_{-z})$$

is measured by the spin flip technique.

For the reference reaction a pattern of signs for the asymmetry A is observed. All other reaction types fit into the same scheme with due account of sign flips.

The pattern suggests a rotational shift of ternary particle emission.

The Size of the ROT Effect

On average the absolute size of the asymmetry $|A_z|$ is $|A_z| = (3.3 \pm 0.13) \cdot 10^{-3}$

Per diode the ROT Effect is a

≈ 6σ Effect

Light fragment direction	Diode	$A_{\rm Z} \times 10^3$	Diode	$A_{\rm Z} \times 10^3$
Left	1	+ 2.85(38)	5	- 3.03(51)
Left	2	+ 3.18(41)	6	- 3.12(41)
Left	3	- 3.95(59)	7	+ 3.51(59)
Left	4	- 5.35(67)	8	+ 2.59(87)
Right	1	+ 4.31(54)	5	- 3.76(77)
Right	2	+ 4.32(60)	6	- 2.88(62)
Right	3	- 3.63(44)	7	+ 2.32(45)
Right	4	- 2.73(49)	8	+ 2.55(66)

Angular Distribution of Ternary Particles

Angular distributions of ternary particles are given for the angle $\boldsymbol{\theta}$ between

Light Fragment and Ternary Particle.

The average anlge is $\theta \approx 80^{\circ}$.

SBDs 1,2,5 and 6 were centered at the angle $\theta = \pm 68^{\circ}$.

SBDs 3,4,7 and 8 were cenetred at the angle $\theta = \pm 112^{\circ}$.

MODEL for ROT EFFECT

Fissioning Rotating Nucleus

Following capture of a polarized neutron

the nucleus is polarized

and may perform a collective rotation

$$P(J^{+}) = \frac{(2I+3)}{3(2I+1)} \cdot P_n \qquad \text{for } J^{+} = I + \frac{1}{2} = 4\hbar \qquad E_{rot} = \frac{h}{2\mathfrak{I}_{\perp}} (J(J+1) - K^2)$$
$$P(J^{-}) = -P_n/3 \qquad \text{for } J^{-} = I - \frac{1}{2} = 3\hbar \qquad W^2 \mathfrak{I}_{\perp}^2 = h^2 \cdot (J(J+1) - K^2)$$

Trajectory Calculations

Difference in angle between LF and TP, and particle positions as a function of time

nucleus (the light fragment).

the α -particles travel about 10 fm

Fragment Spin and TP Emission

Spins of Fission Fragments

- 1) Spins are large: up to 10ħ and beyond
- 2) Spins do not depend on compound spin
- 3) Spins are oriented \perp fission axis
- 4) In the fashionable bending model of FF spin a

correlation spin \leftrightarrow TP emission is suggested

In ²⁵²Cf(sf) experiment by Yu.Kopatch et al. (1999) :

1) Anisotropy of (γ,LF) correlation

the same in bin. and ternary Fission 2) No correlation (γ ,TP) is observed though expected in case $I_{FF} \perp p_{TP}$

Conclusion

no correlation between

Spin of FF and TP

Dependence of ROT Effect on TP Energy

ROT EFFECT for Y- and X- POLARISATION

For Polarisation along <u>Y-axis</u> determine $A_{Y} = (N_{+y} - N_{-y}) / (N_{+y} + N_{-y})$ Observed: $|A| = 1.1(3) \cdot 10^{-3}$

For Polarisation along <u>X-axis</u> determine $A_{x} = (N_{+x} - N_{-x}) / (N_{+x} + N_{-x})$ Observed:

 $A = 0.06(15) \cdot 10^{-3}$

The TRI Effect in Experiment

Reaction: $^{233}U(n_{th},f)$

Experimental Setup

Detector combination chosen for reference:

Light Fragment to the Left MWPC Ternary Particles to upward array of PIN diodes

From Run 2

Experimental Result Evaluate Asymmetry A_Z $A_Z = (N_{+Z} - N_{-Z}) / (N_{+Z} + N_{-Z})$ Note the constancy of A_Z

The TRI – Effect

Originally the experiment was motivated by the search for a T-odd triple correlation B :

	n-spin	s _Z = + ½ ħ
•••••	n-spin	s _Z = - ½ ħ

In the example D would be D > 0

 $\mathsf{B} = \boldsymbol{\sigma} \cdot [\mathbf{p}_{\mathsf{IF}} \times \mathbf{p}_{\mathsf{TP}}] = \mathbf{p}_{\mathsf{TP}} \cdot [\boldsymbol{\sigma} \times \mathbf{p}_{\mathsf{IF}}]$ (note: all vectors are unit vectors) Expected angular distribution of TPs : $W(\theta) d\Omega \sim \{1 + DB(\theta)\} d\Omega$ where D measures size of correlation. Experiment: $D = (N_{+z} - N_{-z}) / (N_{+z} + N_{-z})$ Result : count rates for LF to the Left and TP upwards are different for $s_7 = +\frac{1}{2}\hbar$ and $s_7 = -\frac{1}{2}\hbar$, but (almost) independent of angle θ . This is visualised in the figureto the left.

For ²³³U(n.f) : **D ≈ - 4-10**-3

Note difference between TRI and ROT

Naive Model of the TRI Effect

Equation of Motion in the intrinsic coordinate system of a rotating nucleus

 $m d\mathbf{v}/dt = -\partial U / \partial \mathbf{r} + 2m\mathbf{v} \times \boldsymbol{\omega} + m\boldsymbol{\omega} \times (\mathbf{r} \times \boldsymbol{\omega}) + m\mathbf{r} \times d \boldsymbol{\omega} / d t$

Conservative + Coriolis + Centrifugal + Catapult Forces

Note : the Coriolis force and the catapult force may cancel each other

Disentangle ROT - and TRI – Effects

in the reaction ²³³U(n,f) from ILL Run 3

The dependence of asymmetry on angle LF-TP is analysed in terms of a constant TRI effect plus an angle dependent ROT effect

Preliminary result: TRI effect: D \approx 3.5·10⁻³; ROT effect: $|A_Z| \approx 1.10^{-3}$ at angles 70° and 95°

Setting up the neutron beam

The chamber is approaching

The chamber is landing

The chamber is in place

The experiment is ready to start

Energy distributions of TPs for given LF-TP angles

233 U(u,f). Run 3

Reaction ²³³U(n,f)

from RUN 3

Polar TPs from LF come in Figure at angles from 42° to 70°. They exhibit a constant TP energy

Polar TPs from HF come in Figure at angles form 110° to 138°. They exhibit a constant TP energy

Equatorial TPS come in Figure at angles from 62° to 130°. They exhibit a TP energy which increases from small to large angles

Energy of TPs for angles $> 80^{\circ}$

Polar and Equatorial TPs in the ROT Effect

but decreases with E_{TP} for large θ