Study of neutrino oscillations in the long base-line experiment K2K

Yu.G. Kudenko Institute for Nuclear Research, Moscow

XL PNPI Winter School, 21 February 2006

Outline

Phenomenology of neutrino oscillations K2K principles of the experiment detectors performance analysis results Neutrino oscillations: status and problems T2K Near future

Mixing in two families

Consider for simplicity two families. Mixing matrix depends of a single parameter, the mixing angle θ

The weak and mass eigenstates are connected by a simple two-dimensional rotation

$$\begin{pmatrix} n_e \\ n_m \end{pmatrix} = \begin{pmatrix} \cos q & \sin q \\ -\sin q & \cos q \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} = U \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}$$

 $\begin{array}{l} n_{\rm e} = \ \cos q \, | \, n_1 \! > + \ \sin q \, | \, n_2 \! > \\ n_{\rm m} = \ - \sin q \, | \, n_1 \! > + \ \cos q \, | \, n_2 \! > \end{array}$

Neutrino oscillations detector source ν_{e} propagation The mass eigenstates The weak propagate at interaction different velocities weak interactions produces neutrinos of a given flavor Distance x time t $n_m N \rightarrow m X$ Distance $x_0 = 0$ time t=0 $n_e N \rightarrow e^- X$ $|\mathbf{n}_{e}\rangle_{t} = \cos q \exp(ip_{1}x) \exp(-iE_{1}t) |\mathbf{n}_{1}\rangle$ $+\sin q \exp(ip_2 x) \exp(-iE_2 t) |n_2\rangle$ $|n(x_0)\rangle = |n_e\rangle$ $=\cos q |n_1\rangle + \sin q |n_2\rangle$

Oscillation formalism

 $E^2 = p^2 + m^2$ neutrino: $p >> m a E \gg p + m^2/2p E_2 - E_1 = Dm^2/2E$

 $Dm^2 = |m_1^2 - m_2^2| = E \gg p$

 $P(v_{\mu} \rightarrow v_{\mu}) = 1 - P(v_{\mu} \rightarrow v_{x})$

$$P(n_e \to n_m) = |< n_m | n(L) >|^2 = \left| -sce^{-i\frac{m_1^2}{2E}L} + cse^{-i\frac{m_2^2}{2E}L} \right|^2$$

$$m^2 = m^2$$

$$=4s^{2}c^{2}(1-\cos\frac{m_{1}^{2}-m_{2}^{2}}{2E}L)=\sin^{2}(2q)\sin^{2}(\frac{\Delta m_{12}^{2}}{4E}L)$$

 $P(n_m \otimes n_x) = \sin^2 2q \sin^2 [1.27 Dm^2(eV^2)L(km)/E_n(GeV]]$ $P(n_m \otimes n_m) = 1 - \sin^2 2q \sin^2 [1.27 Dm^2(eV^2)L(km)/E_n(GeV]]$

PMNS mixing matrix

3 families

 \boldsymbol{n}_{e}

n_m

 \boldsymbol{n}_t

$$= U \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{m1} & U_{m2} & U_{m3} \\ U_{t1} & U_{t2} & U_{t3} \end{pmatrix}$$

U parameterization three mixing angles θ_{12} θ_{13} θ_{23} complex phase δ

$$\frac{|U_{e2}|^2}{|U_{e1}|^2} = \tan^2 q_{12} \quad \frac{|U_{m3}|^2}{|U_{t3}|^2} = \tan^2 q_{23} \quad U_{e3} = \sin q_{13} e^{-id}$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2 \quad \Delta m_{12}^2 + \Delta m_{23}^2 + \Delta m_{31}^2 = 0 \qquad \text{two independent} \quad \Delta m^2$$

$$\Delta m_{12}^2 = \Delta m_{sol}^2 \quad \Delta m_{23}^2 \cong \Delta m_{31}^2 = \Delta m_{atm}^2$$

Atmospheric neutrino oscillations

SK

Main goal of K2K

First accelerator long base-line neutrino experiment

Measurement of (search for) neutrino oscillations in LBL accelerator experiment to confirm the oscillation observed by the SuperKamiokande

 $\Delta m^2 \sim (2-3) \times 10^{-3} \, eV^2 \qquad \sin 2\theta \sim 1$

Experiment K2K

Collaboration K2K: Japan-USA-Korea-Canada-Russia-France-Italy-Spain-Switzerland

K2K Beam Line

Far detector

Super-Kamiokande II

Super-Kamiokande I

~5200 PMTs with FRP+Acrylic cover

Near Detectors

- 1KT: water Cherenkov detector [25t fiducial]
- SciFi: scintillating fiber and water target [6t fiducial]
- LG: Lead glass calorimeter (removed in 2002)
- SciBar: fully-active scintillator detector [10t fiducial]

(installed in 2003)

MRD: muon range detector

Beam stability (muon monitor)

muon profile is monitored spill-by-spill
 muon center is stable within 1mrad.

Neutrino energy reconstruction

17

SciBar Event Display

1kT spectra

1 ring m-like

reconstructed neutrino energy

Oscillation analysis

- E_n spectrum shape of FCFV 1-ring muon events
- Systematic error term

 $L (Dm^{2}, sin2q, f^{x}) =$ $L_{norm} (Dm^{2}, sin2q, f^{x}) \times L_{shape} (Dm^{2}, sin2q, f^{x}) \times L_{syst} (f^{x})$

Poisson probability for # FCFV events **Shape of E**_n **spectrum of 1-ring m events**

Systematic error

f^{*x*} - systematic error parameters

Normalization, Flux, and nQE/QE ratio are in f^x

Shape analysis

 $L_{shape}(\Delta m^2, \sin 2q, f^x)$

CC-QE assumption

$$E_{n}^{rec} = \frac{(m_{N} - V)E_{m} - m_{m}^{2}/2 + m_{N}V - V^{2}/2}{(m_{N} - V) - E_{m} + p_{m}\cos q_{m}}$$

Only shape Kolmogorov-Smirnov test No oscillation probability = 0.74%

Shape distortion

Search for n_m ® n_e oscillation

-K2K-1-	v_{μ} MC	beam v_{e}	Data
FCFV	81.1 0.81		55
Single ring	50.92	0.47	33
Electron like	2.66	0.40	3
Evis > 100 MeV	2.47	0.40	2
No decay-e	1.90	0.35	1
Pi0 cut	0.58	0.17	0
-K2K-2-	v _{II} MC	beam v	Data
–K2K-2– FCFV	ν _μ MC 77.4	beam v 0.86	Data 57
–K2K-2– FCFV Single ring	ν _μ MC 77.4 49.41	beam v 0.86 0.52	Data 57 34
-K2K-2- FCFV Single ring Electron like	ν _μ MC 77.4 49.41 3.21	beam v 0.86 0.52 0.44	Data 57 34 5
-K2K-2- FCFV Single ring Electron like Evis > 100 MeV	ν _μ MC 77.4 49.41 3.21 2.93	beam v 0.86 0.52 0.44 0.44	Data 57 34 5 5
-K2K-2- FCFV Single ring Electron like Evis > 100 MeV No decay-e	$ v_{\mu} MC 77.4 49.41 3.21 2.93 2.17 $	beam v 0.86 0.52 0.44 0.44 0.39	Data 57 34 5 5 5 4

In total, #expected BG = 1.70#observed = 1

 $\mathbf{u}^{\mathrm{m}} \rightarrow \mathbf{v} > \mathbf{u}^{\mathrm{e}}$

Δm^2 vs. $sin^2 2\theta_{\mu e}$

Assumption: $2\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{13}$

Evidence of neutrino oscillations

Neutrino masses and mixings

3 famili	es $Dm_{12}^2 (10^{-5} eV^2)$ $Dm_{31}^2 (10^{-3} eV^2)$ Sin^2q_{12} Sin^2q_{23} Sin^2q_{13}	tion paramet central value 7.9 2.2 0.31 0.50 0.0	ers 3s interval 7.1 - 8.9 1.4 - 3.3 0.24 - 0.40 0.34 - 0.68 <0.047		
	LSND à $Dm^2 = 0.2$	2 – 10 eV ² à 1	m _n > 0.4 eV		
	$\begin{array}{cccc} \text{Nilking} & \text{QL} \\ 1-2 \ q_{12} & & \\ 2-3 \ q_{23} & & \\ 1-3 \ q_{13} & & \\ \end{array}$	13° 2.3° 4 0.5° <1	tons 3° 5° 3°		
	Challenges i	n neutrino	o physics		
LBL accelerator experiments	CP violation i mass spectru	CP violation in lepton sector mass spectrum: normal or inverted			
Tritium experiment	Majorana/Dira	s ic nature		Onbb 30	

Test of discrete symmetries

$$\begin{aligned} P(n_a \to n_b) &\neq P(\bar{n_b} \to \bar{n_a}) \\ P(n_a \to n_a) &\neq P(\bar{n_a} \to \bar{n_a}) \end{aligned} \quad \begin{array}{l} \text{CPT violation} \\ P(n_a \to n_b) &\neq P(\bar{n_a} \to \bar{n_b}) \end{aligned} \quad \begin{array}{l} P(\bar{n_a} \to n_b) &\leftarrow P(\bar{n_b} \to \bar{n_a}) \end{aligned} \quad \begin{array}{l} P(\bar{n_b} \to \bar{n_b}) \end{array} \end{aligned}$$

$$\mathbf{A}_{CP} = \frac{P(n_m \otimes n_e) - P(\overline{n_m} \otimes \overline{n_e})}{P(n_m \otimes n_e) + P(\overline{n_m} \otimes \overline{n_e})} \otimes \frac{\mathbf{D}m_{12}^2 L}{4E_n} \times \frac{\sin 2q_{12}}{\sin q_{13}} \times \sin d$$

For $q_{12}=p/8$ Dm²₁₂=7x10⁻⁵ sin²q₁₂=0.01 (1/10 of CHOOZE limit) q = p/4

A_{CP}= 25%

LBL experiment T2K (Tokai to Kamioka)

12 countries, 60 institutions, ~180 collaborators

	JPARC	MINOS	K2K
E(GeV)	50	120	12
Int(10 ¹² ppp)	330	40	6
Rate (Hz)	0.29	0.53	0.45
Power (MW)	0.77	0.41	0.0052

T2K detectors

- Confirmation of n_m® n_t oscillation

Number of n events at SK for 5 years

Off-axis	w/o oscillation	max. deficit	Δm^2
(deg)	(events/22).	$5 \mathrm{kt} / 5 \mathrm{yr})$	(eV^2)
2.0	6683	1724	3.22×10^{-3}
2.5	4462	← 1103	2.70×10^{-3}
3.0	3006	752	$2.33{\times}10^{-3}$

(sin² 2θ=1)

Reconstructed Ev spectrum at SK (OA2.5deg)

LBL experiments

2006 -08 MINOS (FNAL) $n_m \circledast n_m$ search for $n_m \circledast n_e$ OPERA (CERN/Gran Sasso) search for $n_m \circledast n_t$ appearance MiniBooNe(FNAL) LSND anomaly

2009.... T2K Phase I search for $n_m \otimes n_e$ appearance/ q_{13} measurement Phase II depends on q_{13} CP - violation, if $q_{13} \stackrel{1}{} 0$ NOVA (FNAL)

CP – violation, mass hierarchy

Summary

- Neutrinos have masses
- Clear signal of New Physics beyond the Standard Model (Solar, atmospheric, accelerator experiments)
- Exciting physics from running and future long base-line experiments
 - search/measurement of $q_{13} |U_{e3}| = ?$
 - precision measurements of $\theta^{}_{23}$ and $\Delta m^2^{}_{23}$
 - CP violation if θ_{13} is large
 - mass hierarchy
- Unexpected or exotic properties?