On the chemical identification of E112: is E112 a relatively inert element? Precise calculations of E112 compounds.

Titov A.V., Mosyagin N.S., Petrov A.N., Isaev T.A., *PNPI RAS, Gatchina* Zaitsevskii A.V., Rykova E.A. *Kinetics Technology Ltd., Moscow*

- 1. Importance of chemical indentification of E112.
- 2. Historical review of calculations on E112 compounds.
- 3. Our calculations of E112H, E112H⁺, E112₂, E112Au.

Synthesis of E112

1996, GSI (Darmstadt) [Hofmann:96]: cold fusion ${}^{70}Zn + {}^{208}Pb \rightarrow {}^{278}E112^* \rightarrow {}^{277}E112 + 1n$ ${}^{277}E112(\alpha, 0.7ms) \rightarrow {}^{273}E110(\alpha, 0.2ms)$

JINR (Dubna) [Oganessian:99, Oganessian:04]: hot fusion ${}^{48}Ca + {}^{238}U \rightarrow {}^{286}E112^* \rightarrow {}^{283}E112 + 3n$ ${}^{283}E112(\alpha, 4s) \rightarrow {}^{279}E110(SF, 0.2s)$

JINR result was not confirmed at LBNL (Berkeley) [Loveland:02,Gregorich:05].

Chemical identification is required [Yakushev:03,Soverna:05].

Semiempirical estimations for properties of E112

E112 has the closed shell 6d¹⁰7s² configuration in the ground state.

In [Pitzer:75], volatility and inertness of E112 was suggested.

Atom	Transition	Energy(HFD)
Hg	$5d^{10}6s^2 \rightarrow 5d^{10}6s^16p^1$	5.2 eV
E112	$6d^{10}7s^2 \rightarrow 6d^{10}7s^17p^1$	8.6 eV
Rn	$6s^26p^6 \rightarrow 6s^26p^57s^1$	9.2 eV

His prediction: *E112 will behave like Rn rather than Hg*.

First ab initio calculations

- In [Eliav:95], relativistic correlation (DCB/RCCSD) calculations on Hg and E112 atoms were carried out.
- The ground state of E112⁺ ion will be $6d_{3/2}^{4}6d_{5/2}^{5}7s_{1/2}^{2}$ unlike Hg⁺ $5d_{3/2}^{4}5d_{5/2}^{6}6s_{1/2}^{1}$.
- In [Seth:97], correlation (CCSD(T), MRCI) calculations on the E112H⁺, E112F₂ and E112F₄ molecules were carried out with the help of the pseudopotential (adjusted in the LS-coupling scheme) method.
- However, the XeF_2 , XeF_4 and XeF_6 molecules *also exist*.

Table 1. Transition Energies (TE) for E112 (in cm⁻¹).

	HFDB	GRECP	RECP	PP	PP
			Nash	Seth	Seth
			1997	1997	2003
Configuration	TE	A			
$6d_{3/2}^{4}6d_{5/2}^{6}7s_{1/2}^{2} \rightarrow$					
$6d_{3/2}{}^46d_{5/2}{}^67s_{1/2}{}^17p_{1/2}{}^1$	46406	-17	3198	-14254	153
$6d_{3/2}{}^46d_{5/2}{}^67s_{1/2}{}^17p_{3/2}{}^1$	64559	-29	5480	-3754	27
$6d_{3/2}^{4}6d_{5/2}^{6}7s_{1/2}^{1}$	93797	-18	5456	303	94
$6d_{3/2}{}^46d_{5/2}{}^57s_{1/2}{}^27p_{1/2}{}^1$	28701	305	-3723	-15073	380
$6d_{3/2}{}^{4}6d_{5/2}{}^{5}7s_{1/2}{}^{2}7p_{3/2}{}^{1}$	52595	277	-1254	-2198	189
$6d_{3/2}^{4}6d_{5/2}^{5}7s_{1/2}^{2}$	84449	322	-1531	1781	308
$6d_{3/2}{}^{3}6d_{5/2}{}^{6}7s_{1/2}{}^{2}7p_{1/2}{}^{1}$	53581	387	-3903	-15588	22
$6d_{3/2}^{3}6d_{5/2}^{6}7s_{1/2}^{2}7p_{3/2}^{1}$	75273	437	-1515	-2750	-126

Calculations of other groups

In [Nakajima:00], scalar-relativistic correlation (DK3/CCSD(T)) calculations on E112H, E112H⁺ and E112H⁻ were carried out. However, they neglect the *large spin-orbit interactions*.

In [Nash:05], correlation (RCCSD(T)) calculations on E112H⁺ and E112₂ with the help of the RECP method were carried out.
However, Hg₂, E112₂ and Xe₂ are *Van der Waals systems* with a small dissociation energy.

Semiempirical (RDFT) calculations on E112Pd, E112Cu, E112Ag, E112Au [Pershina:02] and E112₂ [Anton:04] were carried out.

Our calculations

Our correlation (RCCSD+HOCA) calculations on E112H and E112H⁺ with the help of the GRECP method.

The ground state RnH and XeH molecules are not observed in the gas phase, whereas HgH can be obtained by *radiofrequency discharge* in hydrogen and metal vapor (see, e.g., Ref. [Dufayard:88]).

Our correlation (CCSD(T)) calculations on $E112_2$ and semiempirical (SODFT) calculations on E112H, E112Au with the help of the GRECP method.

Table 2. Spectroscopic constants for E112H and HgH.

Method	R _e (Å)	w _e (cm ⁻¹)	D _e (eV)					
The HgH molecule								
GRECP/13e-RCCSD-1	1.709	1575	0.35					
GRECP/13e-RCCSD(T)-1	1.738	1395	0.41					
Experiment	1.738 ± 0.003	1403±18	0.46					
VGRECP/21e-SODFT	1.742	1353	0.45					
The E112H	The E112H molecule							
GRECP/13e-RCCSD-1	1.638	1859	0.36					
GRECP/13e-RCCSD-1 + HOCA	1.662	1800	0.42					
GRECP/13e-CCSD-1	1.746	1402	-0.03					
DK3/19e-CCSD(T) [Nakajima:00]	1.829	1007	0.06					
VGRECP/21e-SODFT	1.651	1766	0.62					

Dispersion interactions between atoms

 $E_{disp} = -1.5 \ \alpha_A \ \alpha_B \ I_A \ I_B \ / \ (I_A + I_B) \ R_{AB}^6 \qquad \text{for } R_{AB} \ \gg r_A + r_B$

Х	HFDB	Experiment.	For XH and	
		and Xe, [Se [Eliav:95] fo	$R_{AB} = r_A + r_B$	
Hg	$< r >_{6s} = 2.85$ a.u.	$\alpha = 34. a.u.$	I = 0.384 a.u.	$E_{disp} = 0.20 \text{ eV}$
E112	$< r >_{7s} = 2.50$ a.u.	$\alpha = 26. a.u.$	I = 0.440 a.u.	$E_{disp} = 0.27 \text{ eV}$
Xe	$< r >_{5p} = 2.35 \text{ a.u.}$	$\alpha = 27. a.u.$	I = 0.446 a.u.	$E_{disp} = 0.36 \text{ eV}$
Η	$< r >_{1s} = 1.50$ a.u.	$\alpha = 4.5$ a.u.	I = 0.500 a.u.	

Table 3. Spectroscopic constants for Hg_2 and $E112_2$.

Method	R _e (Å)	$W_e(cm^{-1})$	D _e (eV)				
The Hg ₂ molecule							
RDFT [Anton:05] (A)	3.63	14	0.009				
GRECP/36e-CCSD(T)+SO	3.74	18.5	0.043				
Experiment	3.66±0.03	19.65±0.05	0.045 ± 0.002				
RDFT [Anton:05] (B)	3.55	24	0.048				
RECP/RCCSD(T) [Nash:05]	3.60		0.072				
The E	112_2 molecu	ule					
RDFT [Anton:05] (A)	3.45	25	0.039				
GRECP/36e-CCSD(T)+SO	3.65	23.5	0.053				
RDFT [Anton:05] (B)	3.39	30	0.080				
RECP/RCCSD(T) [Nash:05]	3.07		0.187				

Table 4. Spectroscopic constants for HgAu and E112Au.

Method	R _e (Å)	$W_e(cm^{-1})$	D _e (eV)
The Hg	Au mole	cule	
VGRECP/21e-SODFT	2.71	104	0.51
RDFT [Pershina:02]	2.67	100	0.50
The E112	2Au mol	lecule	
VGRECP/21e-SODFT	2.77	83	0.36
RDFT [Pershina:02]	2.73	74	0.27

Conclusions:

- 1. Accounting for both scalar-relativistic and spin-orbit effects is important in calculations of superheavy element compounds.
- 2. Our *ab initio* precise calculations on E112H and E112H⁺ can be used to calibrate other semiempirical (DFT) methods.

The end.

References:

- [1] K.S.Pitzer, J.Chem.Phys. 63, 1032 (1975).
- [2] E.Eliav, U.Kaldor, Y.Ishikawa, Phys.Rev.A 52, 2765 (1995).
- [3] M.Seth, P.Schwerdtfeger, M.Dolg, J.Chem.Phys. 106, 3623 (1997).
- [4] T.Nakajima, K.Hirao, Chem.Phys.Lett. 329, 511 (2000).
- [5] C.S.Nash, J.Phys.Chem.A 109, 3493 (2005).
- [6] V.Pershina, et al., Chem.Phys.Lett. 365, 176 (2002).
- [7] J.Anton, et al., Chem. Phys. 311, 97 (2005).
- [8] G.Herzberg, Spectra of Diatomic Molecules, 1950.
- [9] K.P.Huber, G.Herzberg, Constants of Diatomic Molecules, 1979.
- [10] W.C.Stwalley, J.Chem.Phys. 63, 3062 (1975).
- [11] J.Dufayard, B.Majournat, O.Nedelec, Chem. Phys. 128, 537 (1988).
- [12] S.Hofmann, et al., Z.Phys.A 354, 229 (1996).
- [13] Yu.Ts.Oganessian, et al., Eur.Phys.J.A 5, 63 (1999);
- [13a] Yu.Ts.Oganessian, et al., Phys.Rev.C 70, 064609 (2004).
- [14] W.Loveland, et al., Phys.Rev.C 66, 044617 (2002).
- [15] A.B.Yakushev, et al., Radiochim. Acta 91, 433 (2003).
- [16] C.S.Nash, et al., J.Chem.Phys. 106, 5133 (1997)
- [17] M.Seth, et al., to be published (P.Schwerdtfeger, private communication, 2003).

Transition Energies (TE) between states averaged over the relativistic configurations of E112 derived from all-electron HFDB calculations with Fermi nuclear model and the absolute errors of their reproducing in different all-electron and 20-electron RECP calculations (in cm ⁻¹).										
	HFDB ^a (Fermi)	HFD+B ^b (Fermi)	HFD ^b (Fermi)	HFD ^a (Point)	GRECP ^c	Ionic RECP ^d	Nash's RECP ^e	Seth's PP ^f (LS-coupling)	Seth's PP ^g	
Configuration	TE		Absolute errors							
$6d_{3/2}^{4}6d_{5/2}^{6}7s_{1/2}^{2} \rightarrow$										
$6d_{3/2}{}^46d_{5/2}{}^67s_{1/2}{}^17p_{1/2}{}^1$	46406	1	-27	1768	-17	588	3198	-14254	153	
$6d_{3/2}{}^46d_{5/2}{}^67s_{1/2}{}^17p_{3/2}{}^1$	64559	-1	239	1964	-29	820	5480	-3754	27	
$6d_{3/2}{}^46d_{5/2}{}^67s_{1/2}{}^18s_{1/2}{}^1$	72571	-1	257	1760	-25	719	5085	279	105	
$6d_{3/2}{}^46d_{5/2}{}^67s_{1/2}{}^1$	93797	-1	277	1875	-18	807	5456	303	94	
$6d_{3/2}{}^46d_{5/2}{}^57s_{1/2}{}^27p_{1/2}{}^1$	28701	2	-576	-644	305	-422	-3723	-15073	380	
$6d_{3/2}{}^46d_{5/2}{}^57s_{1/2}{}^27p_{3/2}{}^1$	52595	0	-267	-464	277	-181	-1254	-2198	189	
$6d_{3/2}{}^46d_{5/2}{}^57s_{1/2}{}^28s_{1/2}{}^1$	62635	0	-252	-776	314	-315	-1879	1765	326	
$6d_{3/2}^{4}6d_{5/2}^{5}7s_{1/2}^{2}$	84449	0	-234	-672	322	-224	-1531	1781	308	
$6d_{3/2}{}^36d_{5/2}{}^67s_{1/2}{}^27p_{1/2}{}^1$	53581	2	-281	-765	387	-376	-3903	-15588	22	
$6d_{3/2}{}^36d_{5/2}{}^67s_{1/2}{}^27p_{3/2}{}^1$	75273	0	7	-600	437	-84	-1515	-2750	-126	
$6d_{3/2}{}^{3}6d_{5/2}{}^{6}7s_{1/2}{}^{2}8s_{1/2}{}^{1}$	85677	-1	25	-915	477	-213	-2126	1228	22	
$6d_{3/2}^{3}6d_{5/2}^{6}7s_{1/2}^{2}$	107531	-1	44	-811	484	-122	-1777	1245	1	

^aAll-electron HFDB calculations with Fermi and point nuclear charge distributions, correspondingly.

^bAll-electron HFD calculation without and with accounting for Breit interaction in the framework of the first order of the perturbation theory, correspondingly.

^cGeneralized RECP (GRECP) generated from HFDB calculation.

^dSemi-local RECP generated from HFDB calculation on the ionic closed-shell generator-state.

Spectrosco	Spectroscopic constants of the ground states of the E112H ⁺ and HgH ⁺ ions.								
Method	R _e (Å)	$W_e(cm^{-1})$	D _e (eV)	$B_e(cm^{-1})$	$w_e x_e (cm^{-1})$	$\alpha_{e}(10^{-3} \text{cm}^{-1})$	$-Y_{02}(10^{-6} \text{cm}^{-1})$		
	The HgH ⁺ ion								
GRECP/12e-RCCSD-1	1.596	2037	2.67	6.60	39	200	279		
GRECP/12e-RCCSD(T)-1	1.599	2013	2.68	6.58	41	208	282		
Experiment (Ref. 8)	1.594	2034	(2.4) ^a	6.61	46	206	285		
Experiment (Ref. 9)	1.594	2028	$(3.11)^{a}$	6.61	41	206	285		
		The	e E112H+ i	on					
GRECP/20e-CCSD-1	1.537	2587	4.60	7.10	46	198	215		
GRECP/20e-CCSD-2	1.531	2681	4.46	7.15	35	168	205		
GRECP/18e-CCSD-1	1.537	2588	4.61	7.10	47	198	215		
GRECP/18e-CCSD-2	1.531	2680	4.46	7.16	35	169	205		
GRECP/12e-CCSD-1	1.535	2590	4.96	7.12	47	200	216		
GRECP/12e-CCSD-2	1.527	2679	4.75	7.19	37	175	208		
GRECP/12e-RCCSD-1	1.537	2569	3.96	7.11	47	201	218		
GRECP/12e-RCCSD-2	1.519	2752	3.80	7.28	45	187	204		
GRECP/12e-RCCSD-1 + HOCA	1.540	2547	4.35	7.08	45	195	220		
DK3/18e-CCSD [4]	1.528	2621		7.18					
DK3/18e-CCSD(T) [4]	1.532	2595		7.15					
PP/CCSD(T) [3] ^b	1.515	2640	5.15		51				
PP/MRCI+SO [3] ^b	1.503	2620	3.86						
PP/CCSD(T)+SO [3] ^b	1.517	2673	4.09		52				
RECP/RCCSD(T) [5] b	1.583		3.50						

Spectrosco	Spectroscopic constants of the ground states of the E112H and HgH molecules.							
Method	R _e (Å)	w _e (cm ⁻¹)	D _e (eV)	$B_e(cm^{-1})$	$W_e X_e (cm^{-1})$	$\alpha_{e}(10^{-3} \text{cm}^{-1})$	$-Y_{02}(10^{-6} \text{cm}^{-1})$	
The HgH molecule								
GRECP/13e-RCCSD-1	1.709	1575	0.35	5.76	56	262	312	
GRECP/13e-RCCSD(T)-1	1.738	1395	0.41	5.56	83	348	363	
Experiment (Ref. 9)	[1.766] ^c	[1203]°	0.46	[5.39] ^c			[395]°	
Experiment (Ref. 11)	1.741	1385	0.46	5.55	75	271		
Experiment (Ref. 8)	1.740	1387	0.46	5.55	83	312	344	
Experiment (Ref. 10)	1.735	1421	0.46	5.59	121	404	346	
		The	E112H mo	lecule				
GRECP/21e-CCSD-1	1.742	1438	-0.03	5.53	113	409	340	
GRECP/21e-CCSD-2	1.801	1104	-0.02	5.15				
GRECP/19e-CCSD-1	1.741	1439	-0.03	5.53	113	409	340	
GRECP/19e-CCSD-2	1.801	1102	-0.02	5.15				
GRECP/13e-CCSD-1	1.746	1402	-0.03	5.50	119	429	354	
GRECP/13e-CCSD-2	1.808	1038	-0.05	5.10				
GRECP/13e-RCCSD-1	1.638	1859	0.36	6.25	95	338	288	
GRECP/13e-RCCSD-2	1.663	1649	0.32	6.06	123	425	340	
GRECP/13e-RCCSD-1 + HOCA	1.662	1800	0.42	6.07	152	385	287	
VGRECP/21e-SODFT(B98)	1.651	1766	0.62					
DK3/19e-CCSD [4]	1.823	991	0.04	5.05				
DK3/19e-CCSD(T) [4]	1.829	1007	0.06	5.02				

Spectroscopic constants of the ground states of the Hg ₂ , E112 ₂ , HgAu and E112Au molecules.									
Method	R _e (Å)	w _e (cm ⁻¹)	D _e (eV)	$W_e x_e (cm^{-1})$					
The Hg ₂ molecule									
RDFT(B88/P86) [7]	3.63	14	0.009						
GRECP/36e-CCSD(T)+SO	3.74	18.5	0.043	0.239					
Experiment	3.63	19.7	0.043						
Experiment	3.69	19.6	0.047	0.25					
RDFT(PW91) [7]	3.55	24	0.048						
RECP/RCCSD(T) [5]	3.60		0.072						
	The E112	2_2 molecule							
RDFT(B88/P86) [7]	3.45	25	0.039						
GRECP/36e-CCSD(T)+SO (preliminary)	3.65	23.5	0.053	0.343					
RDFT(PW91) [7]	3.39	30	0.080						
RECP/RCCSD(T) [5]	3.07		0.187						
	The HgA	u molecule							
VGRECP/21e-SODFT(B98)	2.71	104	0.51						
RDFT(VWN,B88/P86) [6]	2.67	100	0.50						
	The E112.	Au molecule							
VGRECP/21e-SODFT(B98)	2.77	83	0.36						
RDFT(VWN,B88/P86) [6]	2.73	74	0.27						