Rotation of Nuclear System

in Monte-Carlo Calculations of α-Particle and Fission Fragments Trajectories

Experimental Setup for Search of the TRI-Effect

Search for a TRIple correlation B : $B = (\sigma \cdot [p_{LF} \times p_{TP}])$ (note: all vectors are unit vectors)

Angular distribution of TPs : $W(\theta) d\Omega \sim \{1 + D \cdot B(\theta)\} d\Omega$ where D measures size of correlation.

Experiment: $D = (N_{+z} - N_{-z}) / (N_{+z} + N_{-z})$

Result : **count rates** for LF to the Left and TP upwards are **different** for $s_z = +\frac{1}{2}\hbar$ and $s_z = -\frac{1}{2}\hbar$,

TRI-effect

Angular Distributions for Detector Combination: Left-Up. Red line - $P_z>0$ (s_z=+1/2ħ), blue line - $P_z<0$ (s_z=-1/2ħ), (D>0).

Winter school of PNPI I.S. Guseva 3

Rotation motion in deformed nuclei

$$E_{rot} = \frac{\mathbf{h}}{2\mathfrak{T}} \cdot (J(J+1) - K^2),$$

where J – total momentum,
K – its projection
\mathfrak{T} – moment of inertia

$$\mathbf{R} = \mathbf{J} - K \cdot \mathbf{n}$$
$$\mathbf{W}^2 \mathfrak{I}^2 = \mathbf{h}^2 (J(J+1) - K^2)$$

$$P(J^{+}) = \frac{2I+3}{3 \cdot (2I+1)} \cdot P_n \quad \text{for} \quad J^{+} = I + 1/2$$
$$P(J^{-}) = -\frac{1}{3} \cdot P_n \qquad \text{for} \quad J^{-} = I - 1/2$$

 $J^+ = I + 1/2$ $J^- = I - 1/2$

Parameters for target nucleus ²³⁵U:

$$----J = K + 2$$

-----J = K + 1

-----J = K

-----J = K + 3

The contributions of $\sigma(J^+)$ and $\sigma(J^-)$ to the fission cross-section:

Angular momentum of target nucleus I = 7/2

$$s(J^+ = 4) = 553 b$$
 and $s(J^- = 3) = 323 b$
 $P(J^+) = 5/12 \cdot P_n$ $P(J^-) = -1/3 \cdot P_n$

23.02.2006

The motion of the three fragments under the influence of their mutual Coulomb interaction cannot be calculated in closed form. The trajectories must therefore be calculated numerically.

The equations of motion are:

where

 X_{ij} is the *j*th coordinate X_j of *i*th particle, V_{ij} the *j* component of the velocity V_i F_{ij} the *j* component of the force F_i acting on the *i*th particle, m_i its mass.

These equations are replaced by the difference equations:

 $X_{ij}^{n+1} = X_{ij}^{n} + \widetilde{V}_{ij}^{n} \Delta t,$ $V_{ij}^{n+1} = \widetilde{V}_{ij}^{n} + \frac{1}{2m_i} F_{ij}^{n} \Delta t,$

 $\frac{dX_{ij}}{dt} = V_{ij}$

 $m_i \frac{dV_{ij}}{dt} = F_{ij}$

where $\tilde{V}_{ij}^{n} = V_{ij}^{n} + \frac{1}{2m_i}F_{ij}^{n}\Delta t$

and F_{ij}^{n} is the *j* component of the force acting on particle *i* at the position X_{i}^{n}

$$\mathbf{\hat{F}}_{i}^{n} = e^{2} Z_{i} \sum_{k=1}^{2} Z_{k} \frac{X_{i}^{n} - X_{k}^{n}}{\left| \frac{\mathbf{r}}{X_{i}^{n} - X_{k}^{n}} \right|^{3}}$$

The subscript k refers to the two other particles, and the superscript n refers to the value of the parameter after nth time interval.

23.02.2006

The size of time interval is not chosen to be constant. The total time t_n after *n* time intervals is an exponential function of *n*:

 $t_n = t_0 e^{na}$,

and hence the size of the *n*th time interval is given by

 $\Delta t_n = t_n - t_{n-1} = t_{n-1}(e^a - 1)$

The parameter t_0 determines the accuracy of the calculation at the beginning of the trajectory (t = 0).

The parameter *a* determines the accuracy of the calculation at the end of the trajectory $(t = \infty)$.

23.02.2006

The choice of initial parameters must led up to a coincidence experimental and calculated distributions:

- Light and heavy fragment's mass distributions
- I Total kinetic energy distribution
- α -particle energy distribution 6000.
- I Angular distribution of α -particle

Angels of rotation of the Light fragment and α-particle
in laboratory coordinates system.While system rotates α-particle carried along, but lags behind.

Distance of ternary fission products from center of mass

23.02.2006

Winter school of PNPI I.S. Guseva 17

I.S. Guseva

Results for ²³⁵U

I nfluence of linear dimensions of fission fragment's and α -particle's detectors on angular distribution

Thank you for your attention!