Rotation of Nuclei

following capture of cold polarised neutrons as observed in experiments on ternary fission

A.Gagarski, I.Guseva, G.Petrov, V.Sokolov, T.Zavarukhina:PNPI, Gatchina, Ru
F. Gönnenwein, P.Jesinger: Univ. Tübingen, D
M. Mutterer, J. von Kalben: Tech. Univ. Darmstadt, D
W. Traska: Univ. Jyväskylä, Fin
S. Khlebnikov, G.Tiourine: KRI, St. Petersburg, Ru
V. Bunakov: Univ. St. Petersburg, Ru
S. Kadmenski: Univ. Voronezh, Ru
V. Nesvichevski, A. Petukov, O.Zimmer: ILL, Grenoble, Fr

Ternary Fission

In ternary fission besides the two
Fission Fragments (LF +HF) a third light charged particle (TP) is emitted.

Most Ternary Particles (TP) are α `.
Based on the characteristics of angular distributions, two categories of TPs are distinguished :

Equatorial and polar TPs, the fission axis serving as polar axis.
TP emission angles θ are given relative to the direction of flight of the LF.
The average θ is $\langle\theta\rangle \approx 82^{\circ}$.

Transition States

For fission induced in fissile nuclei by thermal neutrons the transition states at the saddle point of deformation lie in the gap between the barrier and single-particle excitation. The transition states are hence collective in character

Experimental Setup

The polarised cold neutron beam hits the ${ }^{235} \mathrm{U}$ target and defines the +Z axis.

Fission fragments are detected by MWPCs mounted on the x axis.

Ternary Particles are intercepted by 8 SBDs which are positioned on the y axis.

Reference reaction:
Light Fragment towards +x
Ternary particles towards $\mathbf{+ y}$

TARGET : ${ }^{235} \mathrm{U}$

The ROT EFFECT in experiment

Reference reaction:
Light Fragment to the Left
Ternary Particle Upwards

For neutron spin polarized along the z-axis the Asymmetry

$$
A_{z}=\left(N_{+z}-N_{-z}\right) /\left(N_{+z}+N_{-z}\right)
$$

is measured by the spin flip technique.
For the reference reaction a pattern of signs for the asymmetry A is observed. All other reaction types fit into the same scheme with due account of sign flips.

The pattern suggests a rotational shift of ternary particle emission.

The Size of the ROT Effect

Angular Distribution of Ternary Particles

Angular distributions of ternary particles are given for the angle θ between Light Fragment and Ternary Particle.

The average anlge is $\theta \approx 80^{\circ}$.
SBDs $1,2,5$ and 6 were centered at the angle $\theta= \pm 68^{\circ}$. SBDs $3,4,7$ and 8 were cenetred at the angle $\theta= \pm 112^{\circ}$.

MODEL for ROT EFFECT

Angular Distributions for
Detector Combination: LEFT - UP

$$
\begin{aligned}
& P_{Z}>0 \longleftrightarrow \omega_{Z}>0 \\
& P_{Z}<0 \quad \longleftrightarrow \omega_{Z}<0
\end{aligned}
$$

$$
\omega_{Z}=0 \text { at } t=. .10^{-21} \mathrm{~s}
$$

Fissioning Rotating Nucleus

Following capture of a polarized neutron the nucleus is polarized

$$
\begin{array}{ll}
P\left(J^{+}\right)=\frac{(2 I+3)}{3(2 I+1)} \cdot P_{n} & \text { for } \mathrm{J}^{+}=\mathrm{I}+1 / 2=4 \hbar \\
P\left(J^{-}\right)=-P_{n} / 3 & \text { for } \mathrm{J}^{-}=\mathrm{I}-1 / 2=3 \hbar
\end{array}
$$

and may perform a
collective rotation

$$
\begin{aligned}
& E_{\text {rot }}=\frac{\mathrm{h}}{2 \mathfrak{I}_{\perp}}\left(J(J+1)-K^{2}\right) \\
& \omega^{2} \mathfrak{S}_{\perp}^{2}=\mathrm{h}^{2} \cdot\left(J(J+1)-K^{2}\right)
\end{aligned}
$$

Trajectory Calculations

While system rotates the Ternary Particle is carried along but lags behind

Figure is for „Left-Up"

Difference in angle between LF and TP, and particle positions as a function of time

Only in the first $10^{-22} \mathrm{~s}$ the TP follows closely the rotation of the mother nucleus (the light fragment).

Trajectory calculations show that in the first $\Delta \mathrm{t}=10 \cdot 10-22 \mathrm{~s}=1 \mathrm{zs}$ the α-particles travel about 10 fm

Fragment Spin and TP Emission

Spins of Fission Fragments

1) Spins are large: up to $10 \hbar$ and beyond
2) Spins do not depend on compound spin
3) Spins are oriented \perp fission axis
4) In the fashionable bending model of FF spin a correlation spin \leftrightarrow TP emission is suggested

In ${ }^{252} \mathrm{Cf}(\mathrm{sf})$ experiment by Yu.Kopatch et al. (1999) :

1) Anisotropy of ($\gamma, L F$) correlation
the same in bin. and ternary Fission
2) No correlation ($\gamma, T P$) is observed though expected in case $\mathbf{I}_{\mathrm{FF} \perp} \perp \mathbf{p}_{\mathrm{TP}}$

Conclusion
no correlation between
Spin of FF and TP

Dependence of ROT Effect on TP Energy

Reaction ${ }^{\mathbf{2 3 5}} \mathbf{U}(\mathbf{n}, \mathbf{f})$ from Run 6:
The modulus of ROT Asymmetry $|A|$ increases with $E_{T P}$ for small θ but decreases with $E_{T P}$ for large θ

ROT EFFECT for Y- and X- POLARISATION

For Polarisation along
Y-axis determine

$$
A_{Y}=\left(N_{+y}-N_{-y}\right) /\left(N_{+y}+N_{-y}\right)
$$

Observed:

$$
|A|=1.1(3) \cdot 10^{-3}
$$

For Polarisation along
X-axis determine
$A_{x}=\left(N_{+x}-N_{-x}\right) /\left(N_{+x}+N_{-x}\right)$
Observed:

$$
A=0.06(15) \cdot 10^{-3}
$$

The TRI Effect in Experiment

$$
\text { Reaction: }{ }^{233} \mathrm{U}\left(\mathrm{n}_{\mathrm{th}}, \mathrm{f}\right)
$$

Experimental Setup
Detector combination chosen for reference:
Light Fragment to the Left MWPC
Ternary Particles to upward array of PIN diodes

From Run 2

Experimental Result

Evaluate Asymmetry A_{z}

$$
A_{z}=\left(N_{+z}-N_{-z}\right) /\left(N_{+z}+N_{-z}\right)
$$

Note the constancy of A_{Z}

The TRI - Effect

Originally the experiment was motivated by the search for a T-odd triple correlation B :

Standard : LF to the Left and TP Upwards
n-spin $s_{Z}=+1 / 2 \hbar$
n-........... $\quad n-s p i n ~$
$s_{Z}=-1 / 2 \hbar$

In the example D would be $\mathrm{D}>0$

$$
\mathrm{B}=\boldsymbol{\sigma} \cdot\left[\mathbf{p}_{\mathrm{LF}} \times \mathbf{p}_{\mathrm{TP}}\right]=\mathbf{p}_{\mathrm{TP}} \cdot\left[\boldsymbol{\sigma} \times \mathbf{p}_{\mathrm{LF}}\right]
$$

(note: all vectors are unit vectors)
Expected angular distribution of TPs :

$$
\mathrm{W}(\theta) \mathrm{d} \Omega \sim\{1+\mathrm{DB}(\theta)\} \mathrm{d} \Omega
$$

where D measures size of correlation.
Experiment: $\mathrm{D}=\left(\mathrm{N}_{+\mathrm{z}}-\mathrm{N}_{-\mathrm{z}}\right) /\left(\mathrm{N}_{+\mathrm{z}}+\mathrm{N}_{-\mathrm{z}}\right)$
Result : count rates for LF to the Left and TP upwards are different

$$
\text { for } s_{Z}=+1 / 2 \hbar \text { and } s_{Z}=-1 / 2 \hbar \text {, }
$$

but (almost) independent of angle θ.
This is visualised in the figureto the left.
Note difference between TRI and ROT

$$
\text { For }{ }^{233} \cup(n . f): D \approx-4 \cdot 10^{-3}
$$

Naive Model of the TRI Effect

Equation of Motion in the intrinsic coordinate system of a rotating nucleus

$$
\mathrm{mdv} / \mathrm{dt}=-\partial U / \partial \mathbf{r}+2 \mathrm{mv} \times \boldsymbol{\omega}+\mathrm{m} \boldsymbol{\omega} \times(\mathbf{r} \times \boldsymbol{\omega})+\mathrm{m} \times \mathrm{d} \boldsymbol{\omega} / \mathrm{d} t
$$

Conservative + Coriolis + Centrifugal + Catapult Forces

Note : the Coriolis force and the catapult force may cancel each other

Disentangle ROT - and TRI - Effects

in the reaction ${ }^{233} \mathrm{U}(\mathrm{n}, \mathrm{f})$ from ILL Run 3

The dependence of asymmetry on angle LF-TP is analysed in terms of a constant TRI effect plus an angle dependent ROT effect

Preliminary result: TRI effect: $\mathrm{D} \approx 3.5 \cdot 10^{-3}$;
ROT effect: $\left|A_{z}\right| \approx 1 \cdot 10^{-3}$ at angles 70° and 95°

Setting up the neutron beam

The chamber is approaching

The chamber is landing

The chamber is in place

The experiment is ready to start

Energy distributions of TPs for given LF-TP angles

Reaction ${ }^{233} \mathrm{U}(\mathrm{n}, \mathrm{f})$
from RUN 3
Polar TPs from LF come in Figure at angles from 42° to 70°.
They exhibit a constant TP energy

Polar TPs from HF come in Figure at angles form 110° to 138°.
They exhibit a constant TP energy

Equatorial TPS come in Figure at angles from 62° to 130°. They exhibit a TP energy which increases from small to large angles

Energy of TPs for angles $>80^{\circ}$

CONJECTURE :
EQUATORIAL TPs
POLAR TPs

AAA
Energy of TPs for angles < 100°
CONJECTURE: EQUATORIAL TPs
POLAR TPs

BBB

Energy of TPs for angles < 100°

CONJECTURE : EQUATORIAL TPs
POLAR TPs

Polar and Equatorial TPs in the ROT Effect

Reaction ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ from Run 6:
The modulus of ROT Asymmetry $|A|$ increases with E_{TP} for small θ
but decreases with E_{TP} for large θ
polar
equatorial

