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INMPEANCJIOBUE

3a cBoio yxke Oosiee moyBeKoByto ucrtopuio 3umuue [[Ikosbr o dpusuke crainm
BaYKHEHIITUM 3JIeMEHTOM Hay4HO# Ku3nu [leTepOyprekoro nHCTUTYTA SAEPHOI
dbusukn (IINAD). fApasscs ogHUM U3 CAMBIX TPOIOIKUTETBHBIX TEPUOII-
TeCKUX MEPONPUATHii B MuUpe B 0o0acTu (pyHIaMEHTAJbHBIX HAYK, SUMHHE
[ITkosbI BHECM BaxKHBIH BKJIaJ B pasputne pusndecknx Hayk B CCCP u
Poccun. Bricouaiimux ypoenb guckyccuit Ha [Ilkosre B 1960-80-x 1. 3a1aBast
BbLIAONINICSA (PUBUK U HEOPAMHAPHAS JITIHOCTD, PYKOBOIUTEH OT/IEIa TeOpe-
tuaeckoit pusukn wireH-KoppectnongenTr AH CCCP B.H. I'pubos, B T0o Bpems
OJIUH U3 JINJIEPOB MHUPOBOI TeOpeTUHUeCKOl (DU3UKHU FJIEMEHTAPHLIX YaCTHII,
CO3JIABINMI OJIHY M3 CAMBIX SPKUX HAYIHBIX MIKOJ. DTO CIHOCOOCTBOBAJIO TO-
My, 9TO MHOrue (PU3UKH CTPaHbl CTPEMHUJINCH HonacTh Ha 3umHue [IKo/b!
®usnuko-Texunueckoro Nncruryra um. A.®. Nobde (PTU AH CCCP), zarem
¢ 1971 r. ma Bumune [MIkosbr Jlenunrpajgackoro Nucruryra Aneproit Pusnkn
M. B.I1. Koncrantunosa (JINAD AH CCCP), arobsl 06cymnTh cBoM paboThl ¢
B.H. I'putosbim, A.A. Auncenbmonm, JILH. JlumatoBeiM n ApyruMu cOTpyTHUKA-
MU TEOPETUUIECKOI'0 OTJIe/Ia U PUCYTCTBOBATE IIPU 3aPOXKIEHUU HOBBIX Uil 1
nanpasyiennii. 3umuane [Ikoser [INAD ¢ yecnexom mpoo/zKaloT CI0KUBIITHECS
TPa/JIUIUN.

LIV Bumaas [komaa [TNAD 6b11a npoBeieHa B 3ar0pOTHOM IIEHTPE OTIbIXA
«PaitBosray, B moc. Pomuno, Bom3u Cankt-lIlerepbypra, ¢ 10 mo 15 mapra
2020 1., a LV 3umnussa [Ikosa 8 O3m0poBuTeIbHOM 00beINHEHNN «3€/IeHbII
Bop» LB Poccun, r. Jlyra Jlenunrpasckoit 06i1., ¢ 13 mo 18 mapra 2023 .
Kak Bcerma, B pamrax obmieit [1Ikosbr IIA® mpoBoguincs pasiminbie Te-
marudeckue IIkosnbr: Qusnka sgapa u 3JeMeHTapHbIX JacTull, TeopeTuueckast
dusuka, Atomuas dpusznka, Pusnka 1 TeXHUKA PEAKTOPOB, flepHast MeUIMHA
U yCKOpUTEe/IbHAsA (DUBUKA.

JlarHublit cOOPHUK TIpeIHa3HAYEeH JJIsi CTYAEHTOB CTapIInX KYPCOB U acIlu-
PAHTOB, HAYUHAIOIINX UCCJIC/IOBATE/ICH U IMUPOKOIO KPYyra CIeIHaIuCTOB, KaK
TEOPETUKOB, TaK U IKCIIEPUMEHTATOPOB.

Bukrop T. Kum

Compencenaresns oprromurera 3uMaeit [TIkosbr [TAD



FOREWORD

Over their more than half-century history, the Winter Schools in Physics have
become the most important element of the scientific life of the Petersburg
Institute of Nuclear Physics (NRC Kurchatov Institute — PNPI). As one of
the longest-running periodic events in the world in the field of fundamental
sciences, the Winter Schools made an important contribution to the develop-
ment of the physical sciences in the USSR and Russia. The highest level of
discussions at the School in the 1960-80s was set by the outstanding physicist
and extraordinary personality, head of the department of theoretical physics,
corresponding member of the USSR Academy of Sciences V.N. Gribov, at that
time one of the leaders of the world theoretical physics of elementary particles,
who created one of the most brilliant scientific schools. This contributed to the
fact that many physicists in the country sought to attend the Winter Schools
of the Physico-Technical Institute named after A.F. Ioffe (PTI AS USSR),
then from 1971 to the Winter Schools of the Leningrad Institute of Nuclear
Physics named after B.P. Konstantinov (LNPI AS USSR) to discuss their works
with V.N. Gribov, A.A. Anselm, L.N. Lipatov and other staff members of the
theoretical department and to participate at the emergence of new ideas and
trends. PNPI Winter Schools successfully continue the established traditions.

The LIVth PNPI Winter School was held at the “Raivola” recreation center,
in Roshchino, near St. Petersburg, from March 10 to 15, 2020, and the LVth
Winter School at the “Zeleny Bor” health-recreation center of the Central Bank
of Russia, Luga of Leningrad region, from March 13 to 18, 2023. As always,
within the framework of the general PNPI School, various topical Schools were
held: Physics of Nuclei and Elementary Particles, Theoretical Physics, Atomic
Physics, Physics and Reactor Technics, Nuclear Medicine and Accelerator
Physics.

These Proceedings are intended for senior and graduate students, young
researchers and a wide range of specialists, both theorists and experimentalists.

Victor T. Kim

Co-Chair of the PNPI Winter School Organizing Committee



ON LANDAU-KHALATNIKOV-FRADKIN TRANSFORMATION
IN QED

Anatoly V. Kotikov
Bogoliubov Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research, Dubna

Abstract

We present the results of studies of the gauge dependence of the massless fermion
propagator in QED in the framework of dimensional regularization. The results
were obtained using the Landau—Khalatnikov—Fradkin transformation between
massless charged particle propagators interacting with gauge fields in two
different gauges. In the d = 4 — 2¢ case, we present the exact results obtained
in [1], which relate the hatted and standard ¢ values and are valid in all orders
of perturbation theory. In three-dimensional quenched QED assuming the
finiteness of the perturbative expansion coefficients, it was shown in [2| that
exactly for d = 3 all odd perturbative coefficients, starting from the third order,
must be equal to zero in any gauge.To test this, in Ref. 3] we calculated three-
and four-loop corrections to the massless fermionic propagator. Three-loop
corrections are finite and gauge-invariant, while four-loop corrections have
singularities.



O ITPEOBPA3OBAHIUN
JIAHIJAY-XAJIATHUKOBA-®PAJIKNTHA B K39/]

Anaroamit B. Korukosn
Jlaboparopusi Teopernydeckoii ¢puznku nm. Boromobosa,
Ob6beanHEHHDBIT UHCTUTYT SJIEPHBIX MccJesoBaHuii, /lyoHa

Aunnoranusa

[IpencraBiieHbl pe3yabTaThl KCCIEIOBAHUS KAJIMOPOBOYHON 3aBUCUMOCTHU O€3-
MaccoBoro pepMuoHHOTO mporararopa B KOJI B paMkax pasMepHOi peryJis-
pusaruu. Pe3yibraThl OBLIN ITOJIyYeHbI C IIOMOIIBIO ITpeobpa3oBanusd JlaHmay—
XaaraukoBa—PpaIKMHA MKy IIpolararopaMu 0e3MacCOBBIX 3apszKEeHHBIX
YACTUIL, B3AUMOJIEHCTBYIONIUME C KAJTUOPOBOYHBIMU TOJIIMU B JIBYX Pa3HBIX
KanopoBKax. B cirydae d = 4 — 2 MbI IIpeJICTaB/IsIeM TOYHBIE PE3YIbTATHI,
noJiydeHHbie B 1], KoTopbie cBsi3bIBAIOT cTaHapTHLIE (-DYHKIWMN 1 (-DYHKINHT
€O NUIATIKON U CIIPaBEJIJINBBI BO BCEX MOPSJIKAX TEOPUM BO3MYIINeHui. B Tpex-
MepHoit 3aMopozkeHHoit KO/l B 1peinoioxKeHnn KOHETHOCTH KOI(MDMUITUEHTOB
nepTypOaTuBHOrO pasjioxKenus, B [2| mokazano, uto npu d = 3 Bce HEUETHBIE
neprypbaTuBHbie KO3(M@PUITUEHTHI, HAUNHAS C TPEThEro MoPsIKa, JOJIKHbBI ObIThH
paBHBI HYJIIO B JII000# Kasmbposke. YTobbl IpoBepuTh 910, B 3| MbI paccanTasm
TPeX- U YeThIPEXIIeT/IeBbIe TOPABKH K 6e3MaccoBOMY (hepMHUOHHOMY IIpOTIaraTo-
py. TpexuerieBbie MonpaBKu KOHEYHBI U KaJTHOPOBOYHO-UHBAPUAHTHDI, & YeThI-
pexIeT/ieBble MOIMPABKH COIEPKAT CHHIY/ITPHOCTH.



1 Introduction

The Landau-Khalatnikov-Fradkin transformation (LKFT) [4,5] elegantly links
the QED fermion propagator in two different gauges (and similarly for the
fermion-photon vertex but it is beyond the present consideration). This trans-
formation has a simple form in representing a coordinate space and allows us
to compute Green functions in an arbitrary covariant gauge if we know their
value at any particular gauge.

Here we show the LKFT applications around three and four dimensions in
the framework of dimensional regularization.

In the case of the usual four-dimensional QED (QEDy) let us consider the
multiloop structure of propagator-type functions. It was recently noticed that
contributions for various massless Euclidean physical quantities proportional to
even values of the ¢ function, (s, mysteriously often cancel out (see, e.g., [6-13]).
Such puzzling facts have recently given rise to the ”absence of m theorem”.
The latter is based on [14,/15] observation that e-dependent transformation of
¢ values:

3
b=G+ oG- b=G6+ ot G=a, (1)
eliminates even zetas. The reason for the appearance of the hatted (-values is
not clear and requires additional investigations.

A generalization (|1 is available in Refs. [16H19]. The results and their
generalizations make it possible to predict the terms ~ 72" in higher orders of
perturbation theory (PT) (see their estimate in [16-20]). Also note that [16/19)
results contain multi-zeta values, which are beyond the scope of this paper.

Here we consider the LKFT results obtained in [1] (see also [21})22]) to study
the general properties of the PT expansion of the fermion propagator. We show
how transformation naturally reveals the existence of the hatted transcendental
basis. Moreover, this allows the results shown in to be extended to any e
order.

Quantum electrodynamics in three space-time dimensions of (QEDj3) with
N flavors of four-component massless Dirac fermions has been under continuous
study for the past forty years as a useful field-theoretical model. QED3 served
as a toy model for exploring several key problems in quantum field theory, such
as infrared singularities in low-dimensional massless particle theories, coupling
constant nonanalyticity within PT, dynamic symmetry breaking and fermion
mass generation, phase transition and the relationship between chiral symmetry
breaking and confinement.



Moreover, QED3 has found many applications also in condensed matter
physics, in particular, in superconductivity with high T, [23-25], in planar
antiferromagnets [26], as well as in studies of graphene [27], where excitations
of quasiparticles have linear dispersion at low energies and are described by the
massless Dirac equation in 2 + 1 dimensions (see reviews on graphene studies
in [28-31]).

Massless QED3 plays an important role in investigating the problems of
dynamic symmetry breaking and fermion mass generation in gauge theories. The
main question that has been debated for a long time is whether there is a critical
fermion flavor number, N,., where the separation of the chiral symmetric phase
and the phase with broken chiral symmetry occurs (see [32-48]). Analytical
studies of chiral symmetry breaking and mass generation in QED3 are usually
based on the use of the Schwinger-Dyson equations with some ansatzes for the
full fermion-photon vertex.

In the recent paper [2], we studied the gauge-covariance of the massless
fermion propagator in quenched QED3 in a covariant gauge. We recall here
that the quenched limit of QED is the approximation in which we can neglect
the effects of closed fermion loops. This approximation arose in the study of the
lattice representation of QEDy (see [49-52]), which showed that a reasonable
estimate of the hadron spectrum can be obtained by eliminating all internal
quark loops. Moreover, the quenching approximation in QEDy is now used to
include QED effects in lattice QCD calculations (see the recent paper [53] and
discussions therein).

Immediately after its introduction in the study of the lattice representation
QEDy, the quenched approximation in QED, was also used in Refs. [54-60]
within the framework of the formalism based on the study of the Schwinger-
Dyson equations.

In Ref. [2], following [1},60,/61] we applied dimensional regularization and
studied the LKFT self-consistency in quenched QEDj3 in a covariant gauge.
Analysis of [2] led to the conclusion that in exactly three dimensions, d = 3, all
odd perturbative coefficients, starting from the third order, must be equal to
zero in any gauge if QED3 does not have (infrared) singularities, as discussed
in [62-64] To test this, in Ref. [3] we calculated the three- and four-loop orders
and found that the three-loop corrections are finite and gauge-invariant, while
the four-loop corrections have singularities.



2 LKFT in x space with d =4 — 2¢

Further, we will consider QED in the Euclidean space of dimension d (in the
first two sections d = 4 — 2¢). The general form of the fermion propagator
in the momentum and z-space representations, Sg(p,§) and Sg(z,§), in some
gauge ¢ is as follows:
1 .
where the tensor structure is distinguished by the factors p and z containing the
v-Dirac matrices. The two representations, Sg(z, ) and Sr(p, ), are related
by a Fourier transform, which is defined as:
dez . ddp .
_ ipx _ —ipx

Sp(p,§) = / ) e Sp(x,€), Sp(z,§) = /—(27r)d/2 e " Sp(p,§). (3)

The famous LKFT very simply relates the fermionic propagator in two
different gauges, e.g., £ and 7. In dimensional regularization, it looks like
this [1]:

ddq e—iq:p
(2m)¢ ¢t
Now we can proceed to the calculation of D(z). To do this, you can use

the following simple formulas for the Fourier transform of massless propagators
(see, e.g., [65]):

/ddx elpz B 22077Td/2a0<a) /dd e~ ipz _ 22d7Td/2a0(O./)

Sp(x,€) = Sp(x,n) W), D(x) = —ie* A ™ / =&—n. (4)

p

20 P24 p2o 226 ’
~ T(d/2 —a+n)
an(a) - F(Oé) (5)
This gives:
_i1AA 9 9ne _ Qem €
D(x) = . I'(1—e¢)(rux®):, A= e (6)

3 LKFT in momentum space with d = 4 — 2¢

Suppose that for some gauge parameter n the fermionic propagator Sr(p,n)
with external momentum p has the form (2)) with P(p,n) as:

o0 ~2

P(p,n) = ) _ am(n) A™ (%)m i = dmp®, (7)

m=0



where a,,(n) are the coefficients of the loop expansion of the propagator, and [
is the renormalization scale, which lies somewhere between the MS-scale ;1 and
the MS-scale .

Using the Fourier transform , we have

[t (52) [ty - o . ®

Then, using , we obtain that:

2d1'~

el = g yn Zb ) A (w122 ) = () 2 )

L'(1+me)

(9)

With the help of @ together with an expansion of the LKFT exponent, we
have

2015 m a2y 3 (ABY L0 (oo
Sp(z,&) = (Ir2?) d/2Zb ) A™ (T p*a?) Z( €> I (mux=)*.

1=0
(10)
Factorizing all z-dependence yields:

2d1A

Sp(z, &) = e d/QZb AP (rp2a?)"*

p bm_(ﬁ)(_é

«(p-—m)I\ ¢

b(€) = ) Uy (11)

m=

Hence, taking the correspondence between the results for propagators P(p,n)
and Sp(z,n) in @ and @, respectively, together with the result for
Sr(x,n), we have for P(p,§):

Zam ([‘2) : (12)

p?

where

n©) = () s

a(n) T(d/2—1T1+me) [ A\ .
Z m — ) T(1 + i&)D(d/2 — me) <_E) "1=e).

(13)

10



In this way, we have derived the expression of a,,(§) using a simple expansion
of the LKFT exponent in z space. From this LKFT representation, we see that
the magnitude a,,(£) is determined by a;(n) with 0 <1 < m.

Very often, however, the subject of the study is not the magnitude a,,(§)
but the p- and A-dependencies of each magnitude a;(n) as it evolves from the
1 to the £ gauge. The corresponding result for the p- and A-dependencies of
am(&,p) can be obtained interchanging the order of the sums in the r.h.s. of
. Performing such interchange yields:

= > am(&p) Am(}%) : (14)

where
X D(d/2—me)T(1+(I+m)e) [ AA\' T (1—e) [ a2\ "
an(&:p) = ann) ) 7 T(1+me)l /2—(l—|—m)5)( g) I (ﬁ) '

(15)

3.1 Scale fixing

Following [1], we consider only the case of so-called MS-like schemes. In such
schemes, we need to fix some terms resulting from the application of dimensional
regularization. This procedure will be called scale fizing and will play a decisive
role in our analysis.

It is well known that when calculating two-point massless diagrams, the
final results do not contain (. [[] Therefore, it is convenient to choose a certain
scale in which (, disappears already at intermediate steps of the calculations.
To do this, in [1] we also introduced a new scale based on the old calculations of
massless diagrams, performed by Vladimirov who added (see [69]) an additional
factor I'(1 — €) to the contribution of each loop. This corresponds to adding
the factor I'"!(1 — ) to the corresponding scale. In [1] we called this scale the
manimal Vladimirov scale, or the MV-scale, and gave the following definition:

2 ji*
e = =2 16
My F(l _ E) ( )

1Strictly speaking, ¢, may appear in some formulas, such as the sum rules in deep inelastic
scattering. They come from analytic continuation [66H68] but we will not consider this case
in this paper.

11



In the scale, we can rewrite the result in the following general form:

o

—(m 1 2 le
nl&1) = enln) Y T P Bt S ()

where

[(1—(m+1)e)l(1+ (m+1)e)l?(1—¢)
1+ me)l(1—(m+1+ 1))

@Mv<m,l,€) = (18)

The factor (1 — (m + 1)e)/(1 — (m + 1 + 1)e) was specially extracted from
Oy (m, 1, €), to insure the same transcendental level, i.e., the same value s for
(s for each order of the e expansion ®yyv(m, 1, €) (see below).

3.2 MV scale
The I' function I'(1 + Be) has the following expansion:

- s 5.8 CS
L1+ pe) = exp[—’yﬂ€+2(—1) nsﬂa}, Ns = —. (19)
s=2 5
Substituting Eq. in Eq. (18)), we obtain for the factor @y (m, 1, ¢):
Dyy(m,le) = exp [Z ns ps(m, 1) 55] : (20)
5s=2

where
ps(m,l) = (m—l—l)s—(m+l+1)s+21+(—1)5{(m+l)s—ms}, (21)

and, as expected by the MV scale, we have p;(m,1) = 0,pz(m,l) = 0.

As can be seen from the Eq. (20), @y (m,[,£) contains the values of the
(s function of a given weight (or transcendental level) s in the factor £°. This
property severely limits the coefficients of the ¢ series, which simplifies our
analysis. It resembles the one found earlier in Ref. |[70]. When used wisely, this
property sometimes allows you to get results without any calculations (as in
Ref. [71-74]). In other cases, this simplifies the structure of the results, which
can then be very easily predicted in the form of some ansatz (see Refs. [75-81]).

12



3.3 Solution of the recurrence relations

Now let us focus on the polynomial ps(m,() in Eq. , which can be conve-
niently divided into even and odd values of s. Then we see that the following
recursive relations hold:

Dok = DPok—1+ Lpog—o+Dp3, Pok—1 = pok—o+ Lpak—s+ps, L=11+1).(22)

For the MV scheme, these relations depend only on L, which leads to strong
simplifications.
Taking the results for po;. in the following form

k k—1
P2 = E P2s—1 Czk,zsq = E D2k—2m+1 C2k,2k72m+17 (23)
s=2 m=1

one can determine the exact k dependency Cyy 9,1, which has the following
structure:

(2k)! @
om — 1)1 (2k —2m+1)I" "Ny 2
(24)

CZk,Qk—Zm—i—l = b?m—l (
where B,, are the well-known Bernoulli numbers.

3.4 Hatted ¢ values

At this point it is convenient to represent the exponent argument in the r.h.s.

of as follows:
Z NsPs€” = Z T2k P2k g% + Z M2k—1 P2k—1 g1, (25>
s=3 k=2 k=2

Using Eq. the first term in the r.h.s. of Eq. can be expressed as:

0o 0o k 0o oo

2k 2k 2k
E kP € = E Mok € E P2s—1 Czk,2s—1 = § P2s—1 E T2k C2k,25—1 .
k=2 k=2 s=2 s=2 k=s

(26)
Then, Eq. can be written as Y oo, fos—1 pas—1 €271, where
et = s+ D Mok oot €277
k=s
2k)!

Corps1 = Dapasn (25 — 1)1 (2k — 25+ 1)!

13



and, correspondently, for ¢, = sn, (see Eq. (19))
bosm1 = Cos1 + Z ok é?k,Zs—l g2kmo) (28)
k=s
with

23—10 _ (2k — 1)!
ok - AREsTh T TRl 00 o) (2k — 25+ 1)1

Coks—1 = (29)

Together with and , Eq. provides an exact expression for the
hatted ¢ values in terms of standard (, which is holds for all orders of ¢
expansion.

4 LKFT with d =3 — 2¢

In Sections 4 and 5, we will consider a Euclidean space of dimension d = 3 — 2¢.
The general form of the fermionic propagators Sg(p,§) and Sg(z,§) in some
gauge ¢ is shown in Eq..

As in Eq., the fermion propagator can be represented in the form

P =S (%) B = @

where 1z is the M S scale.
Repeating the evaluation done in Eqgs. f with the replacement
e —1/2+4 ¢ and A — B, we obtain the results

P9 = S a8 (5) B1)
where .
ap(€) =Y (=20)"" ay(n) D(m, k,c) d(k —m,e) (32)
and

B, ko) _ TB/2—m/2— (m+ 1)1+ k/2+ ke)
U T+ m/24+me)D(3/2 —k/2 — (k+1)e)
rY(1/2 —¢)

N1 +2e) T 1 +¢)

¢(l,€) (33)

14



Now consider a,,(§) with m < 4:

ao(§)=ao(n)=1, a1(§) = al(n)—ng(l + 2¢(ly — 1))@0(77)7 (0=vTA),

aa(€) = as() — 20(1 = 2e(0s 1 1)) () + 67 (1~ 42) aol)
az(€) = az(n) + 6me d az(n) — 126 6% a1 (n) + 2w 5 ag(n), (34)
as(€) = s ) — (12203 o) Yas() — 28%a(n) + () — o).

Setting n = 0, i.e. choosing the initial Landau gauge, we can represent the
results for a,,(£) in the form

(&) = am(0) + € am(E) (35)

and verify that our results for a,,(£) are completely determined by a;(0), (I < m),
i.e. coefficients of lower orders in accordance with the LKF transformation.

It is clearly seen in that, starting from the third, the contributions
of odd orders to even ones are accompanied by singularities e~!. In turn, the
even orders contribute to the odd ones, starting from the third, ~ . Assuming
the perturbative finiteness of the massless quenched QEDj3 [62-64] and the
existence of a finite limit at ¢ — 0, we showed in 2] that exactly in d = 3 all
odd PT terms except a; must be equal to zero in any gauge. This required
verification, and in Ref. [3] we calculated the three- and four-loop corrections
shown in the next section.

5 Fermion propagator: three- and
four-loop coefficients

For the calculations, it is convenient to use

1

Pp,§) = ———,
N

where the 1PI-part o(p, &) can be represented (similary to (30])) as

o(p.6) = gjlom@ o (B) (37)

p2

(36)

Some details of the calculations can be found in [3]. Here we present the
results for 0,,(£), which can be represented in the form similar to (35):

om(§) = om(0) + ETm(§) . (38)
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Taking into account the first two orders of the ¢ expansion, we have
for 0,,(0)

51(0) = 0; 02(0) =7 F’%Q —7- ((1 — 3l + 12)% ,

4372 2
75(0) = 772 {%—105 + 5{2 <185—1O5l2+137C3> - % (451— 171l2)H ,

43 1 5954 173 513

O)=n*|[=m*-70) -4+ —+ —n> - —7' 39
74(0) WKN )5+04+3+18W 0" (39)

where 74 contains the most complicated part

533 2078
G, = 20905 + 5016ay + 4264Cly(7/2) + (7(? —930 12> 2+ 3G (40)
and

12 = 1112, ay = L14(1/2>7 Cn = L1n<1) ) (41>

C is Catalan, Li,, are polylogarithms and Cly is Clausen number.
With the same accuracy, we have for the coefficients 6,,(&)

3/2 2

G1(€) = —%(1 (1 — z2)g), Go(€) = 7€ {1 . % — (4= (1 12)7#)5} ,

3 2 2
G3(6) = 7°/* l% ~ 7+ (1 - %) &y a{—40 — 14l + %(4+ 90,)

+ <2z2 -4+ 3T7r2(1 —zg)) 52}];

4372\ 1 520 n2 1207 548
~ 2
=2 (70- - ———(881 425) _ e
0u(§) = [( 6 ) 30 M) T 3G
3372 9yt 4  3r? Y
28 — U IS Y L L B 49
+5<8 A +16)+§(3+4 16)] (42)

Note that the finite parts of the coefficients o1(¢) and o3(§) coincide with
the corresponding ones in Ref. [82]. So, we see that

o4(§) = 7 (%WQ - 70) (16;5) +0(£%), (43)

i.e. the four-loop results are finite in Feynman gauge.
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51  amn(§)

The coeflicients a,,(§) and 0,,(€) are related each other as

a1 = 01, Qg = aﬁ—a%, az = 03+20201+ai’, Ay = 04—|—20301+0§—|—3020%+0f.

(44)

Since 01(&) ~ &, we see in that a;(0) = 0;(0) for i < 3 and thus so a;(0)
with ¢ < 3 can be found in Eq. (39). According to we have for a,(0):

372 \? 43 1 6101 8 4059
a4(0) = 04(0)+ Wz(i— ) =7 KgﬂZ—?O) —+E4+———7r2——7r4} :
13

4 3 9 80
(45)
With the same accuracy, we have for the coefficients a,, ()
) ) 73/2 i
a1(§) = a1(§) = —7<1 —2(1 - l2)€>, as(§) = Wﬁ(l — 45),
4372
as(é) =72 ( T 105+ 252) : (46)

2

ia(€) = ~ sz— 43”2> §+520+2% (32—2112) —548¢3+6¢ <7— 3_”2) _53} ,

3 2 4

Note that the finite parts of the coeflicients a;(§) and as(€) coincide with
the corresponding ones in [83-85] (see also the Ref. [2] and discussions therein).

We see that the coefficients a,,(€) (m = 2,3,4) have a simpler form than
the corresponding coefficients &,,(£). Moreover, as in the case of g4(¢), we also
see that

i) = ou() +0() = (%ﬂ _ 70) (1—¢) é +O@E), (A7)

i.e. the four-loop results are finite in Feynman gauge.

6 Conclusion

In the framework of QED,, based on the LKFT results for the fermionic
propagator, we have shown the specific recurrence relations found in [1]
between even and odd values of the polynomial associated with a uniformly
transcendental factor ®ypyv(m, [, e) (18). These relations are simple in the MV
scheme introduced in . So, they terms of hatted ( values and thus lead
to Eq. relating the hatted and standard ( values for all PT orders. The
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coefficients in Eq. are expressed in terms of the well-known Bernoulli
numbers, By, (see and ([24)).

These results impose constraints on the results of multi-loop calculations in
any PT order, which have already been used in the recent paper [20]. However,
the reason for the appearance of hatted ( values, i.e. the appearance of even
(-values along with additional € powers is not clear and requires additional
explanation.

In the case of QEDj3, in our recent paper [2] (see also [86]) we studied the
LKFT for the massless fermionic propagator in the quenched approximation.
Studying this transformation in dimensional regularization, we found that
the contributions of odd orders, starting from the third, to even ones, are
accompanied by singularities that look like e~! in dimensional regularization.
In turn, the even orders produce contributions to the odd ones, starting from
the third, ~ €.

Following the arguments in favor of the perturbative finiteness of the
massless quenched QEDj; [62-64] and assuming the existence of a finite limit
at € — 0, in [2] we have shown exactly in d = 3 that all odd terms of asi1(€)
in perturbation theory except a, must be exactly zero in any gauge.

This statement was very strong and needed verification, which was done
exactly in Ref. [3]. We calculated three- and four-loop corrections, i.e. terms
a3(&) and ay(§), directly in the PT framework. We found that a3(&) is finite
and gauge independent when € — 0. The coefficient a4() has singularities,
which violates the status of the infrared perturbative finiteness of the massless
quenched QEDj;.

Moreover, in Ref. [3] we found that the singularities contributing to the
coefficient ay4(§), ~ (1 — &) and thus ay(€) is finite in the Feynman gauge. The
reason for this effect is not clear and more research is needed to elucidate it.

Author thanks the Organizing Committee of the LV PNPI Winter School for
the invitation.
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Abstract

On the example of massless QED we study an asymptotic of the vertex when
only one of the two virtualities of the external fermions is sent to zero. We
call this regime the skewed Sudakov regime. We consider the problem in
the one loop approximation and then in all orders. First, we show that the
asymptotic is described with a single form factor, for which we derive a linear
evolution equation. The linear operator involved in this equation has a discrete
spectrum. Its eigenfunctions and eigenvalues are found. The spectrum is a
shifted sequence of harmonic numbers. With the spectrum found, we represent
the expansion of the asymptotic in the fine structure constant in terms of
multiple polylogarithms. Using this representation, the exponentiation of the
doubly logarithmic corrections of the Sudakov form factor is recovered. It is
pointed out that the form factor of the skewed Sudakov regime is growing with
the virtuality of a fermion decreasing at a fixed virtuality of another fermion.

25



OBOBIIIEHNE CYJAKOBCKOI'O ®OPM®AKTOPA HA
ACUMMETPUYHBIN PEXKM

Buktop T. Kum'?, I'puropuii B. IIusoBapos?

! Tlerep6yprckuii unctutyt saepnoii dpusuku HUIL «KW», FaTunna
2 Cankr-IleTep6yprckuii nmojmrexaudeckuii yaupepcurer Ilerpa
Benukoro, Cankr-IleTepoypr
3 MucturyTt aaepubix ucciaenosanuii PAH, Mocksa

Aunoranuga

Ha npumepe 6e3maccoBoit K9/I n3ydaercss acUMIITOTHKA BEPIIUHBI ITPU TOJIb-
KO OJIHA U3 JBYX BUPTyaJbHOCTEl BHEIIHUX (PEPMUOHOB CTPEMUTCS K HYJIIO.
Mbr Ha3bIBaeM 9TOT pekuM acuMMeTpudHbiM pexkumoMm Cyrakosa. [Ipobiema
paccMaTpuBaeTcd cHadaa B OJHOIET/IEBOM IPUOINZKEHNH, a 3aTeM BO BCEX
IIopsAJKaX. CH&“I&H& MBI IIOKazKe€M, 9YTO aCUMIITOTHKa OIIUCbBIBaCTCA €IUHCTBEH-
HBIM (POPM-PaKTOPOM, JIjIT KOTOPOI'O MBI TIOJIydaeM YpaBHEHUE JIJIst JTUHEHHOM
sBOJIIONNN. JIMHEITHBII onepaTop, BXOAANINN B 9TO YpaBHEHHE, UMeeT JINCKPeT-
HbIi criekTp. Haiimensr ero cobcrBennbie OyHKIMU U COOCTBEHHBIE 3HAUCHUS.
CrexTp mpeacTaBiseT coO0il CIBHHYTYIO IOCIEI0BATEILHOCTD TAPMOHUIECKIX
quceJI. C HaﬁﬂeHHbIM CIICKTPOM MBI IIpeJacTaBJ/IdeM Pa3/IO?KCHHUE aCUMIITOTH-
KJ TI0 TIOCTOSHHON TOHKOW CTPYKTYPhI B TEPMUHAX KPATHBIX OJIUIOrapud-
MOB. Mcrosb3ys 3To mpejicTaBiIeHre, Mbl BOCIIPOU3BOIMM SKCIIOHEHITUAIUIO
JIBaXKIbl-TorapudMudecknx mnomnpaBok dpopm-daxkTopa Cymakosa. [lokazaHo,
qro hopm-pakTop CymakoBa B aCHMMETPHIHOM PEKUME PACTET ¢ YMEHBIICHH-
€M BUPTYaJIbHOCTH (DeEPMUOHA NPHU (PUKCHUPOBAHHON BUPTYAJIbHOCTU JIPYTOTO
depmMuoHa.

26



1 Introduction

In the textbooks (see, e.g., [1]) perturbative corrections proportional to powers
of a product of two logarithms of kinematic invariants are related to the infrared
divergences. It is also pointed out in the textbooks that it was V. V. Sudakov
who discovered these corrections [2]. If a curious student checks the original
paper, she/he discovers that infrared divergences are not mentioned at all. The
reason for this is that Sudakov considered not a physical phenomenon but a
technical problem of describing the amplitudes of massless QED near the zero
virtualities of the fermions.

While the treatment of the infrared divergences is still under active scrutiny
[3], the technical problem considered by Sudakov is well understood. In this
lecture we want to generalize and simplify the treatment of Sudakov, leaving
a tougher problem of considering infrared divergences aside. Namely, we will
consider a three-point amplitude of massless QED at a small virtuality of a
fermion. This problem differs the one considered by Sudakov, because we do
not require the virtuality of the second fermion to be small. Obviously, the
classic result of Sudakov should be recovered in our treatment, because one
can send the second virtuality to zero at the end of the day. We will call the
regime when only one of the fermion virtualities is sent to zero the skewed
Sudakov regime, because there will be no symmetry between the fermions in
our treatment.

The purpose in this lecture is to consider in the beginning the skewed
Sudakov regime in the one loop approximation and to develop a method to be
applied to the problem in all orders later.

A preliminary question we are to answer is what should be the quantity we
will study. Sudakov studied the irreducible three point amplitude. Should we do
the same? This is not immediately evident because the case we consider differs
the one considered by Sudakov. In particular, one could include self-energy
corrections to one or several legs of the amplitude under consideration. The
choice we take is to include the self-energy corrections to the fermion leg of
small virtuality. If the renormalization scale is chosen to be equal to the small
virtuality, the ratio of the self-energy correction to the small virtuality does not
depend on the small virtuality. On the other hand, such an amplitude—the
three-point amplitude with the self energy corrections included in a fermion
leg— does not contain ultraviolet divergences because of the Ward-Takahashi
identity between the renormalization constants. These observations explain
our choice.

In the next section we introduce our notations, give the classic result of
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Sudakov in the notations introduced, and our generalization. After that, we
sketch the derivation of the generalization in the one loop appoximation and
then in all orders.

The lecture is based on papers [4] and [5].

2 Notations and Results for One-Loop Order

Let I',(p, p') be the three-point amplitude of massless QED, where p, p’ are the
momenta of incoming and outgoing fermion respectively. Self-energy corrections
are included in the p-leg, and the factor ie excluded. Neglecting powers of the
coupling e one has I',,(p,p') =~ 7,.

To avoid infrared problems, we require p* < 0, p'? < 0, and (p — p')? < 0.

We will use two variables
2 2
—p -p
(1)

o VT oy

In terms of these variables, Sudakov regime is the regime when both x and y
are small and positive. The Sudakov result is that in the Sudakov regime one

has
L.(p,p') = fyu(l — % log(z) log(y) + ... ), (2)

where o = €%/(4r) is the fine structure constant.

In the skewed Sudakov regime, only one of the variables x,y is small, while
the second variable is not restricted. For definiteness, we consider the regime
when x — +0. The generalization of for this regime reads

L) =1 = g log(@)ly + (14 ) og()] + )+

log(x)%[l +(1+y) 1@%)} ... (3)

«

+27r

To check that this agrees with one needs to realize that p’ is the leftmost
position is small at p”? — 0, neglect the second line in (3)), and send y — 0 in
the first line.

Our aim in the next two sections is to derive . The first step to this
end is to give an integral representation of Ff})(p,p’ ), wich is the one-loop
contribution to I',(p, p').
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3 An Integral Representation for the One-Loop
Correction

The one-loop correction FE}) (p,p') is a sum of two diagrams. Namely, of the
self-energy correction to the p-line, and of the 1PT (triangle) diagram. The sum
can be represented as an integral over loop momentum, for which we take the
momentum k of the incoming fermion after emission of the loop photon:

, o -
000.4) =~ [ Q- D E 0o -0). @

where D (k — p) is the photon propagator (we use arbitrary covariant gauge),

and Fg)l,)(k,p’ ;p — k) is the connected tree amplitude of absorption of two
photons by a fermion divided by (ie)?:

PO (k,p51) = (,iéilz)lﬂ + Z _;)12% (5)

The first term generates the self-energy correction in , and the second, the
triangle diagram. Using, for example, dimensional regularization, one checks
that ultraviolet divergences of these two contributions cancel against each other,
and one does not regularise the integral in in any way, because it converges.
The ie-prescription is used to define the integral at k? = 0, (p — k)? = 0, and
(¥ —p+k)?=0.

We now change the integration variables in . The loop momentum £ is
decomposed into longitudinal and transverse components, k = k + &k, where
k| is a linear combination of p and p’, and pk, = p’k, = 0. These conditions
imply that &, is a two-dimensional euclidean vector, k2 < 0. Using polar
coordinates for the transverse components k; = (kj, k2) one has

2dk* = &’k (0(¢)0(2m — ¢)do)dk? 0(—k?), (6)

where the components are related to the polar angle, k1 = cos(¢)/—k?,
ko = sin(¢)/—k2.
Next we notice that one can do the following replacement in if it is
used in (4)):
0(—k1) — 0(=k1) — O(k}). (7)
This is the case because the second term gives exactly zero if substituted in (4)
due to the ie-prescription.
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Furthermore, one easily checks that

k2
6(~F1) — 0(k) = ‘k”,m V)O(1 =), (8)

where we have introduced a new variable, which we will call the inclination of
the fermion with momentum k:

ki
V=g 9)
This variable is in one-to-one correspondence with &2 :
kL= kj(1/v —1). (10)

We see that one can replace the integral over d*k in with integrations
over the polar angle, the inclination, and the integral over the longitudinal
momentum:

rO(p, ) = /2” d¢/ /koII Dk, pip — k)b,
21 Jo (ky —vp)?2 +p?v(l —v) +ic

((p k2D (p — k (11)

We stress that no approximation is used in the above transformations of
into . It is tacitly assumed in that k is expressed in terms of the
integration variables. Another point to contemplate is that the components of
k. are purely imaginary in this expression if &7 > 0.

Next we will use the integral representation to consider the limit p? — 0.
Along the way we will explain why v has the name inclination.

4 The Limit at the One-Loop

The denominator in vanishes at k| = vp,p? = 0. Because of this, the
leading contribution to the integral in the limit p?> — 0 comes form a vicinity of
the point kj = vp. This explains the name inclination: at p* — 0 the fermion is
“inclined” to keep the fraction v of the initial momentum p after the emission of
the photon. Also, in the leading approximation one can restrict the integration
in k| to a vicinity V' of the point kj = vp.

Next we notice that the contribution related to the longitudinal part of the
photon propagator has a finite limit at p?> — 0. Because of this, in (11)) we can
do the replacement (z(p — k)2D"P(p — k)) — ¢"? in the leading approximation.
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Furthermore, p in the rightmost position is small when p? — 0. In view of
this the numerator of can be approximated as follows:

2pp' Y — 29Dy ]
P = 2pp'(1—v)

1 1 'p
e T
1+y—v 1+y—v pp

The dependence on k) remains only in the denominator. The integration of
the denominator can be removed with the approximate equality

id?ky [ ~ log(z
/V( S~ log(a). (13)

kj—vp)?2+p*v(l—v

IO (k,p'sp— k)Y = 2iv]y, +

= 2iv[(1 - L (12)

As a result, one obtains

1 1 Yo
_—_)%—i_—_ /
14+y—v 14+y—v pp

1
000.) ~ g log(o) [ avl by ()
which implies (3).

We have given above a generalization of the classic result of Sudakov [2] to
a wider kinematical range. Of course, Sudakov obtained not only the one-loop
result but gave his approximate expressions at any number of loops, and was
able to resum them into his famous form-factor. In our view, our derivation is
simpler than the one-loop part of [2].

Now we will try to do the above exercise in all orders, and to resum the
expressions into form factor(s).

5 Skewed Sudakov Regime in All Orders

We start with recalling again the classical result of Ref. |2] with the introduced
notations earlier. Let I',(p, p’) be a connected three-point amplitude of massless
QED renormalized with minimal subtractions. Here p and p’ are the momenta
of the incoming and outgoing fermion respectively. We use namely a connected
amplitude because it will be technically important for our consideration to
include self-energy corrections to one of the external fermion legs of I',(p, p’).
We also exclude again the overall factor ie from the definition of I',,(p, p’). Due
to this, the expansion of I',(p,p’) in the coupling starts with Dirac gamma
matrix, I')(p,p') = v, + .. ..

To avoid infrared problems, one considers I',(p,p’) at negative virtualities
of the external fermions, p*> < 0,p? < 0, and of the external photon, (p' —
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p)? < 0. The results of [2] are for the kinematics when, on top of the above
restrictions, the Minkowski product of the fermion momenta satisfies the
inequality preventing Wick rotation, (pp’)? > p?p”2. These conditions combined
imply that if [p?| and |p"?| are small with respect to |(p — p')?|, pp’ > 0. We will
use two positive variables to describe this kinematics:
_ _p? 0, _p?
2pp = 7 2pp
We repeat here again Sudakov result of Ref. [2] Eq. (2)) in our notations:

x > 0. (15)

Lu(p.p') ~ v exp = 5= log(x) log(y)). (16)

where the approximate equality holds when both [p?| and [p?| are small with
respect to |(p — p)?|, and their ratio is of order unity. Also, « is the QED fine
structure constant normalized at any of the small virtualities.

In what follows we derive a generalization of the approximation ((16]) valid in
a wider region where the magnitude of only one of the two fermion virtualities
is small with respect to the magnitude of the virtuality of the photon. Because
the symmetry between the two fermion virtualities present in the Sudakov
regime is lost for this generalization, we call this generalized regime the skewed
Sudakov regime. For definiteness, we consider the kinematics with |p?| small
with respect to the magnitude of the photon virtuality, and no restrictions on
|p"?| is present. All the considerations can be repeated with the obvious changes
for the case when |p?| is small instead of |p?|.

After the external fermion with small virtuality magnitude is specified, we
can also specify the external fermion leg of I',,(p, p’) with self-energy corrections
included—it is the leg of small virtuality. Also, as before, the fine structure
constant in the subsequent formulas is normalized at the small virtuality.

To write down the generalization of the approximation ({2|) we introduce the

following variables:

alog(x) 1
S S0, = —— 17
o P T 14y (17)
Notice that 0 < z < 1, and, in the Sudakov regime z — 1 from the left. With

these variables the approxiamtion valid in the skewed Sudakov regime reads

t =

p /
Do) % (8 2) + 20 [ = P, ) (19
where the form factor F(¢, z) is as follows:
F(t, z) = /2 Z e s (1 — 2). (19)
n=0

32



Here H, ., are the harmonic numbers,

Hy =Y L (20)

We point out that the series in the right hand side of Eq. converges at
|z| < 1, and to recover the approximation one has to send z — 1, where
the convergence fails.

To overcome this difficulty, we derive from Eq. the following represen-

tation:
5]

_t\ls
F(t,z):e3t/2[1+1z( t) Liy(2)], (21)

z s! =

s
where the sum runs over strings of positive integers of arbitrary depth d,
s = (s1,82,-..,84); |s| denotes the weight of the string,

d
s| =) i,
=1

and the factorial of the string is the product of the factorials,
d

sl = H s;!
i=1

The key ingredient of the representation is the so called multiple poly-
logarithm Lig(z). See, e. g., Ref. [6] for an introductory exposition of these
functions, and Refs. [7,8] for their recent applications to Feynman integrals.

Using the properties of multiple polylogarithms discussed in Ref. [6] one
can single out the terms of the sum of Eq. most singular in the limit
z — 1. By “most singular” we mean that each power of ¢ is compensated by a
power of log(1 — z). These are the terms with the strings s consisting of units,
sy = (1,...,1), with the unit repeated d = |s| times. Explicitly,

Lis,(2) = (= log(1 = 2))*/d! = (~log(y))*/d! (22)
Using this and taking into account that ' is small in the Sudakov regime, one
reproduces approximation from approximation ((18)).
On the other hand, at fixed z < 1 and large t one picks up the infinitely
growing term in Eq. and obtains the following approximation valid at
x — +0 and y > 0 fixed:

Y Pupf (23)

Tu(p,p) = ( h“+2__p/2]'

1+ y)xo/(4m)
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We conclude that Egs. and give a unified description for quali-
tatively different asymptotics of the vertex, one of which coincides with the
known Sudakov asymptotic.

The validity of approximation , , and the representation are
our main results. In the rest of the lecture we sketch the way these results are
derived.

6 Schwinger-Dyson Equation and the Inclina-
tion Variable

The vertex I',(p,p’) coincides with its bare counterpart because its renormal-
ization constant Zr = 1 due to Ward identities between the renormalization
constants of QED. With this observation one can derive the following Schwinger-
Dyson equation for the vertex:

L) == [ kst — GOV -0). (20

Here '), (k, p'; p — k) is a renormalized connected four point amplitude with
k and p’ denoting the momenta of incoming and outgoing fermion, and p — k
is the incoming momentum of a photon with Lorentz index v. Self-energy
corrections are included in its k-leg, and the amplitude is divided by (ie)?. Its
expansion in the coupling starts as follows:

i i
Ty (k') = Y0 + Yu—Y0 + - - .- 25
(K, 1) g T e (25)

Another ingredient in Eq. is the full photon propagator D"?(p — k).
We use an arbitrary covariant gauge to define it.

Notice that the integration in the right hand side of Eq. is ultraviolet
(UV) finite. This is because the UV divergences originating from various
contributions to the four point amplitude under the integral cancel against each
other due to gauge invariance. For example, in the one loop approximation,
the first term in the right hand side of Eq. produces an 1PI contribution
to the vertex, while the second, the self energy correction to the p-leg, and
their sum is UV finite. We conclude that there is no need to regularize the
integration in any way.

Next we change the integration variables. A fist step in this direction is to
decompose k into transverse and longitudinal parts, the longitudinal part is a
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linear combination of the external momenta p and p’, and the transverse part
has zero Minkowski products with them:

k=Fk +Fk,
ky=ap+ pp',pki. =0,p'k, =0. (26)

Because of the above condition (pp/)? > p?p?, k, is necessarily euclidean, and

we represent the measure of integration from Eq. in the polar coordinates:
2d*k — d2k|| (0(¢)0(27r — qb)dgb) dk? O(—k2), (27)

where the transverse components are

ki = cos(¢)y/—k?, ke = sin(¢)y/ —k?. (28)

Next we observe that if there were no restriction on the sign of &7 in the last
factor of Eq. , the integral in Eq. would vanish. This happens because
of the analytic properties of the integrand. In the one loop approximation this
is evident from the explicit form of Eq. , and is less evident but true in any
order of the perturbation theory. One can check it using Feynman parameters,
and general properties of Symanzik polynomials [9]. Taking this observation
into account, we replace the last factor in Eq. as follows:

O(—k3) — 0(—k7) — O(kﬁ). (29)

We stress that this substitution of the measure does not change the right
hand side of Eq. . Furthermore, the difference of theta functions can be
represented as follows:

2
I

ﬂ—ki)—9ﬂﬁ)=-wgﬂ

0(v)0(1 —v), (30)
where we introduced a new variable v, which we will call the inclination of the
fermion with momentum k: 2

_ "
This variable is in one-to-one correspondence with &2 :

kT =E{(1/v —1). (32)

Notice that when kQ‘ > 0, and 0 < v < 1, the components of k£, are purely
imaginary. We say that using inclination leads one to consider doubly virtual
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particles, by which we mean particles not only away from the mass shell, but
also with imaginary momentum components.

The last step in the transformation of the integration measure which we
need is to replace the variable £ with the inclination variable:

k3 = |kif|dv/v?. (33)

We conclude that Schwinger-Dyson equation can be rewritten as

follows:
27 d¢ ko
Lu(p, ') =y + 27T/0 / / 1,

I kv /; —k . 2
(k- V;)/\;-f—i%p(l —)V) + i€ (itp = k)*D(p = k) vy

(34)

It is tacitly assumed in this formula that the transverse components of k are
expressed in terms of the integration variables, for which one uses Eqs. and
([32). As mentioned above, integration over the inclination implies integration
over the momentum of the doubly virtual particle.

The form of Eq. explains the origin of the name “inclination” for
the variable v: at p* — 0 a vicinity of the point k| = vp gives a dominant
contribution to the integral. So, one can say that v is a fraction of the original
momentum which the fermion is inclined to keep after emitting a photon.

In the next Section we expound on this, and see how restricting the integra-
tion to a vicinity of the point k| = vp allows one to truncate the Schwinger-
Dyson equation to a closed equation for the vertex.

7 Truncation of the Schwinger-Dyson Equation

First we point out that if & = vp, Eq. implies that £, — 0 when p? — 0.
Therefore, in the leading approximation k, can be set to zero in the right hand
side of Eq. and the integration in the angle ¢ removed. Second, the factor
kv, can be replaced as follows:

krvp = 2v(p — k), /(1 —v), (35)

because fvy, = 2vp, — Ypp at k = vp, and p ~ 0 in the rightest position.

Next simplification which one can make near the point kj = vp is available
if the dimensional regularization unit of mass ;2 normalizing the renormalized
fine structure constant is taken to be equal to —p?. In this case the vacuum
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polarization involved in the photon propagator may be set to zero, because it
depends on log(—p?/u?) = 0. This means that photon propagator in Eq.
can be replaced with the free one.

The last simplification which we make is removing the longitudinal part
of the free photon propagator. We can do it in the leading approximation,
because the longitudinal part does not give a contribution logarithmic in —p?.

After these replacements, Schwinger-Dyson equation takes the following
form:

vdy d*ky (p— k)P, (ky,psp—k
Lu(p o/ / / || DEYICE ) (36)
l—v /)y (ky —vp)?2 4+ p?v(l —v) +ie

Notice that the integration in k| is now restricted to a vicinity V' of the point
k| = vp. The approximate equality means that only the leading contribution
at p?> — 0 is kept in the right hand side.

Now we can use Ward-Takahashi identity for the four-point amplitude
featuring Eq. . For this particular connected amplitude it reads

(p— k) Tp(ky, ' — Ky) =

—i[Tulpp )zz;k = STE)S( — (0= k) Tulkp' = (0= k)], (37)
where S(I) denotes the full fermion propagator depending on momentum /.
In the leading approximation, the full propagators can be replaced with the
free propagators, because the dependence on the normalization point cancels in
the ratio of the propagators. Finally, setting kj = vp and neglecting p* where
possible, we obtain after a simple rearrangement of the terms the form of the
Ward-Takahashi identity we will use:

(P = k) Tup Ry, P 0 — o) =
—i[Cu(p, 0 )v = Tulkyp = p(1 = v)) + (1= v)py

G+ 1—v) o —p=v)].

(38)

We recall that y = —p?/(2pp’). Notice that k| is not replaced with vp in the
first argument of I',. This is because at p? = 0 such a replacement would give
infinity.

Substituting Eq. into Eq. gives the truncation of Schwinger-Dyson
equation we aimed at:
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Y vdy id2ky /7
Lu(p,p) = — 5= / I/

o L=vJy (k—vp)?+pv(l —v)+ic

X [Culp, ' )v = Tyu(ky, 0" = p(1 = v)) + LKy, = p(1 = v))].
(39)

(1 —v)py

2pp)(y +1—-v)

This equation can be used to generate iteratively the expansion in « of the
vertex I', starting from the initial term ~,. This is the subject of the next
section.

8 The Form Factor of the Skewed Sudakov
Regime

To compute the first correction in the perturbative expansion of the vertex,
one takes the second term in the right hand side of Eq. and makes in it
the substitution I', — v, regardless of the arguments of I',. One keeps in the
integrals only the leading terms at p?> — 0. The outcome of this exercise is as
follows:

N IR A

1—-vz pp’

I, (40)

—VZz

where the first correction is in the left hand side, and the variables ¢, z were
defined in Eq. . A relation useful in checking this reads

« id2k||/71'
2 Jy (k) —vp)? +p?v(l —v) + i€

~ t. (41)

With the first correction known, one can use it to obtain the second one,
and so on. A minor complication is that the integration in kj requires the
knowledge of I',, (kH,p’ —p(l— 1/)) at small kﬁ of any sign, and Eq. gives it
only for k:ﬁ < 0. As follows from the derivation of Eq. , it can be extended
to positive small virtuality of the incoming fermion by making the replacement
log(z) — log(|z]) in Eq. (L7). Apart of this clarification, one also needs in this
computation the following generalization of Eq. :

o+ log" (|2pp’/kﬁ|)id2k“/7r N (n+1)
( (42)

@2m)mDnl i (k) —vp)2 +pv(1 —v) +ie  (n+1)V
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where n is any integer.

The outcome of the approximate computation of the perturbative corrections
outlined above can be summarized as follows. First, no new tensor structures
appear in the vertex apart of the ones already present in the leading correction

of Eq. :

Pu(p,p') = F(t, 2) + —=-D(t, 2). (43)

Second, the form factors satisfy the following evolution equations:

pm’
pp

OF(t,z) 1 Vorw(F(tz) — F(tvz)  vzF(tvz)
ngF(t,z)—/ody[ U + R0 ) =1,
(44)

0P(t,z) 1 Uorw(@(t,2) — ®(t,vz))  vzF(tve)
- :-cp(t,z)—/ody[ — o ],@(o,z):o.
(45)

Next we notice that the sum of these equations yields a simpler equation,
which can be solved:
F(t,z) + ®(t, 2) = e/?.
We conclude that the vertex is approximated with a single form factor,
Eq. , which satisfies the evolution equation ({44]).

9 Solving Evolution Equation for the Form
Factor

Eq. is a linear evolution equation of the form F = OF, where the linear
operator O acts on a function of z:

(0X)(2) = / [” ) AT )
) =

1—1/ 1—vz

One explicitly checks that y,(z 2"(1 — z) are eigenfunctions of the

operator O:
3

OXn = (5 - n+l)Xn7 (47>

and the initial condition for the form factor can be expanded in terms of these

eigenfunctions:
2) = xnl2). (48)
n=0

39



This implies Eq. .
Next we derive the representation 1 starting from Eq. . According
to it, expansion of (e™3/2F(t,z) — 1)z = F(t, ) in powers of t is as follows:

Selz) = 73 S HE (1= 2), Fi(t,2) = S (~1)5:(2) (49)

Our task is to express Si(z) in terms of multiple polylogarithms.

To complete the formulation of the task we give a definition of the multiple
polylogarithms in terms of linear operators acting on a function of a single
variable, which is equivalent to the standard definition in terms of the iterated
integrals [?]. First we define two operators used in the definition:

(A9)(2) = / 92 4,

(B0)) = [ 170 (50)

Here ¢(z) is a function on which the operators A and F act.
Next we define an operator labelled with a string of integers s = (s1, ..., Sq), s; >
0:
Ly=A""1EA2IE A% R, (51)

where d is the depth of the string s.
With these notations a multiple polylogarithm is defined as follows:

Lig(z) = (Lsu)(2), (52)

where the operator Lg acts on the function u(z) = 1.
We now return to transforming Si(z). Expansion of Si(z) in powers of z
reads

z X HF—HF
Sp(z) = H+Zz Tl (53)
n=2

Since H, = H,_1 + 1/n, one can expand its power in Eq. (53)), and cancel the
term H* | in the numerator. A straightforward regrouping of terms transforms
thus Eq. (53 . as follows:

1 oo
:k_z

where the second sum vanishes for £ = 1.

n

3|N

0o Hl,1
+ Zz =TT (54)

n=2 =1
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Next we notice that Az™ = 2" /n, and one can write the above expansion
using the operators A and E:

k—1
Sp(z) = %(A(k_l)Eu) (2)+ ) %AZESk_l(z). (55)
! ||

This gives a recursive definition of Si(z) in terms of the operators A, E and
function u starting with S1(z) = (Eu)(z2).

At last, one proves by induction that this recursion yields the following
expression for Si(z)

Se(z) = 3 (L)), (56)

|s|=k =~
which implies Eq. .

10 Summary

In this lecture we have given a generalization of the Sudakov approximation
(2) valid in a wider kinematic range. Considering the abundant literature (see,
e.g., [10-14]) derived in various ways from Ref. [2] one may envisage a scientific
program trying to give a skewed version to any result descending from Ref. |2].

Our subjective choice for the sequence of these possible generalizations
is as follows: First, one may try to study the skewed asymptotic for non-
abelian gauge theories [12], second, the subleading corrections [13], third, the
phenomenology [14].

The idea of this consideration belongs to L. N. Lipatov, who passed away
before the initial drafts of the papers [4,5] were completed. His profound
influence contributed substantially to our studies and, in particular, to this
research. We are grateful to V. A. Matveev for fruitful collaboration and
V. S. Fadin for useful discussions. We thank CERN Theory Department for
the kind hospitality.
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TWO PHOTON PHYSICS AT THE LHC

Mikhail I. Vysotsky
I. E. Tamm Department of Theoretical Physics,
Lebedev Physical Institute, Moscow

Abstract

Lepton pair production in the annihilation of two photons at the LHC is
considered.

ABYX®OTOHHAA ®U3NKA HA LHC

Muxana V. Beicoukmii
Otaen Teoperuueckoit dusnkm um. U.E. Tamma,
Nuacturyr dusnkm uMm. JlebeneBa, Mocksa

Annoranug

O6cy}K,ILaeTCH poxKaeHne JICITOHHBIX ITap IIPU aHHUTHWJIAINN ABYX (bOTOHOB Ha

LHC.
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LHC is pp (pN, NN) collider, so how we manage to discuss ~y collisions at
it? A bit of history is in order. Dirac wrote his equation in 1928 and Anderson
discovered positrons in cosmic rays in 1932. A natural question arose: how to
produce positrons in the laboratory? G. Breit and J.A. Wheeler calculated
cross section of the reaction vy — eTe™ in 1934. However the problem is: how
to produce the beams of photons? Almost the same time the paper of L. D.
Landau, E. M. Lifshitz "Production of electrons and positrons by a collision of
two particles.” Phys. Zs. Sowjet 6, 244 (1934) was published which suggested
solution of this problem.

Pb

Ph Y

Pb v

Pb

In this way we are approaching what is called an equivalent photon approx-
imation:

E. Fermi, Uber die Theorie das Stofles zwischen Atomen und elektrisch
geladenen Teilchen. Z.Physik 29, 315 (1924);

C. F. V. Weizsacker, Ausstrahlung bei Stolen sehr schneller Elektronen.
Z.Physik 88, 612 (1934);

E. J. Williams, Correlation of certain collision problems with radiation
theory. Kgl. Danske Vidensk. Selskab. Mat.-Fiz. Medd. 13, 4 (1935).

In some recent papers a reference to the paper by Landau and Lifshitz is
added to the first three references on the subject of EPA.

An old review paper [1] contains detailed information on two photon particle
production physics.

The results discussed in the present lecture were obtained in the papers [2-6].

The distribution of the photons which accompanied ultrarelativistic proton
over energy w is given by
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where 7 is the proton ~v-factor and ¢ &~ 200 MeV originates from the proton
formfactor. The cross section of muon pair production in the collision of
equivalent photons is given by the following expression:

avy av
a(pp(yy) = pputp) = / dw, / dwy o (yy = ptp™) n(wr) n(ws).
mZ/QA’Y mﬁ/oﬂ

It is convenient to change the integration variables from w; and ws to s = 4dwywo
and © = wy /ws:

(247 <2q~y)2/sa
_ _ i ST S
7(eplr) = ppiTHT) = / dso(ry = i) / 8—”( z)"(v 4—)
(2m.)? 5/(24)2
(247)* (247)2/s
B o? d (vy = ) dz
= 5. S o= et ,
(2my.)? s/(24)?
2Gv)? 267)?
1 (247) ln{( q7)” ]
ST S
60 (24 >2d ”;
_ « S _ qry
a(pp(vy) = ppptp) = 7 / ;U(W—Hﬁu )ln?’%.
(2mu)2

Because o(yy — ptp~) decreases as 1/s when s > 4m?, in the leading
logarithmic approximation the logarithm should be taken at s = 4mi.
Substituting

4m?
m2 m4 1+ 1775# m2 m2
o(yy = php) = =2 (1+4s“—i—2“>1n—%—<1+47”) 1

1-4/1—

and performing integration we obtain

28 ot qy
4+ - 3
o — = 8- — In” —

(pp(vy) — ppp i) 7z ™
the famous result of Landau and Lifshitz which demonstrates that cross section
of muon pair production in proton collision grows as the log® of the proton
energy. Here v is taken in the protons center of mass system.
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Why is it interesting to study lepton pair production at LHC? The point is
that the result of the measurement of muon anomalous magnetic moment (the
so called muon anomaly) deviates by 4.5 ¢ from the result of SM calculations.
If confirmed it will signal New Physics. NP contribution in muon g — 2 should
be of the order of (m,/A)?, and New Physics scale A ~ 1 TeV will explain the
deviation. (W/A)? contribution in the cross section of lepton pair production,
where W is the invariant mass of the lepton pair, can be noticeable at the LHC.

Fiducial cross section for the reaction pp(yy) — pputp~ at the center
of mass energy 13 TeV should take into account experimental cuts: that on
invariant mass of lepton pair, on transverse momenta of muons and that on
muon pseudorapidities. These cuts are imposed on the experimental data in
order to suppress background and to take into account detector geometry.

Cuts Cross section, pb
No cuts 1.7-10°
12 GeV < /s < 30 GeV 54.1 59 7
30 GeV < /s < 70 GeV 5.66 '
12 GeV < /s < 30 GeV, pr > 6 GeV 5.38 6.99
30 GeV < /s < 70 GeV, pr > 10 GeV 0.91 '

12 GeV < /s < 30 GeV, pr > 6 GeV, |n| < 2.4  3.07

30 GeV < /s <70 GeV, pr > 10 GeV, |n| <24 0.54 363

The inaccuracy of EPA originating from virtuality (deviation from reality)

of the photons equals
A9 2 2\ —1
4F
A~ (—L—) (m ,
\/ SminTTy, Smin

where F is the energy of the colliding particles. The accuracy is very high for
muon-antimuon pair production, as far as \/s > §.
The spectrum of equivalent photons of a proton with the Lorentz factor v is

2

Ji(bg1) ¢f dqu |

o) = @ F(q] +w?/v%)

n(,w)— 2 2 2 /A2

2w g +w?/y
0

where n(b,w) d2b dw is the number of photons with the energy w moving through
a point of space with the impact parameter b, « is the fine structure constant, ¢
is the transverse photon momentum, ¢2 + w?/v? = Q2 is the photon virtuality,

F(Q?) is the Dirac form factor of the proton, J;(z) is the Bessel function of
the first kind.
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Figure 1: An ultraperipheral collision of two protons moving perpendicular
to the figure plane. 51 and 52 are impact parameters of a point in space at
which photons collide relative to the corresponding protons. b = \51 — 52| is
the impact parameter of the collision. &} and &5 are the photon polarization
vectors.

o0 o0 o0

o(pp — ppX) I/dwl /dwz /d2b1 /d2520 vy = X) n(by,wr) n(be,wse) P(b),
0 0 0 0

where P(b) takes into account protons desintegration:

P = (1 —e§§>2.

The ATLAS Collaboration published results of the measurements in the
following paper: “Measurement of the exclusive vy — p* ™ process in proton-
proton collisions at y/s = 13 TeV with the ATLAS detector.” Phys.Lett. B 777,
303 (2018), arXiv 1708.04053.

e experimental value: 3.12 + 0.07 (stat.) £ 0.10 (syst.) pb ;
e theory with proton disintegration neglected: 3.63 pb;

e theory with proton disintegration taken into account: 3.49 pb.

EPA predictions made with Monte Carlo simulations:

e HERWIG: 3.56 £ 0.05 pb;
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Figure 2: Fiducial cross section of the production of the chargino pair with
proton desintegration taken into account. To produce heavy particles photons
with larger energies are needed. Such photons are situated closer to parent
protons which enhance proton desintegration probability.

e HERWIG with corrections: 3.06 4 0.05 pb;
e SUPERCHIC2: 3.45 %+ 0.05 pb.

Results of the new analysis was published in: “Observation and measurement
of forward proton scattering in association with lepton pairs produced via the
photon fusion mechanism at ATLAS.” Phys. Rev. Lett. 125, 261801 (2020),
arXiv 2009.14537.

Lepton pairs produced in ultraperipheral collisions (UPC) of protons at
the LHC are accompanied by forward scattering of the protons. Previous
measurements of this process were performed by the ATLAS collaboration
without proton tagging.

In the events selected for this new analysis, one of the scattered protons
is detected by the ATLAS Forward Proton Spectrometer. The other proton
could remain intact, or it could disintegrate. The transversal momentum of
the lepton pair was required to be less than 5 GeV. This momentum equals
to the sum of transversal momenta of the photons emitted by the protons.
The transversal momentum of the photon that was emitted by the proton that
survived the collision cannot be much higher than ¢ = 0.2 GeV. Therefore, the
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transversal momentum of the second photon has to be less than 5 GeV.

We derive analytical formulas which describe the measured fiducial cross
sections. These formulas allow for simple numerical integration instead of the
usual Monte Carlo approach and thus can provide intuitive insights into the
process targeted by the experiment.

To hit the forward detector the proton must lose a fraction of its energy &:
Emin < € < Emax, where Enin = 0.035, Enax = 0.08. This translates to limits on
the energy of the photon emitted by this proton:

227 GeV = wpin < W1 < Wpax = 920 GeV.

The following cuts were imposed on the experimental data:

e 20 GeV < W < 70 GeV or W > 105 GeV, where W is an invariant mass
of the lepton pair.

e (0.035 < £ < 0.08 which is equivalent to 227 GeV < w < 520 GeV.

For muons:

o pr =15 GeV, = 24.

e ora(pp = p+p T +p) = 8.6 fb.
For electrons:

o pr =18 GeV, 1) = 2.4T7.

e ora(pp = p+ete” +p)=0.1fh.

P —= ’yﬂp
b 4
m\«ﬁ
+£
——/
q2
k
D2 /fy pg
q ——= ——q
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Qidma)®

do(pg — p + e+ q) = Wﬁ pQBMua jﬂx
27 )46@ —ky — kAT d3p d3p!
(2m) (1 + @ 1 2) §91 : 52 £ (x, 02)dx
44/ (p1p2)? — p%pg (2m)32F] (2m)32E,

Opip = 7.2 1.6 (stat.) £0.9 (syst.) & 0.2 (lumi.) fb,
= 11.0 £ 2.6 (stat.) &£ 1.2 (syst.) £ 0.3 (lumi.) fb.

exp.
ee+p

G = 18 £ 3 fb,

gtheor — 99 1 3 fh,

ee+p

Survival factor diminishes cross section due to breaking of both protons. It
equals = 0.9 for elastic scattering and 0.6 — 0.7 for semi-exclusive reaction.

b . — D P . — P
P1 8 p/1 P1 p’l
QI\4 ki ql\ ~y ky
=y = u
——— U ——— U
QQ/' ko (JQ/ A ks
P2 7z Db P2 Py
q q (g q

Here are main conclusions:

e analytical formulas for fiducial cross section of lepton pair production in
UPC at the LHC are written and compared with the data;

e analogous formulas for the case when one of the protons is measured
in forward detector and the second proton dissociates are derived and
compared with the data as well;
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e accounting for protons inelasticity (survival factor) is important;
e Z-boson exchange contribution should be accounted for;

e looking forward for New Physics in lepton interactions.

I am grateful to the organizers of the 55 PNPI Winter School for the
invitation and to E. K. Karkaryan for the help in preparing the manuscript.
We are supported by RSF grant No 19-12-00123I1.

Our calculations were performed with the help of libepa: library for
calculations of cross sections of ultraperipheral collisions of high energy particles
under the equivalent photons approximation (E. V. Zhemchugov).
https://github.com /jini-zh /libepa

References

[1] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, Phys. Rep.
15, 181 (1975).

[2] M. I. Vysotsky and E. V. Zhemchugov, Physics-Uspekhi. 62, 910 (2019).

[3] S. I. Godunov, V. A. Novikov, A. N. Rozanov, M. 1. Vysotsky, and E. V.
Zhemchugov, JHEP. 2020, 143 (2020).

[4] S. I. Godunov, V. A. Novikov, A. N. Rozanov, M. I. Vysotsky, and E. V.
Zhemchugov, JHEP. 2021, 234 (2021).

[5] S. I. Godunov et al., JETP Lett. 115, 59-62 (2022).

[6] S. 1. Godunov et al., Eur. Phys. J. C. 82, 1055 (2022).

51


https://github.com/jini-zh/libepa

DEEP INELASTIC SCATTERING IN DOUBLE-LOGARITHMIC
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Abstract

Unpolarized lepton-hadron Deep Inelastic Scattering (DIS) is parameterized
by structure functions Fy(x, Q) and Fy(x, Q?), with the both arguments being
made of the hadron momentum p and the virtual photon momentum ¢q: Q? =
—q¢* and z = Q*/(2pq). The combination Fr(z,Q?) = Fy(x, Q%) — 2zFi(x, Q?)
is called the longitudinal structure function. In order to calculate F} 5 ;, at small
x and Q? > few GeV?, the Perturbative QCD is used. Fixed-order calculations
predict too weak dependence of Fj 5 on x, so conventionally BFKL-based
approaches are used for description of the x-dependence and then the result is
combined in a model way with DGLAP to describe the Q*-dependence.

We suggest an alternative strategy: namely, to calculate I o 1, in the Double-
logarithmic Approximation. As a result, we obtain the model-independent
and unified description of the unpolarized DIS at small x. This DL result and
the conventional approaches predict practically the same xz-behavior but quite
different Q? dependence. Comparing the latter with experimental data can
determine which of the approaches is more adequate.
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INNIVBOKOHEVIIPYI'OE PACCEAHUE B JIBA2K/1bI
JIOTAPUOMUYIECKOM ITPUBJIN2KEHNN

Bopuc 1. Epmouiaes!, Cepreii V1. Tposin?
! ®dusuko-rexunueckuii uncruryt um. A.®. Nodpde, PAH,
Cankr-Ilerepbypr
2 Ilerepbyprckuit uacturyt sigepHoii dpusnku HULL «KW», FaTunna

Annoranuga

['mybokoneympyroe paccessHue HENOASIPI30BAHHBIX JIEMITOHOB Ha aJPOHAX OIHCHI-
Baercs cTpyKTypHbiME dbynkimuamu DIS: Fy(z, Q?) u Fy(x, Q?), B KoTOpbIX 062
apryMeHTa BbIPAXKAIOTCA Uepe3 UMITYJIbC aJIPOHA P U BUPTYAJILHOr0 POTOHA ¢:
Q? = —¢* and x = Q?/(2pq). Kombunauusa Fr(z, Q%) = Fy(z, Q*)—2xF(z, Q%)
Ha3bIBaeTCA IPOJIOILHON cTPYKTypHOIl dynknueit. lna Beraucienns [ o 1, 1pn
Maibix 1 Q2 > meckonbko GeV? ucnonbsyerca Teopus posmytennit B KX/,
[IepBBIX OPSIKOB TE€OPUU BO3MYIIEHUIN HETOCTATOYHO I &JIEKBATHOTO OITH-
canns 3apucumoctu Fyop or x 1 Q. TosroMy, OOGBIMHO HCHOIB3YIOT MOIXOJ
BOKJI mist onucanust x-3aBUCHMOCTU ¥ O0BEIUHSIOT €r0 MOJICIHLHBIM 00Pa30M
¢ noaxomom JITJIATL, 9To6bI onucaTh 3aBUCEMOCTE 0T (2.

MbrI npesiaraem aJbTepHATUBHYIO CTPATEIMIO: BEIYUCIUTE [ o 1, B JIBazKIbI
Jlorapudmvuaeckom [Ipubmkenun. B utore mosrydaercs Mo/e/IbHO-HE3aBUCUMOE
ornucanue HenoJisipu3oBanubix DIS mpu masbix . OHO IPUBOIUT TPAKTUIECKU K
TAKOMY 2Ke TIOBEJICHUIO 110 T, KaK U B OOMIEIPUHATOM IOJIX0/IE, HO K OTJIUIHOMY
noseenuio 1o Q2. CpaBHeHUe ¢ 9KCIIEPUMEHTOM MOYKET II0Ka3aTh, KAKOU 13
IIOJIXOJIOB DoJIee aIeKBaTeH.
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1 Introduction

Deep-Inelastic Scattering (DIS) of lepton off hadrons is one of basic experiments
to investigate the structure of the hadrons. Its essence is that leptons collide
with hadrons at high energy and interact with them by exchanging virtual
photonsﬂ producing other hadrons. They however are not detected, so the
only registered particle is the outgoing lepton. Its energy and the scattering
angle is the only information supplied by DIS. Nevertheless, obtaining such
comparatively poor information makes possible to draw important conclusions
on the hadron structure. In the present lecture we consider the case when
the leptons and hadrons are unpolarized. The most important element in
theoretical description of the DIS cross-section is hadronic tensor W, (p, q),
where the Lorentz subscripts u, v denote polarizations of the virtual photons,
p stands for the hadron momentum and ¢ is the virtual photon momentum.
Conventionally, W, is represented through the sum of simpler tensors, each
multiplied by an invariant function. These tensors are called the projection
operators, they are made of p and ¢q. Arguments of the invariant functions
(called the structure functions) are scalars made of p and ¢q. Respecting the Bose
statistics for the virtual photons makes W, be symmetrical in p, v. Respecting
the electromagnetic current conservation leaves only two independent structure
functions F; and F,. Conventionally, W, is written in the following form:

B 9y 1 Pq Pq
W,uu(p7 Q) - (_g;u/ + 7) Fl + p_q (p,u - QM?) (pu - quq_z) F2 . (1>
Each of Fi, F, depends on Q? and z = Q*/w, with Q* = —¢* and w = 2pq.
Besides F7i, Fy, the longitudinal structure function F7, is frequently used in the
literature. It is defined as follows:

F, = Fy—2zF,. (2)

Theoretical tools to calculate F} 5 1 is QCD. However, the problem is that
each structure function contains both perturbative and non-perturbative con-
tributions. The latter cannot be accounted for in the straightforward way. The
conventional means to circumvent this obstacle is the use of QCD factorization.
According to this concept, any structure function can be represented throughout
convolutions of perturbative and non-perturbative contributions. Assuming
scenario of the single-parton collision, we can write down Factorization in the
following way:

F=F20,+F20,, FR=EKE"0dy+R"0d,, (3)

!Exchange of Z and W bosons is also possible but we skip it here.
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where @%‘]) stand for initial parton distributions whereas F\*9, F{%9 are

perturbative components of the structure functions F' and F; respectively. The
superscripts ¢(g) in Eq, mean that the initial partons are quarks (gluons).
In order to define Fl(g’g) and relate them with Fj o, DIS off the partons is
parameterized by the same way as Eq. (I)):

quqy , 1 Pq Pq ,
W29 (p, q) = (—g;w + ;—2) F9 4 - (pu - qu?) (pu - qu?) F&9 | (4)

with p denoting the initial parton momentum. Throughout the paper we will
neglect virtualities p?, presuming the initial partons to be nearly on-shell. In
the present lecture we focus on the perturbative components of the structure
functions. Firstly they were calculated in fixed orders in s, see Refs. [1]— [15].
However, it turned out that F} 5 calculated in fixed orders at small x grew too
slowly and F}, even decreased. Similarly, too weak small-z rise was obtained,
when DGLAP [16] was applied. The way out was the use of BFKL [17] and the
methods based on it. However, the problem was that BFKL did not account
for the Q? dependence. In contrast, tracing the Q? dependence has nothing to
do with BFKL, it is the domain of DGLAP. Because of that it there appeared
models combining DGLAP and BFKL, see Refs. [18]- [26]. They provided
Fy 5.1, with sufficiently fast rise at small 2 and reasonable Q? behavior at large
Q2. At the same time, they could not describe experimental data at small Q?,
which sounds reasonably because DGLAP is not intended to work well in that
kinematics.

In what follows we show that F o 1 description of F} o, in the framework
of Double-Logarithmic Approximation (DLA) works well at small = and at any
Q%. The difference between BFKL and our approach is that.

(i) In order to account for the x dependence, the BFKL equation sums to all
orders in «ay the leading logarithmic (LL) contributions, i.e. it sums single-
logarithmic contributions accompanied by the “Born” factor 1/x

(1/z) [1 +eras In(1/7) + ea(a In(1/2))? + ] . (5)
In contrast, DLA sums such contributions:
1+ djagIn®(1/z) + cy(asIn®*(1/2))* + ..., (6)

where the overall factor 1/x is absent. As 1/x is huge at small x, DL contri-
butions to the structure functions a priori were considered as negligibly small
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compared to the BFKL ones but actually they are of the same scale as the
BFKL contributions.

(ii) As for the Q? dependence, BFKL do not account for that, it deals with the
x-dependence only while we account for DL of both x and Q2.

The instrument for calculations is method of Infra-Red Evolution Equations
(IREE) suggested by L.N. Lipatov [27]. The key point of the IREE method
is the exceptionally useful result [28] known as the Gribov’s bremsstrahlung
theorem. It was obtained by V.N. Gribov.

In what follows we calculate F} o 1, in DLA, obtain their small-z asymptotics
and discuss them.

2 Invariant amplitudes A and B

It is convenient to calculate F{”? and F{*? through invariant amplitudes A9

and B9, They are defined as follows:

F(Q)
—AlD — QWW;SZ) _ 3F1(q) 4 22_;]5’ (7>
F(g)
_Al) = gMUW;Syg/) _ 3F1(9) + QL ’
T
1 1
B(q) _ ]Mw(q) _ __F((I) _F(Q) 8
1 1
Bl — ww(g) -~ 9, * pl
pg M 27 ! + 42”2 7

where we have neglected terms ~ p?. We use Egs. to express A(@9) and
B9 through Fl(gg):

Aa:9)

Flo9 = —5— +aB®, (9)

F2(qyg) _ 2IF1(q79) + 422 B@9).
Using Eq. (2|) we represent F' éq’g) through B(%9)

F9 = R0 —opp9) = 422B9) (10)
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3 Constructing and solving IREEs
for amplitudes A(?9) and B(@9)

In what follows we will use the Feynman gauge for virtual gluons and use the
Sudakov representation for momenta k; of virtual partons:

ki = oid +Bip" + kit (11)

where ¢’ and p’ are the massless (light-cone) momenta made of momenta p and
q

/

P =p—q@’/w) = p, ¢ =q-p@/w) = q+ap. (12)

IREEs for amplitudes A9 and A@9 look much simpler when the Mellin
transform is applied

Ao (i @) = [T ) D @ @), 0y

oo 2T

Bt and) = [

oo 2T

(w/u)" [ (w0, Q%/u?) .

Throughout the paper we will address fq(ﬁ) as the Mellin amplitudes. It is
convenient to use the logarithmic variables p and y:

p=(w/p?), §=hw/Q)=In(/z), y=mn(Q*/1’). (14)

It allows us to bring Eq. to a simpler form:

00 dw "
Agg (py) = / 5P £ (w,y), (15)
00 dw "
Byg(py) = / %,0 fq(g) (w,y).
w, Q? 7 dw —w T »
fq(,‘;})(—ug >=/E(w/u2) Agg (w/1?,Q*/11%) =/dp6 *Ag9(P,y)-
w2 1
(16)

The same form of transform we will use for amplitudes B, ,, denoting
their Mellin amplitudes fq(,B;).
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3.1 Detalils of constructing IREEs for amplitudes
A((bg) and B(qag)

Technology of constructing and solving IREEs was reported in many publica-
tions, so we expound below the most important steps. All necessary details
can be found e.g. in Ref. |27] and the overviews [31]. Because of that we focus
below on the most essential points. IREEs for amplitudes A9 and B9 are
quite similar, so we start with discussing amplitudes A(®9). The 1.h.s of each
IREE is obtained with differentiation of A, , over u. It follows from Eq.
that

00
dw

—pPd Ay /dp® = 0Ay/Op + OAy /Oy = / 21 (w/uz)w [W + 8fq(:3)/3y] :

(17)
The guiding principle to obtain the r.h.s. is to look for a ¢t-channel parton with
minimal transverse momentum = k,, so u is the lowest limit of integration
over k. Integration over k, yields a DL contribution only when there is a
two-parton intermediate state in the ¢ channel. Such pairs can consist of quarks
or gluons. They factorize A, , into two amplitudes. Applying to them the
operator —u?d/0u? leads to the following IREEs

2 wl FA (L :;(A)w w 1 om y
{8y+ :|fq ( ay) (87T2)fq ( 7y)qu( )+(87T2)fg ( 7y)fgq( )7 (18)
a w| f§(w,y) = Lo w w LI w w
[8y+ ]fg (w,y) (87T2)fq (W, ) faq( )+(87r2)f9 (w0, 9) fog (),

where amplitudes f,.. (r,7" = ¢, g) are the parton-parton amplitudes. In order
to get rid of the factors 1/(87?) in Eq. we replace f, by

hppr = fT'I“’/(Sﬂ-Z) (19)
and rewrite in the following way
8fq(A) (w,9)/0y = [~w+ heg(w)] fq(A) (w,y) + f;A) (w, Z/)hgq(w)a (20)

afg(A)(w7y)/ay = fq(A)<w7 Y)hgg(w) + [—w + hgg(w)] th) (w,y)-

Eq. looks quite similarly to the DGLAP equations [16], with A, playing
the role of new anomalous dimensions. They accommodate double-logarithmic
(DL) contributions to all orders in a; and can be calculated in DLA with
applying the same method: constructing and solving appropriate IREEs for
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them. The DL contributions in the n'* order are ~ a” In*" w, i.e. in the Mellin
space they are ~ o /w'™?". They are the most singular terms at w = 0, i.e. at
small z, so total resummation of them is important for generalizing DGLAP to
the small-x region. In order to specify a general solution to Eq. we use
the matching

AP 9)ly=0 = Ag(p). Ag(p,y)ly=0 = Ag(p), (21)

where Zq and Zg are the amplitudes of the same process at Q* ~ u?. We
denote %A) and fg(A) the Mellin amplitudes conjugated to them. Amplitudes
Ef,}) should be found independently. The IREEs for them do not contain
derivatives because Q? = u?, so they are algebraic equations but in contrast to

Egs. they are inhomogeneous:
Wf(@) = O+ i W)hag(w) + FP (@)hge(w), (22)
Wl W) = o+ iV @hhag(w) + f (@)hgy (),

with inhomogeneous terms qbé,A) and gbé,A). We will call gbgg) inputs. We will
specify them later. The technology of composing IREEs for amplitudes B, and

B, is absolutely the same. As a result, the equations for fq(B) and féB) in the
region Q% > u? are
0PN w, )0y = [~w + hog(@)] f§7(w,y) + 117 (w, 9)hge(w),  (23)
ISP (w,9)/0y = [P (@, 9)hagg(w) + [0 + gy ()] 1P (@, )

while £ at Q? ~ 2 obey the following IREEs:

WiP(w) = P + [P (w)hgg(w) + FIP (w)hge(w), (24)
WJTZB) (w) = ¢5(;B) + Z;(B) (w)hge(w) + J?;B) (wW)hgg(w),

where gbéB) and gbéB) are the inputs. They differ from the inputs ¢§,ﬁ) for
amplitudes A, ,. We will specify them later.

3.2 Solution to IREEs for amplitudes A, and A,

By obtaining first general solutions to differential equations in Eqgs. , then
solving algebraic equations and using the matching to specify the
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general solutions, we arriveﬂ at the following expressions for A, and Ag:

] Q@ eSh- A 0 ) 0
A /2m CiPeRen 4 O RO gl (O et ov 4 O] (25)
dw wlia 0 0 WA o g
Ag: %x [(;5((1 ) (C(+) (+>y+C (_)y>+¢é )(Cg(+)€ (+)y+q§ e (_)y)}’

—100

where the anomalous dimensions {4 are made of h,.,

1
Q) = 9 [hgg + g £ \/}_2} ] (26)
with
R = (hgg + hqq)2 - 4(hqqhgg - hqghgq) - (hgg - hqq)2 + 4hq9hgq : (27)

Coefficient functions C’,g,ﬂ;) (w) and éﬁ) (w) are also made of h,,.. However,
explicit expressions for them are rather bulky, so we put them in Appendix.
The IREEs for amplitudes B, , are quite similar to the ones for A,,. As a
result, the expressions for them are alike Eq.

00 d
B, = / ;iw _"J¢ ( o) Q+)y+0( ) S~ )y)
oo 270

Egs. and involve the same coefficient functions and anomalous

dimensions. The only difference between Eqgs. and is different inputs.
Now we are going to specify them.

4 Specifying the inputs
By definition, inputs in evolution equations stand for the starting points of the

evolution. They are considered elementary and cannot be obtained through
evolution.

2Details can be found in Ref. [29).
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4.1 Inputs for amplitudes A, ,

Evolution of amplitude A, starts from the Born contribution which is given by
the following expression

2 w(l—x)— p®+e

1 1 u L (P+q

AP = =g, S { “p)w (b +4) 7““(79)] — 26(1—x—2)), (29
T

where we have denoted A = p?/w. In Eq. , we dropped the quark electric

charge and introduced the IR cut-off . It is clear that A can be neglected

compared to z in the kinematics Q? > 12, so A" is p-independent in this

region and vanishes after differentiation over p. It explains why the quark

inhomogeneous term is absent in Eqgs. ,.In contrast, A depends

on /i in the region Q2 ~ p?. and appears in Eq. . Dropping z in Eq.
compared to A in this region and applying the transform of Eq. , we obtain

the input QSEIA) . Remembering that there is no Born contribution to A, at any
Q?, we arrive at the following expressions for the inputs

q
(4)
W=

4.2 Inputs for amplitudes B, 4,

The situation with specifying inputs qﬁég) is more involved. In the Born
approximation we have

pBorny _ 10ubvo [ 1 )y (0+ @) yulp)] Pt A0, (31)
q T pq 2 w(l—x)—/ﬂ—l—’t&

In addition, BéBom) = (0. Thus, the both Born amplitudes are zeros, which
excludes using the Bornapproximation as the starting point of the IR evolution
in contrast to the standard technology. Calculations of Fj 5 in the first and
second loops can be found in Refs. [1]- [13]. The first loop contributions to

B, g are

) _ Gs

= ?nf(l—x), (32)

1 Qs 1
B = 5. Cr, B!

where we have used the standard notations Cp = (N? — 1)/2N = 4/3 and n;
is the number of flavours.

Straightforward calculations of Fy, in the o2 order (see Refs. [10]- [13])
demonstrate that the most important contributions to B,, at small x are
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~ 1/x. The factor 1/x cannot be obtained with IR evolution of the first-loop
contributions as well as with using any evolution equation available in
the literature. Moreover, there is not any physical reason to predict existence
of 1/x in the second loop because amplitudes B, , are artificial while physical
amplitudes involve 2B, , and 22B,, which are free of 1/z. Fortunately, the
higher loops yield logarithms instead of power contributions ~ 1/x" as was
shown in Refs. [14,/15]. These logarithms can be accounted for to all orders in
as with evolution equations. Our strategy is to account for DL contributions
to By 4, evolving onwards the second-loop amplitudes B,gi;, so it is necessary to

know which Feynman graphs contributing to Bé?g are most important at small
x, what are the most essential kinematics of virtual partons in those graphs
and why new power factors ~ 1/x2™ do not appear in higher orders in a;. In
order to clarify these issues we calculated Béi; anew (see Ref. [30]), focusing
on the small-z kinematics and accounting for the leading contributions only.

The results are given by the following expressions

Bc(lz) = CéQ)V(Z)p 7t (33)
B® = C@y@, 1
with
72 = o?In2/2r (34)
and the color factors
CcP = Cf —2Cpny, (35)
C’éQ) = Cpny —2Nny.

The expressions of Eq. come from the ladder Feynman graphs. The
first terms in every expression of Eq. come from the graphs where all
intermediate t-channel partons are quarks whereas the second terms refer to
the case where the upper rung contains quarks in the ¢ channel and the lower
rung involves ¢t-channel gluons (see Ref. [30] for detail). Unfortunately, there
there were mistakes in Ref. [30]: the second terms in the both expressions for
Cé?g) were incorrect For the simplicity sake, the QCD coupling in Eq. was
treated in Ref. [30] as fixed.

4.3 Remark on treatment of the QCD coupling in DLA

When calculations in DLA are combined with accounting the running as
effects, one can use the leading approximation for the g-function: g =~ f.
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Implementation of the running «; in the IREEs was considered in Ref. [37],
where it was shown that a; in the w-space is given by the expressions of Eq. .
Alternatively, one can keep «, fixed in the DLA framework. Estimates of the
numerical value of the fixed o, were obtained in Ref. [32]. Namely, o, ~ 0.24
when the virtual gluons have time-like momenta and oy ~ 0.48 when their
momenta are space-like.

4.4 Combining the inputs for B, ,
with the DL contributions

We are going treat B(g) as the starting point of IR evolution and substitute

them in Eq. as the inputs, so they should be written in the w space.
Remembering that p = £ + y and applying the transform (16), we arrive at the
following expressions for the inputs in the w space

1
¢¢(1B) = 1”)’(2) 0(2) (z + E) , (36)
1
6B = g1y C(z)( +_2)_
w o w

When z is small enough, £ > y, so one can neglect the terms y/w compared

to 1/w?. Substituting ¢§{’;) of Eq. in Eq. , we arrive at amplitudes By ,
calculated in DLA

B, = fy(”x*/m W e (b

el 1 D)y 37
271 T e ) (37)

(
q
—100

wo g .
B, = 7(2)33_1/ 2—;1’“6’;2) <D§+) by +D( )eQHy),

—100

where we have denoted

DE — (2 + i) CE. pE — <

W w?
PpEH (2 ) &), D = < n L) o)
q w (,(}2 g (,{)2 g

5 Expressions for F}, F> and F7,

Using Eqgs. and ([37)), we obtain explicit expressions for Ay, and By,
Using these results and Eq. (9)), we arrive at explicit expressions for Fl(q’g) and
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F2(qvg)

PO (I, +12CO 1) + /PP, (39)

q

F9 = (fg +4@0@ ’f;}) Sl

B = 2z [(I, +3y2CP1) + 3yPcP?1] (40)
FY = 2 [('fg + 37@)0;2)'1;’,) + 37<2>C§2>'f;] ,

F? = 4279021, (41)
Fég) = 4x’y(2)C’ég)f;.

Iy 4,1, , and qu, qu are defined as follows

00 d
I, = / —wx_“ (C’é”eﬂmy + Cé_)eQHy) , (42)

100 2701

o " dw —w (D(+) Qyy D(—) Qyy
a = %x q € + 1L, e )7

200

_[g e / d_wx_w (O;+)€Q(+)y + Oé—)69(7>y) ’
/ /ZOO dw (+) 0 ) Q
]g = oJ(D <+>y+D YY)
— 100 dw
I, = —w (
! / o 271
v (D HeShmy +D =) ef- )y)
- 200 dw . ) Q Q
I, = (C ¥ 4 e )y>

g
. wo g, - 0 0
7= v (D(+) Y 4 D =) fh- )y)

27

)
C ey 4 (j ) S~ )y>

—100

We remind that explicit expressions for Céi), C’éi), (Zﬁi) and 5g(i) can be
found in Appendix A. Egs. are valid at Q* > p? ( u ~ 1 GeV, see
Ref. [31] for detail) but it is easy to generalize them for small Q?. The
prescription is obtained in Ref. [38]: Egs. can be used at arbitrary
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Q? providing that Q2 is replaced by Q? = Q? + p?. It leads to replacing z,y
and & by Z, 7, £ respectively

T=(Q+p2) fw, y=(Q*+p?) /u®, E=n [(Q* +p°) Jw] . (43)
Now we use Eq. and convolute Eqs. , with the parton distri-
butions ®, and ®,, By doing so we obtain the expressions for the structure
functions F}, Fy, F;, which can be used at small x and arbitrary Q?

P (7,Q°) = F7(2,0%) @0, + Y (7,0%) ® ¢, (44)

(7,07 = F2(z,0%) @0, + K, (,Q%) @ ,,

R(Q) = FY@.0)et,+FP (5.0 00,
Technically, such convolution is convenient to make with multiplying all

integrands in Eq. by the factors ®,(w) and ®,(w) which denote the parton
distributions in the w space.

6 Small-z asymptotics of the unpolarized
structure functions

In this Sect. we calculate small-x asymptotics of F} s . To begin with, we
notice that Eq. reads that €y > €. Because of that we can drop
the terms comprising €2(_y. Then, we represent all integrals in Eq. in the
exponential form. For instance,

100 dw
I ~ W§+‘I’q q(w) 45
w o | g (15)
IN ~ e dw W§+‘I’q q(w)
©9 o 27m
with
Uy = Qg+ +nd,,, (46)

\Iqug = Q(_,_)ﬂ +In (Nj(g:;) + In Ci)%g

Handling any of I, , I} , and [(/19’ ng is the same. Finally, we push x — 0
(i.e. £ = 00) and apply the Saddle Point method to each expression in Eq. .
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This method states that the small-x asymptotics of the structure functions is
given by the following expressions

Fl ~ gg_/z-—wo (Q/ )w0/2 (47)
B~ g T (@)
Fp ~ gg/g F Q2 pu?)

where 7 and Q? are defined in Eq. (43)), so Eq. (47) is valid for large and small
Q?, including Q% = 0. The notation wy in Eq. (47)) stands for the rightmost

singularities of the perturbative factors ¥, , and ¥, , in Eq.

The factors x1,2,3 include as numerical factors of the perturbative origin
as the parton distributions ®,4(w) at w = wo. Those factors are different for
different structure functions. The asymptotics of F} o, in Eq. (47) exhibit the
almost identical Q? dependence. It is generated by the term e?®®)¥ which
participates in each W,. Using explicit expressions for h,.. in Appendlx B, it is
easy to show that Qy(wo) = wo/2.

Eq. demonstrates that asymptotics of all structure functions are of
the Regge type. The Saddle-Point method turns the total sum of the terms
~ (ozs lnz(l/x))n into the Regge power factor z7“°. It grows steeply at small
x, which makes redundant factors £~ in the parton distributions ®,,. The
intercept of the Reggeon controlling F; exceeds unity, so it is a new (soft)
Pomeron. Although it has nothing in common with the BFKL Pomeron, its
intercept is surprisingly close to the one of the BFKL Pomeron in NLO. This
issue was considered in detail in Ref. [29]. In contrast, the intercepts of the
other Reggeons in Eq. are much smaller than unity but nevertheless they
predict the slow growth of F;, and Fj, when x decreases. Below we briefly
consider some corollaries of Eq. .

6.1 Asymptotic scaling
The asymptotics in Eq. at Q% > 12 can approximately be represented as

follows
o~ (M (49)
F2 ~ x<7107

FL ~ xc—l 07’
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with ¢ = x\/p?/Q?, so that Fy as well as Fy/x and Fp/x at * < 1 and
Q? > p? depend on the argument ¢ save the logarithmic factors dropped in
Eq. . Such scaling of the asymptotics of the structure functions has not
been predicted by any other approach.

6.2 Ratio Fr/F> at small x
It follows from Eq. that the ratio Fy, /F; is given by the following expression

27 (cg 1O (wo) Ay (wo) + CP O (wo) Ay (WO))

(1+392pC8) 5 (o) Ag(0)+372)p CFCE (o) Ag (o)
(50)
We remind that 7(2) is defined in Eq. (34) and p =& +y =~ ¢ at z < 1.
Obviously, Fi/F, ~ v®p ~ 0.006p at p << 1 /7(2 which corresponds to the
energy scale presently avallable at experiment. In the opposite case, i.e. at
p> 1/ the ratio Fy,/F, ~ 2/3, though this limit can be achieved at really
asymptotic energies.

RQL = FL/F2 =

6.3 Relations between logarithmic derivatives
of the structure functions

Logarithmic derivatives, i.e. dInF,/0InQ? = (1/F,)0F,/0InQ?, with r =
1,2, L, were already discussed in the literature in the context of DGLAP and
the dipole model (see e.g. Refs. [11,[35]). It motivates us to construct analogous
relations for F). in DLA at the small-z by differentiating Eq. . First of all,
there are relations for the Q?-dependence of the structure functions

OdlnFy  OlnF N Oln Iy, (51)
oy oy Oy

Then, the relations involving the z- and Q*-dependence of F,

61nF1 81nF1

e g ~ O (52)
8111F2_281HF2 ~ —1

¢ y ’
8lnFL_281nFL ~ 1

23 dy
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at r < 1 and Q? > p? ~ 1 GeV2 We stress that the relations differ a
lot from the results in all approaches based on BFKL and DGLAP or on their
modifications (see e.g. Refs. [11,21]). The difference between our results and
the results (see e.g. Ref. [36]) obtained in the Regge inspired models [25}26] is
even greater: the intercepts in our approach do not depend on Q2.

6.4 Remark on Soft and Hard Pomerons

One of results obtained in Ref. [29] is the estimate of the region of applicability
of the Regge asymptotics: the expressions for the small-x asymptotics in Eq.
are reliable at x < 107%. The straightforward way to describe Fi o and Fp, at
lager x is to apply the parent expressions of Egs. despite their complexity.
The same should be done, when BFKL is applied. However, there is a tendency
in the literature to use the Regge asymptotics at x > 107, which inevitably
leads to introducing phenomenological Pomerons with intercepts much greater
than 1.07. In order to simplify our explanation we use the generic notation F
for any of Fi o, F1, and denote I' their small-z asymptotics. The ratio

Ry = I'/F (53)

depends on both Q% and z, i.e. R, = Ras(z,Q*). To begin with, we
put Q? = p? and study dependence of R, (x,u?) on x. It turns out that
Rys(, u?) decreases when x grows. In particular, the values of R,,(z, u?) at
2o = 1075, 2, = 107%, 25 = 1073 are as follows

Ras (wo, 1°) = 0.9, (54)
Ras (1317 ,u2) = 0677
R, (332, ,uz) = 0.5.

Eq. reads that R, = 0.9 at x = 7. We interpret it as indication
that the asymptotics at x = x( rather reliably represent the parent structure
functions while it becomes unreliable at greater x. This is the reason why
xo was chosen in Ref. [29] as the upper border of the applicability region of
the asymptotics. Then, numerical estimates show that R,, decreases when (Q?
grows, so the asymptotics should not be used at x > xy. On the other hand, in
practice the Regge asymptotics are used at x > xy. In this case a new Reggeon
is supposed to mimic the structure functions and as a result it should equate

the Regge factor of Eq.

Ty = a7 (55)
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For example, if the asymptotics is used at x; = 107*, the intercept a; of
the phenomenological Reggeon is

Inzg 6
= _ =16 56
lnz; 4 o ’ (56)

a; = Wo

which corresponds to the new hard supercritical Pomeron. This estimate
demonstrates that approximating the structure functions by their asymptotics
beyond the applicability regions inevitably leads to introducing artificial phe-
nomenological hard Pomerons. Moreover, using a similar argumentation, one
can obtain spin-dependent hard Pomerons by applying the small-z asymptotics
of the structure function g; outside its applicability region.

7 Summary

In the present paper, we have calculate the structure functions Fj o and Fp, in
DLA. The instrument we used in order to sum DL contributions to all orders
in oy was the IREE method. As a result, we obtained explicit expressions
for Fi, F5 and Fp. Then we used the Saddle-Point Method to calculate the
small-z asymptotics of Fj . These asymptotics prove to be of the Regge
type, but they are controlled by different Reggeons. The intercept of the
Reggeon controlling the asymptotics of F} is greater than unity, so it is a new
contribution to Pomeron. In contrast, the intercept of the Reggeon controlling
asymptotics of Fy and Fp, is small but positive, which leads to the slow growth
of F5 1, when x is decreasing. We demonstrated that DLA predicts identical
QQ*-dependence of F; and F, and explained the reason to it. We have used
the asymptotics F; 2 and F7, to obtain several differential relations between
logarithms of F; and F5, which are absent in all other approaches available in
the literature. The small-z behavior of F} 5 1, in our approach almost coincides
with the one obtained by the NLO BFKL. This makes impossible to find out
which of those approaches is more adequate. However, the (Q?-dependence of
the asymptotics obtained in DLA differs a lot from the one predicted by the
conventional methods. This difference is especially great at small Q?. Therefore,
comparison of the Q?-dependence with experimental data can select a more
adequate approach.
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8 Appendix

8.1 Expressions for Cg‘;) (w) and 6’5‘;) (w)

(hqg —w) (hgy — hgq — \/}_%) + 2hgghgq
2AVR ’
_(hqq —w) (hgg — hgq + \/}_%> — 2hgghgq

2AVR
—hygg (hgg — hgq — \/f_%> - thg(hqq —w)

2AVR
hqg (hgg - hqq + \/}_%> + 2hqg<hqq - w)
2AVR ’

where R is defined in Eq. ,

A = (W= hg)(w = hyg) = hgghyg

)

Y

(58)

and h;; are defined below. Coeflicient functions dgi) and 5§i) are related with

+
Ci

where

(jq(+) — CCE”X(*), @*):C;*)X(*),
G = cOXO), ¢ = x0O),
Y& — hgg+hqqi\/§_

2hgg

(59)

(60)

Thus we have expressed all coefficient functions in Eqgs. - through

hrr’ .

8.2 Expressions for h;;

1 byy — b b

w 5[““ 2= qq]’ hag =
1 byg — b b

49 §|: Z 99 qqi|7 hgq 94 7



where

7 = % Y+WwW, (62)

with
Y = W = 2(bgg + byy) (63)

and
W= \/(W2 - 2(bqq + bgg)>2 - 4(bqq - bgg)2 - 16bgqbqgv (64>

where the terms b, include the Born factors a,,» and contributions of non-ladder
graphs V..
brr’ = Gy + V:/‘T’ . (65>

The Born factors are (see Ref. [31] for detail)

A(w)Cr A (w)Cr _ Al(w)ny _ 2N A(w)

QAqq = on Qqg = ) Qgq = o Qgg - ) (66)

where A and A’ stand for the running QCD couplings as shown in Ref. [37]

1 n /°° dze * } 1 {1 /°° dze”z}
A== | A== T/, (67
e e e R 1 g A e B
with n = In (4?/Adep), 1 ~ 1 GeV and b being the first coefficient of the
Gell-Mann—-Low function. When the running effects for the QCD coupling are

neglected, A(w) and A’(w) are replaced by «g. The terms V,.,. approximately
represent the impact of non-ladder graphs on h,,» (see Ref. [31] for detail)

My

Viw = 5 D(w) (68)
with
C N
mqq:%y mgg:_QNQa Mgq = N5 mgg = —NCp ,  (69)
and
| Gl 1
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BFKL EVOLUTION AND ENERGY FLOW FOR DIJET
PRODUCTION WITH JET VETO AT LHC ENERGIES

Anatolii Iu. Egorov!?, Victor T. Kim!?
! Petersburg Nuclear Physics Institute of NRC “KI”, Gatchina
2 Peter the Great St. Petersburg Polytechnic University,
St. Petersburg

Abstract

The calculations based on the next-to-leading logarithm approximation for
the Balitsky—Fadin—-Kuraev—Lipatov evolution are presented for the Mueller-
Navelet dijet production cross section, as well as for their ratios to the dijet cross
sections with a jet veto, as functions of the rapidity separation, Ay, between
the two jets of a dijet. The veto on additional jet activity was accounted for
in the Banfi-Marchesini-Smye approach. The results are compared to the

measurements by the CMS experiment in proton-proton collisions at /s = 2.76
and 7 TeV.

B®KJI 9BOJIIOIINA 1 IIOTOK SHEPT'UN ITPU
OBPA30OBAHUU ITAP AJJPOHHEIX CTPYI1 C BETO IIPU
OQHEPI'IAX LHC

Amnaroanii FO. Eropos!?, Buktop T. Kum!?
! Tlerep6yprckuii unctutyt sinepuoii dusuku HUIL «KW», FaTunna
2 Cankr-IleTep6yprckuii nojmrexnudeckuii yaupepcurer Ilerpa
Benukoro, Cankr-IleTepoypr

Aunnoranusa

[IpeicTaBieHbl BHIYUCICHIS, OCHOBAHHBIE HA CJICIYIOIMEM 3a TJIABHBIM JIorapud-
MUYeCKUM Mpub/nzkeHun sBoonun banunkoro—Pauna—Kypaesa—/lunarosa,
JIJIsd TIPOIIECCOB POXKICHUS TIap aJpoHHBIX cTpyit Miosuiepa-Hasese, a Takxke nx
OTHOIIIEHUH K JIBYXCTPYHHBIM CEUEHUSIM CO CTPYIHBIM BETO B 3aBUCUMOCTH OT
nHTepBaJa OBICTPOTHI, Ay, MEXKIy CTPYyIMHU B mape. BeTo Ha JOMOTHUTEIBHYIO
CTPYIHYIO aKTUBHOCTH YITEHO Ha OCHOBe monaxoaa bandu—Mapkesuan—Cmast.
Pesynbrarel cpaBHUBaioTcsa ¢ m3Mepenusamu skcrepumenta CMS B mporon-
IPOTOHHBIX CTOJIKHOBEHUSAX TIPpH /s = 2.76 u 7 T3B.
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1 Introduction

To explore new physics at modern hadron colliders it is important to correctly
take into account the effects of quantum chromodynamics (QCD). With the
increase of the collision energy +/s, the semihard QCD regime of high-energy
also known as the Gribov-Regge limit is expected to become essential. In
the Gribov-Regge limit, the energy tends to infinity (y/s — oo), while the
momentum transfer, Q = /—¢?> =~ p,, is kept finite, in such a way that
p1/+/s — 0, where p, is the parton transverse momentum. As far as the
momentum transfer is large enough, i.e., () > Aqcp, the perturbative QCD
(pQCD) can be employed. With the pQCD approach and the Regge-Limit
implied, the large logarithms of s need to be resummed, which is achieved with
the Balitsky—Fadin-Kuraev-Lipatov (BFKL) approach [1-3]. This is in contrast
to the hard QCD regime, for which @ ~ /s — oo, where the large logarithms
required to resum are those of large (). They are resummed within the Gribov—
Lipatov—Altarelli-Parisi-Dokshitzer (DGLAP) formalism [4-8], which implies
collinear factorization. While the DGLAP evolution is well established in
the hard regime, the indications of the BFKL evolution in data still remain
uncertain.

Hadron jets, produced at large rapidities, y, or dijets with a large rapidity
separation, Ay, between the two jets of a dijet are considered to be good probes
in the search for the BFKL effects at hadron colliders. Three main types of
observables, that make use of hadronic jets as a probe, can be distinguished.
The first type includes the ratios of the dijet production cross sections |9-12].
The main contribution to the dijet production cross section at large Ay in the
BFKL approach comes from the Mueller-Navelet (MN) dijets, where the MN
dijet is the pair of jets with the largest Ay, and jet pairs are combined from all
the reconstructed jets with the transverse momentum, p,, above some chosen
transverse momentum threshold, p| . In fact, the MN dijets are a subset
of inclusive dijets, a larger set consisting of all pairwise combinations (taken
within a single event) of jets, that have p; > pimin [10].

The first type of observables can also be generalized by doing a different
kind of experimental selections known as the jet veto. We also needed it to be
introduced in the measurements. Hereafter, we define the jet veto as an event
selection that prohibits (vetoes) the jets above some chosen jet p; threshold,
Plveto- Also, the jet veto can be narrowed down to jets that appear only in some
ranges of rapidity. For example, if the jet veto is introduced in the rapidity
region between the two jets of a dijet, then it is referred to as the inter-jet veto.

The second type of observables includes the azimuthal decorrelations be-
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tween the two jets in a dijet with large Ay |[13H15]. Finally, the cross sections
of the jet-gap-jet production via color singlet exchange [16-18| belong to the
third type.

The aforementioned observables were measured at the Tevatron in the
DO [19H21] and CDF [22] experiments at /s = 0.63 and 1.8 TeV, as well as
at the Large Hadron Collider (LHC) by ATLAS [23,24] and CMS [25-27]
at /s = 7 TeV. Exclusive dijet production via color singlet exchange was
measured by CMS-TOTEM at /s = 13 TeV [2§]. Inclusive and MN dijet cross
sections and the ratios with the jet veto were recently measured as functions of
Ay by CMS at /s = 2.76 TeV [29].

There are several problems that prevent us from drawing a firm conclusion in
the BFKL evolution search. One of the problems is that the leading-logarithmic
(LL) BFKL calculations provide us only with the qualitative results. The reason
for that is that the LL BFKL calculations, designed for infinite energies in
the first place, predict too high a value of the pomeron intercept, being equal
to 1.54, which governs the rise of the cross sections with energy /s and
Ay. Therefore, the L. BFKL predictions tend to overshoot the high-energy
asymptotic effects. The other problem is that the DGLAP-based predictions,
often given by the Monte Carlo (MC) simulations, contain corrections beyond
the main approximation. For example, the LL. DGLAP-based MC generators
PYTHIAS [30] and HERWIG [31] include some corrections accounting for the
color coherence. For the parton shower, this leads to an angular ordering and,
eventually, to a rapidity ordering, which mimics the BFKL dynamics. These
corrections are small in the kinematic domain of the DGLAP evolution, but
become unstable at large Ay. The problem is that there is no possibility to
disentangle (exclude) the color coherence corrections from the all-order pQCD
(shower) calculations in the modern DGLAP-based MC generators.

The next-to-leading logarithm (NLL) BFKL calculations became possible
after the renormalization scheme and renormalization scale ambiguity [32,33]
was resolved by the generalization of the Brodsky-Lepage-Mackenzie optimal
scale setting procedure [34] to the non-Abelian case by Brodsky—Fadin—Kim—
Lipatov—Pivovarov (BFKLP) [35]. In the NLL BFKL calculations improved by
the BFKLP approach the value of the pomeron intercept decreases to 1.13-1.18
in a wide range of ), which agrees to the conventional Regge-Gribov theory.

The comparison of the theory to the data at the Tevatron and LHC shows
that none of the DLGAP-based models are able to describe all the aspects
of the observed data. On the other hand, the NLL BFKL calculations, when
available, are in agreement to the data. However, rather complicated NLL
BFKL calculation methods employing BFKLP scale setting [35] are developed

77



only for the azimuthal decorrelations and the Mueller-Navelet dijet production
cross section [36,37]. The jet-gap-jet production cross section ratios can be
calculated in the L BFKL approximation improved with the principal NLL
BFKL contributions [17,|18]. The cross section ratios with the veto can only
be calculated with the LL BFKL accuracy by an MC simulation with the
generator HEJ [38]. Therefore, the important task is the development of the
NLL BFKL-based calculations for all the measured observables.

The goal of this paper is to confront the calculation based on the NLL
BFKL improved with BEKLP approach [35] to the MN cross section measured
by CMS at /s = 2.76 TeV, and the ratios with the inter-jet veto at 2.76 and
7 TeV [25,29], as well as to make predictions for the MN cross section and
ratios with the inter-jet veto for /s = 13 TeV, which are possible to measure
at the LHC.

To the best of our knowledge, there is no BFKL-based method to calculate
the impact of the jet veto. For the purposes of the current paper, we calculate
the veto impact with the Banfi-Marchesini-Smye (BMS) approach [39]. The
BMS approach was elaborated to describe the physics of the energy flow away
from jets. The approach was tested against the ATLAS [40] and CMS [41]
inter-jet/jet veto measurements, and showed some level of agreement. In both
papers, the Born level subprocess convoluted with the parton distribution
functions (PDF's) was used in the inclusive cross section calculation. In the
method, a probability of not breaking the veto is added to the calculation. This
probability was governed by the BMS evolution equation. Even though such
calculations have a decent agreement to the ratios of the cross sections with
veto, the agreement to the absolute values of the cross sections is expected to
be worse. A recent paper by CMS [29] provides a measurement of the absolute
values of the cross sections and the cross section ratios with veto, which allows
for a better testing of the models.

In Sec. [2/ we briefly outline the BFKLP approach [35] to the MN cross
section calculation. In Sec. [3| we describe the application of the BMS equation
to the inter-jet veto, i.e., veto in rapidity region between the jets of dijets. In
Sec. Hf the theoretical uncertainty of the calculation is discussed. In Sec. [5] we
present the comparison of the calculations to the CMS measurements [25,29]
at /s = 7 and 2.76 TeV, as well as our predictions for proton-proton (pp)
collisions at /s = 13 TeV.
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2 BFKLP approach to Mueller-Navelet cross
section

In the semihard regime, the MN cross section can be written, assuming the

factorization, as a convolution of a partonic subprocess cross section ¢ and
PDFs, as follows:

1 .
dg* T Z/ dzydzs fi(z1, pr) fi(22, MF)dUU(xleSLMF’gR)a (1)
dylddeledeQ ij 0 dyldy2d2k'1d2k2
where y(2) are the rapidities of the two jets in a dijet, El(g) are the transverse
momenta of the two jets, f;;) are the PDFs, x,(;) are the longitudinal proton
momentum fractions carried by partons before their scattering, g and pup are
the renormalization and factorization scales respectively. The summation in
Eq. goes through all the open parton flavors, and the integration performed
IS OVer xy(a).
Within the LL/NLL BFKL approach, the partonic cross section ¢ itself
factorizes into the process dependent vertices V' and the universal Green’s
function G:

do ;i (x1T98, lip, LR T 1T 2 Pq .
Z]( ) _ / 62 %(Q1,x17807k17xJ17uF7/’LR>
1

dyy dyod?ly 2k (27)?
d*q: . - dw ((T1795\" S
X/—»_Cfvj(_Q%x%SOak2755J27,LLF7,UR)/ 2—( —2 ) Go(q1,32), (2)
q2 o 2T So

where 712 are the longitudinal momentum fractions carried by the jets J1
and J2 of the MN dijet, ¢j(2) are the transverse momenta of the Reggeized
gluons, and s is an arbitrary energy scale introduced by the Mellin transform
within the BFKL formalism. The vertex V(¢, x, k,x 7) describes the transition
of an incident parton with the longitudinal momentum fraction = to a jet
with the longitudinal momentum fraction x; and the transverse momentum
k by scattering off a Reggeized gluon with the transverse momentum ¢. The
integration contour C'is a vertical line in the w complex plane such that all the
poles of the Green’s function G, are to the left of the contour. The Green’s
function G,, obeys the BFKL equation

WC(T, ) = (3 — &) / P (G, )G (@, D), 3)
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where K (qi,q) is the BFKL kernel.

The vertices V' are calculated at the NLL accuracy in the small-cone
approximation in Ref. [42]. They are often combined with PDF's within the
impact factors

1 w
- 7 € — ¢
¢( 7k7xJ7wa807luFaMR) = Z/ dl‘fz(l',,up) (ZL’_) ‘/i(QNIa 807k7$J7,uFaMR>a
i 70 J
(4)

Using the impact factors ®, the differential cross section for dijet production
can be rewritten as

do _ Tty d_w (Y =Y0) (7 (@, @)
dy dysd2ky 2y (27)% o 2mi ’
LG - LG -
X /(7_21 1(Q177€1,$J1,W;50,MF,MR)/q,—;%(—(&yk27IJ2,W,50;MF,MR),
1 2

()

where Y = y; — yo = In Z1E25 and Yy = In =%
LAlL] kallkal . ,
To calculate the cross section at NLL accuracy, it is convenient to consider

the impact factors and the Green’s function in the basis of the LL BFKL kernel
eigenfunctions, which are labeled with the conformal spin n and the conformal
weights v. The projections of the impact factors are given by

(I)l(naV7E17xJ17W750aNF;MR)
d*q - 1, o .
- _,_q)l(cflaklaleawvsﬂ)MFaﬂR)_((fl )ZV_1/261n¢17
/q12 7T\/§
Dy (n, v,k2, T 2, W, So, fLF, UR)
d267 - 7 1 = 2\ —iv— —in
:/T;@Q(—QQ,k27$J27w780,MF7MR) (@)~ e (6)

gz 7r\/§

where ¢1(9) are the azimuthal angles of jets.
We employ the expansion of the impact factors in powers of strong coupling

Qs (MR)

By o(n, v,k 2, 219, 0, 50, firy 1) = as(pr)[cra(n, v) + ag(ur)cls(n, )], (7)

which can be found in Eqgs. (34) and (36) of Ref. [43]. In this equations,
as(pr) = Caas(ug)/m and Cy is the quadratic Casimir operator for the adjoint
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representation of the SU(3) group. The variables /Zl,g, T2, W, So, 1EF, LR
are suppressed in Eq. for ¢;5(n,v) and cglg(n, v) for shortness sake. The
calculation of jet vertices at the NLL BFKL accuracy relies on the jet definition.
In Ref. [43], the small cone approximation end cone algorithm were used as jet
reconstruction algorithms. The dependence on the jet algorithms was studied
in Ref. [44]. In this work we present results for the k; algorithm as described
in Ref. [44].

The matrix elements of the NLL BFKL Green’s function between the
eigenfunctions of the LL BFKL kernel can be found in Eq. (24) of Ref. [36].

Making decomposition of the cross section Eq. in cosines of the azimuthal

angle ¢ = m — (¢1 — )

do 1 [ >
— = Co + E ZCos(nng)Cn], (8)
dyy dysd) iy |d| ks|dydpy  (27)? —

, transforming to the |n,v) basis, and separating out the terms proportional
Bo = 11N./3 — 2ny/3 explicitly (as needed within the BFKLP approach [35]),
one can get the expression for the C, coefficients of the expansion .

_ TgiTg2

= == velY “Yolas(rx(m) 02 ey (n, v)ey(n, v)
| [[ 2] /=0

n

where 551% = cg - 551; and églg defined in Eq. (30) of Ref. [36]. asx(n,v) is

the eigenvalue of the LL. BFKL kernel. y(n,v) describes the diagonal part of
the NLL BFKL kernel in the |n,v) basis not proportional to fSy. It is defined
by Eq. (19) of Ref. [36]. Within the BEKLP approach [35] one needs to change
renormalization scheme from MS to the physical momentum subtraction MOM
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scheme. The MS and MOM schemes are related by

— MOM
aiVIS _ OéiV[OM (1 + (% (Tﬁ 4 Tconf))’
T
s_ Do 2
T 2(1+3[),
Cul17 3 1 1
Teonf — 220 14 (-1 1— 1) —=¢3 10
M du-nes (1-g1)e -39 o

where [ ~ 2.3439 and ¢ is a gauge parameter, which we fix to zero (that
corresponds to the Landau gauge).

Then the optimal pB"™ M scale is the value of pg that makes the part of
the integral in Eq. @D, proportional to Sy, vanish. This leads to the necessity
to solve the integral equation, which can be done numerically. This can be
impractical as far as the scale setting needs to be done under the integration.
In Ref. [36] two approximate methods were suggested, which are referred to as
the case (a) and the case (b).

In the case (a), the expression for the optimal scale

. 2\ 5
(M%,FLLKLP)Z = |k1||k2] exp {2 <1 + 51) — 5}7 (11)

and in the case (b) it is

R 2 5 1
W = Rl e (214 51) =3+ ). 2

Only the Cy term survive after the integration of Eq. over the azimuthal
angles.
do

— = (y, (13)
d?/1d?/2d|k1|d|k2|

It is worth noting, that the results obtained in Ref. [45] show that the case
(a) better reproduces the exact calculation for the optimal scale uB8LY for Cy.
Therefore we use the case (a), as an estimate of the MN cross section and the
difference between the case (a) and the case (b) as an estimate of the theoretical
uncertainty related to the choice of the renormalization and factorization scales.
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In Sec. [5| we shell compare the results of the NLL BFKL calculations just
described, the LL BFKL calculations performed according Eq. (12) from
Ref. [46], as well as the leading order (LO)+LL DGLAP-based calculation
provided by MC generator PYTHIAS. We confront the results to the recent
CMS measurement at /s = 2.76 TeV [29]. We will provide our predictions for
the pp collisions at /s = 13 TeV, which can be tested at the LHC.

3 The BMS equation for inter-jet veto

In the BMS approach the QCD cascade evolves due to soft gluon emission
(ordered in p, ) by color dipoles. Therefore, it accounts for the color coherence,
which can partially reproduce the BFKL evolution. The BMS equation sums
up the large logarithms of the transverse momenta of two types, namely the
Sudakov one and the non-global one. The Sudakov logarithms come from the
primarily emitted gluons, whereas the non-global ones are from the secondary
gluons in the multiple gluon emission. It worth noting that, even though the
BMS and BFKL equations have some similarity, the dominant contribution in
both cases comes from different kinematic configurations. In the BMS case all
angles are of the same order and the emission is p-ordered, whereas in the
BFKL case all transverse momenta are of the same order and the emission is
y-ordered.

The application of the BMS approach to the veto constraint imposed to the
inclusive cross section calculated as the convolution of the PDFs with the Born
level subprocess is described in Ref. [40]. As we shall show in the Sec.[5] the cross
section calculations based on the Born level subprocess have poor agreement to
the measurements. Therefore, we employ the NLL BFKL approach improved
by the BFKLP prescription [35] for the MN cross section calculation. As far
as the MN dijet is formed of the two jets maximally separated in rapidity
(maximal Ay), the main contribution to the veto comes from the inter-jet veto
(a veto imposed on jets in the rapidity interval between the MN jets). In this
section, we describe how to apply the procedure described in Ref. [40] to the
cross section calculated by Eq. (13). Moreover, we discuss some modification
which is needed to avoid the double counting of the emission from color octets.

First, let us recollect that the BMS approach allows the calculation of the
probability, P, of not breaking the veto on emission above p| e, from a color
dipole. Consider a color dipole at the transverse momentum scale p, , with the
dipole ends moving in the directions €2, and 3. If the emission is vetoed in
the Coy direction region away from €2, {25, the probability P is obtained by
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solving the equation:

d*Q 1 —cosé
P, Qa 0O = — gl aff PT Qa 0
aT T< ’ B) /Cout 47T (1 — COS Qa'y)(]- — COS 9,713) x < ’ 6)
d*Q, 1 —cosbup
PTQQ’Q PTQ7Q _PTQCM;Q )
- /Cin 47 (1 = c0804,)(1 — cos 976)( ( )P (2, Q) ( 3))

(14)

where Cj, is the region complementary to Coy, 6;; is the angle between the
directions of €2; and €2;. The directions 2 are defined by the polar and azimuthal
angles. The evolution variable 7 is calculated by

/m dk; as(ky)Cy
S arL s\l )bA

15
s, (15)

PLveto

The initial and boundary conditions for the BMS equation Eq. are set
by the probability at 7 = 0 equals 1, and P,(Q,,2,) = 1 at all 7.

Having the solutions of Eq. , one applies them as additional factors
in Eq. as described in Appendix A.3 of Ref. [39] to get the veto cross
section ov*. Thus, one can calculate the ratios with veto as ratios of the cross
sections calculated with and without the BMS factors. As mentioned in the
introduction, this procedure described in Ref. [40] provides a decent agreement
to the measured ratios. However, the agreement to the absolute values of the
cross sections is expected to be worse, because the Born-level subprocess does
not account for all the relevant QCD contributions.

The BFKL calculations employ the large Ay approximation for which
|lt| < 4(|a|), where 3,1, 4 are the Mandelstam variables for the 2 — 2 parton
subprocess. In this approximation, ;;, taken for all the combinations of flavors
¢ and j, become proportional to each other, with the proportionality factors
depending on the color summation. This allows us to restrict consideration to
the gluon-gluon subprocess and the effective PDF's:

1) = S f (i) + 3 Fies ), (16)

Cr —
1=q,9

Therefore it becomes possible to decouple the BMS probabilities from
0,5 and to average them over the effective PDFs to get the effective BMS
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probability:

Ps feff(acl)lfeff(m) [(&) sesr,

(fgxl Zle? +fg$2 Zfz 1'1) 99

1=q,q 1=q,q

(Zfz x fj 1:2 +Zfz 171 f] x?))

1=q

Jq J=4q

(Zfz 1) fi(w2) +Zfz 1) [ $2)) qq:|7 (17)

%
Jj= q J

QY

where the probabilities Py, Py, Py and P,; are calculated by:

1
ng = §(P12P13P24P34 + P14P24P13P23>7

1
qu = §(P24P12P34 + P24P14P23)7

qu = P14P237
Py = PiaPsy, (18)

where P;;, the BMS probability for the color dipoles connecting partons ¢ and
J, is calculated as described in Ref. [40]. The ends of the dipole labeled by
1 and 2 are the remnants of the colliding protons 1 and 2 propagating to
the pseudorapidities +00 and —oo, respectively. The ends 3 and 4 are the
partons scattered from the protons 1 and 2, respectively. They propagate to
the rapidities y; and y,, respectively.

The effective probability Eq. can be used as an additional factor in the
integrand for Cy to get the veto cross section.

It should be noted that the color octet is exchanged in the ¢-channel in
the large Ay approximation regardless of whether we use the Born level or
the NLL BFKL ¢ for the parton scattering. The emission rate of a gluon by
the color octet is proportional to a;C'4 as accounted originally in the BMS
equation. However, in the approach described in Ref. [40] and adopted in
the present paper, the exchanged color octet is represented by two dipoles.
These two dipoles are stretched over the Ay interval. The ends of each dipole
are in the color triplet-antitriplet state. Therefore each dipole should emit
gluons proportionally a;Cr. Then, the gluon emission rate from the two
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dipoles together is equivalent to the rate from a one color octet in the large N,
approximation, i.e., 2a;Cr = as(Cs — 1/N,). As a result, the gluon emission
leads to a splitting of a dipole to the two daughter dipoles. Each two daughter
dipole has ends in the color triplet-antitriplet state again. Afterwards, they emit
proportionally to a,Cr. Therefore, each successive emission is proportional to
asCr during the whole BMS evolution. If, instead, we let each dipole to emit
proportionally to a;C)y, the emission will be double counted. As we shall see
in the Sec. o], this is crucial for cases where pj e, is much lower than pj .
This is probably the reason why in Ref. |[40] the calculations overshot the veto
impact in the “two leading” selection of the ATLAS measurements [24].

The replacement of C'y to C'r within the BMS approach can be easily done
by replacing them in the 7 definition Eq. . We denote 7 calculated with
CF instead of C'4 in Eq. as 7r and 7 calculated by Eq. as 74. In the
Sec. |5l we confront both variants of the calculation with 74 and 77 to the CMS
measurements [2529].

4 Numerical calculation and theoretical uncer-
tainty

The differential MN cross section do™M~ /dAy is calculated numerically with the
NLL BFKL accuracy improved by the BFKLP approach [35] to the optimal
scale setting for /s = 2.76, and 13 TeV, for jets with p; > pimm = 35 GeV
and y < 4.7. The ratios with veto RMN and RMN are calculated as a ratio of
do™N /dAy to the cross section calculated by the same expression, but with
the multiplier P provided with the numerical solution of the BMS equation
Eq . The veto P | veto is set at 35 and 20 GeV for RMN and RMN | respectively.

veto’

The ratio RMN is calculated for /s = 2.76, 7 and 13 TeV, whereas RMN is
calculated for 2.76 and 13 TeV. The jets in the calculations are defined with
the k; algorithm with the jet size parameter 0.5 for /s = 2.76 and 7 TeV and
0.4 for 13 TeV. The calculations of RMN and RMN are made for 74 and 7 in
the BMS equation. The number of flavors ny is kept 5. The strong coupling
constant, a,, and PDFs are provided at the next-to-leading order (NLO) by
the LHAPDF library [47] and MSTW2008nlo68cl [48] set.

The estimated theoretical uncertainty of the oMY calculation comes from
three different sources. The first one is the renormalization and factorization
scale uncertainty. It is estimated by the difference between case (a) Eq. (11)
and case (b) Eq. (12). The second one is the uncertainty of sy. The central

value of sq is chosen to be the |k| x |ks|. It is varied by factors 2 and 0.5 to
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Figure 1: The MN Agy-differential cross section for pp collisions at /s =
2.76 TeV. The cross section do™MN /dAy (a) and the theory to data ratio (b).
The CMS measurement is represented by dots. Statistical uncertainty
of the measurement and MC calculation by PYTHIAS 4C is represented by
bars. Systematic uncertainty of the data is the shaded band and systematic
uncertainty of the NLL BFKL calculation is the hatched band.

obtain the uncertainty. The third one is the uncertainty of the PDFs. This
is estimated with MC replicas of PDF4LHC15_NLO_MC set . These three
sources provide a set of uncertainties which are approximately equal to each
other in magnitude.

The cross sections with veto has one more sources of uncertainty, namely
the BMS scale uncertainty. It is estimated by setting the upper limit p, of the

integral in Eq. equal to 1/|k||ks| for the central value, whereas it is set

to max(|ky|, |k2|) and min(|ky], |k2|) for the up and down variations. This is
the largest uncertainty in the ratios with veto, because the deviations does not
fully cancel out in the ratio.

The resulting uncertainty is the square root of the quadratic sum of uncer-
tainty from different sources.

5 Results and discussion

The MN cross section calculated with the NLL BFKL approach improved by
BFKLP scale setting for pp collisions at /s = 2.76 TeV is compared with
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Figure 2: Ratios of cross sections with veto RMN ( ) and RMN (b) for pp
collisions at /s = 2.76 TeV. The CMS measurement [29] is represented by dots.
Statistical uncertainty of the measurement and MC calculation by PYTHIAS
4C is represented by bars. Systematic uncertainty of the data is the shaded
band and systematic uncertainty of the NLL BFKL+BMS (75) calculation is
the hatched band.
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Figure 3: Ratio of cross sections RMN for pp collisions at /s = 7 TeV. The
CMS measurement is represented by dots. Statistical uncertainty of the
measurement and MC calculation by PYTHIAS8 4C is represented by bars. Sys-
tematic uncertainty of the data is the shaded band and systematic uncertainty
of the NLL BFKL+BMS (75) calculation is the hatched band.

the CMS measurements in Fig. [I] The calculations with PYTHIAS tune
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Figure 5: Ratios of cross sections with veto RMN (a) and RMY (b) for pp

collisions at /s = 13 TeV. Statistical uncertainty of the MC calculations by
PYTHIAS 4C and CP5 is represented by bars. Systematic uncertainty of NLL
BFKL+BMS (7r) calculation is represented by the hatched band.

4C , as well as the Born level subprocess calculation with and without the
large Ay approximation, and the LL. BFKL calculation as described in [46]
are also shown in Fig. [ for the sake of comparison. As one can see from
Fig. 1] the calculation with the NLL BFKL approach improved by BFKLP
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prescription [35] agrees to data within the systematic uncertainty, whereas all
other calculations significantly overestimate the measurements. Moreover, it is
noticeable that the NLL corrections are of the major importance for the BFKL
calculations. As can be seen by comparing the Born-subprocess calculations
performed with and without (the use of) the large Ay approximation, the large
Ay approximation becomes reliable for Ay > 4.

The comparison of calculations of cross section ratios RMN and RMN in pp
collisions at /s = 2.76 TeV with the CMS measurements [29] is presented in
Fig. 2l The calculations of the ratios are presented for 74 and 7. As it can
be seen from the panel (b) of Fig. 2| the 74 variant of calculation significantly
overestimates the data, confirming the necessity of C4 to Cr replacement in
the BMS equation. On the other hand the panel (a) of Fig. [2| shows that the
BMS evolution does not provide with enough emission when p|in = D1 veto,
because of lack of the phase space for p, -ordered emission cascade. This argues
in favor of the necessity of the BFKL evolution, because of its p, diffusion.
The MC calculation by PYTHIAS performed with the LO matrix element and
the LL DGLAP-based shower is in agreement to data for RMN, despite the fact
that the DGLAP-based shower is also p, -ordered. This is probably because of
the color coherence which is implemented in PYTHIAS differently than in the
BMS equation. Slight difference in shape is observed between PYTHIA8 and
the measurement for RMN .~ The calculation with the NLL BFKL+BMS (77)
approach is in good agreement to the measurement of RMY .

The comparison of calculation of the cross section ratio RMN in pp collisions
at /s = 7 TeV with the CMS measurement [25] is presented in Fig. [3| The
NLL BFKL+BMS calculations underestimates the ratio at large Ay, for both
T4 and 7 variants of calculations. The comparison of the left plot in Fig.
and Fig. [3| shows that the BMS evolution has weaker /s dependence than
observed in the data. This is not surprising because the BMS equation Eq.
has no explicit dependence on /s. The implicit 1/s dependence of the BMS
approach comes form /s dependence of the shape of the jet p,-spectrum. The
BFKL-based methods for the veto calculation (if developed) will intrinsically
include the /s dependence. The LO+LL DGLAP-based MC calculation by
PYTHIAS better reproduces the /s and Ay behavior of RMN. So PYTHIAS can
serve as a reference point for RMN and RMY predictions for /s = 13 TeV.

The prediction for the MN cross section in pp collisions at /s = 13 TeV
is presented in Fig. [l The NLL BFKL-based calculation (with BFKLP scale
setting [35]) lies below all other predictions, as it is for /s = 2.76 TeV. The
predictions for the MC generator PYTHIAS is given for two tunes, namely 4C,
which is used for lower energies, and CP5 [51], which includes fit of the 13 TeV
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measurements. Moreover the CP5 tune employs the next-to-next-to-leading
order PDFs and ay, which effectively lowers the cross section. In addition this
tune uses the rapidity ordering in the initial state radiation, which makes it
even closer to the BFKL evolution as confirmed by Fig. {4, Therefore PYTHIAS
CP5 produces result far from pure DGLAP-based prediction.

The predictions for RMN and RMN in pp collisions at /s = 13 TeV are
presented in Fig. )l The prediction by PYTHIAS is given for the 4C and CP5
tunes. As it can be seen, from the panel (b) of Fig. |5 the 74 variant of the
NLL BFKL+BMS calculation predicts strongest emission, which is probably
overestimation. On the other hand the 77 variant of the NLL BFKL+BMS
calculation has weakest /s dependence. The measurements at 13 TeV can help
to test for the correct v/s and Ay behavior. Figure [5{shows that 7 variant of
NLL BFKL+BMS calculation predicts the weakest emission which is probably
underestimation.

6 Summary

The calculation of the set of observables intended for the search of the Balitsky—
Fadin-Kuraev-Lipatov (BKFL) evolution is performed. The Mueller-Navelet
(MN) Ay-differential cross section do™~ /dAy is calculated in the next-to-leading
logarithm (NLL) BFKL accuracy. The procedure of the optimal renormaliza-
tion scale setting of Brodsky—Fadin—Kim-Lipatov—Pivovarov (BFKLP) [35] is
applied to resum the large coupling constant effects. The ratios of the cross
sections with a veto on additional jets between MN dijets RMN and RMN are
also calculated. The impact of the veto is calculated with the Banfi-Marchesini—
Smye (BMS) approach [39], which resums the large-angle soft gluon emissions
ordered in p .

The agreement of the NLL BFKL-based calculations of do™~/dAy to the
CMS data at /s = 2.76 (Ref. |29]) argues strongly in support of the BFKL
evolution manifestation at LHC energies. The BMS evolution predicts weaker
v/s and Ay dependence of RMN and RMN than observed in the CMS data at
Vs =2.76 and 7 TeV [25,29], which also favors the BFKL evolution.

The predictions of do™Y /dAy, RMN and RMN in the NLL BFKL approxima-
tion including the BFKLP optimal scale setting |35] and the BMS probabilities
for inter-jet veto [39] are presented for /s = 13 TeV. Therefore, our observations

can be tested at a higher energy at the LHC.
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FIRST MEASUREMENT OF THE CROSS SECTIONS OF THE
LARGE RAPIDITY GAP PROCESSES IN pPb COLLISIONS AT
VvSyy =8.16 TeV WITH THE CMS EXPERIMENT

Dmitry E. Sosnov
Petersburg Nuclear Physics Institute of NRC “KI”, Gatchina,
on behalf of the CMS Collaboration

Abstract

The forward rapidity gap spectra from proton-lead collisions for both pomeron-
lead and pomeron-proton topologies are presented. The analysis was performed
at a nucleon-nucleon center-of-mass energy of 8.16 TeV with the CMS detector
at LHC. The previous measurements was done by HELIOS Collaboration at
Vsny = 29.1 GeV ie. almost 300 times lower. For the pomeron-lead topology
the EPOS-LHC and QGSJET II generator predictions are a factor of two
and four, respectively, below the CMS data, but the models give a reasonable
description of the shape of the spectrum. For the pomeron-proton topology
the EPOS-LHC, QGSJET II and HIJING generator predictions are all at least
a factor of five below the data. This effect may be explained by a significant
contribution of ultra-peripheral photoproduction events, not described by used
generators. The obtained data may be of significant help in understanding the
high energy limit of QCD and modeling cosmic ray air showers.
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IIEPBOE NU3MEPEHUE COBBITUI C BBICTPOTHBIMU
ITPOBAJIAMMU ITIPU ,/syny =8.16 T3B B COYAAPEHUMNAX
ITPOTOHOB C 4IPAMU CBVHIIA B SKCIIEPUMEHTE CMS

HAmvurpumit E. CocuoB
ITerepbyprckmii macTUTYyT sinmepHoii dpmsmku HULL «KW», l'atauna,
ot KoJtabopamuu CMS

Annoranuga

[IpencraBieHsbl pacupeseseHns] CeUeHN 10 BeJIMINHe OBICTPOTHOTO ITPOBa-
Jla B CTOJIKHOBEHHSX ITPOTOHOB C MOHAMU CBUHIIA IIPU SHEPIUU COY/IapPEHUs
VSnyy = 8.16 TsB, usmepennnie merekropom CMS BAK. Ilpenbiayniune n3me-
penus 110/100HOr0 pojia ObLIn poseeHbl Kosutabopanueit HELIOS npu sueprum
Vsny = 29,1 I'sB, To ects npu B 300 pas 6osee nuskoit sueprun B CLIM.
Jl1s1 Tomosiornm coyapeHusi CBUHIA ¢ TOMEPOHOM, UCITYIIeHHBIM ITPOTOHOM,
npeackasanust reaeparopoB EPOS-LHC u QGSJET II B gBa n gersipe pasa,
COOTBETCTBEHHO, HUKe JaHubix CMS, HO nmpu pazyMHOM ornucanuu pOpPMbI
crekTpa. [l TOmoIoru CTOJIKHOBEHMS IIPOTOHOB C MOMEpPOHAME WIu (hOTOHA-
MU, UCIYTIEHHBIMU HOHOM CBUHIIA MIPEJICKA3AHIS BCEX TPEX MCIIOIb30BaAHHBIX
rereparopos (EPOS-LHC, HIJING, QGSJET), B KOTOPBIX BKJIIOYEHBI TOJHKO
0OMeHBI TIOMEPOHAMU, HIZKE KaK MUHAMYM B HATh Pa3 OT JAHHBIX, UTO MOXKET
OBITH O0BSACHEHO 3HAYUTEHLHBIM BKJIAJI0M (POTOH-IIPOTOHHBIX COY/IapeHuil, He
OIMCHIBAaEMbIE UCIOJIL30BAaHHBIMU TenepaTopamu. [losyuennbie jammbie MOTYT
OKa3aTh CYIIEeCTBEHHYIO OMOITL B onnManun KX /[ u MojemmpoBanuu JinBHei
OT TIPOXOK/IEHUsT KOCMUYIECKUX JIydeil depe3 aTMocdepy.
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1 Introduction

The large fraction of the collisions at the Large Hadron Collider are diffractive
events |15, connected to the fundamental parts of QCD [6-11]. Such events
are caused by pomeron (IP) exchange. Pomeron exchange refers to ¢-channel
exchanges of states that carry the quantum numbers of the vacuum [12}|13].
The diffractive one characterized by the large gaps in the pseudorapidity
distribution of final-state particles, usually measured in the most forward
region of detectors. For the hadron-nuclear diffraction processes the special
Gribov inelastic screening contributions [14] can be involved. Also, diffraction
is relevant for the modeling of cosmic ray showers [15].

The presented CMS analysis [16] was done with the forward rapidity gap
studies at /sy = 8.16 TeV with the CMS detector at the LHC at CERN.
The previous forward rapidity gap cross section measurements at the LHC
were performed in proton-proton collisions by the ATLAS [1] and CMS [2]
Collaborations at a center-of-mass energy of 7 TeV, and the previous proton-
nuclear diffraction studies was made at a center-of-mass energy of 29.1 GeV by

HELIOS [17].

2 Data analysis

The cross section measurement of diffractive proton-lead collisions based on
finding a rapidity gap forward detector region (FRG, An™) was done with
6.4 ub~! of data collected in 2016 [16] by the CMS detector [18]. Electromagnetic
interactions in ultraperipheral collisions have a non-negligible contribution in
events with forward rapidity gaps on the side of the outgoing nucleon [19-23]
Figure (1| shows the Feynman diagrams and schematic topologies of single

diffractive pomeron-lead (IPPb) and pomeron-proton (IPp) processes.
In the analysis, the phase space within the pseudorapidity region |n| = 3.0

is divided in 12 bins and the rapidity gap is calculated from |n| = 3.0. The
obtained detector level forward rapidity gap cross section shown on Fig. [2l The
CMS data are compared with EPOS-LHC [24]and HIJING v2.1 [25] predictions.
All spectra fall at about 50 times at the first two FRG bins, due to high
contribution of nondifffractive events, and becomes more flatten after Ant > 3.
The discrepancy between Fig. [2| right panel and the left one suggests that the
Pp+~p CMS data contain large contribution of yp events.

To increase sensitivity to the diffraction events the forward rapidity gap can
be extended. For that, to select the events with the absence of signal in the
region adjacent to the FRG region 3.14 < |n| < 5.19, additional reweighting was
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Figure 1: Top: schematic diagram of pPb events with large rapidity gaps for
IPPDb (left) and IPp or vp (right). Bottom: topologies of the events. The blue
and red cones indicate the products of diffractive dissociation for the lead ion
and proton, respectively. The measured rapidity gaps are marked with green
arrows. The figures taken from Ref. [16].

applied. Obtained distributions was unfolded to hadron level using EPOS-LHC
Monte Carlo (MC) generator response matrices, are marked as “diffraction
enhanced” distributions.

3 Results and conclusion

The resulting hadron level forward rapidity gap cross section shown in Fig. [3] is
compared with EPOS-LHC [24], QGSJET I1-04 [26] and HIJING v2.1 [25] pre-
dictions. The statistical and systematic uncertainties are added in quadrature.
The full uncertainty is represented by the yellow band, and the uncertainty
without the component associated to the correction for undetectable energy in

the region 3.14 < |n| < 5.19 is represented by the grey band.
For both IPPb and IPp topologies the MC generator predictions of the FRG

distribution differs from the CMS results. For the IPPb case, the predictions
by EPOS-LHC and QGSJET cross sections underestimate the data by factors
ranging from two to four, respectively. The shapes are similar. The HIJING
shape falls at large FRG sizes contrary to the trend in data. The large difference
between the obtained data and the MC predictions for the IPp case can be
described by the vp contribution, which is not present in the MC predictions,
as shown in Refs. [27,28].

In Fig. 4] the hadron level prediction from EPOS-LHC and QGSJET shown
in Fig. [3| was splitted down to non-diffractive and single, central and double
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Figure 2:  Top: the detector level cross section distribution for the CMS

data [16] (red circles), and the predictions of the EPOS-LHC [24] (blue triangles),
and HIJING [25] (green diamonds) MC generators. The distributions are shown
for the IPPb (left) and IPp topologies. Bottom: the ratios between generator
predictions and CMS data.

diffractive events. The prediction shows that the diC;F

no energy deposition in the 3.14 < |n| < 5.19 region adjacent to FRG the
contribution of the diffractive events become dominant after An¥ = 1.0.

For the first time at the LHC, the forward rapidity gap cross section
distribution for the proton-lead collisions were measured at the energy /sy =
8.16 TeV with the CMS detector for IPPb and [Pp+~vp topologies. Surprisingly,
the dominant photon exchange processes contribution in IPp+~p topology
is found. This type of processe should be implemented into modern MC
event generators to describe high energy proton-nuclear collisions with large
rapidity gaps. The obtained distributions can provide significant information
for diffractive processes on nuclei and for the cosmic ray showers modelling.

for the events with
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Figure 3: Top: the hadron level cross section distribution with no energy

deposition in the 3.14 < |n| < 5.19 region adjacent to FRG for the CMS
data [16] (red circles), and the predictions of the EPOS-LHC [24] (blue triangles),
QGSJET 1I [26] (orange squares) and HIJING [25] (green diamonds) MC
generators. The distributions are shown for the IPPb (left) and IPp topologies.
Bottom: the ratios between generator predictions and CMS data.
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Figure 4: The hadron-level diﬁ distribution for the events with no energy
deposition in the 3.14 < |n| < 5.19 region adjacent to FRG for the EPOS-
LHC (top) and QGSJET event generators, broken down to non-
diffractive (brue), single (yellow), central (green) and double (magent) diffractive

events compared to CMS results (red circles)
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AHAJIN3 BKJIAJIOB BOJIBIIINX PACCTOSHUI
B PACIIAJIAX Bt — ntete-

Npuna M. ITapuosa', Anekcanap 1. Ilapxomenko!
1 dpocnasckuii rocyjapCcTBeHHbIl YHUBEPCUTET
nm. II. I. TemunoBa, fpocaaBib

Aunnoranusa

Cpenu peIKnx MOJyJIeITOHHBIX PaclagoB B-Me30HOB, MIYIIUX 3a CYeT Heil-
TpaJibHOro b — d KBapKOBOTO TOKa C W3MEHEHUEM apoMaTa, SKCKJ/IIO3UBHBIN
pacuan BT — 7t utpuT — onun u3 HeMHOrMX, OOHADPY?KEHHBIX SKCIEPUMEH-
tabHo. OH JIOCTATOYHO XOPOIIO U3YUYeH TEOPETUIECKH, & IKCIEPUMEHTAIbHDIE
JIAHHBIE 10 9TOMY pacma/ty, nojydennsie kojtadboparueit LHCb B 2015 1., xopo-
10 coryacyorcs ¢ npejackazanusmu Crangapraoit Mogenn (CM) npakridecku
BO BCeil 00JIACTH JOIyCTAMBIX 3HAYeHni ¢° — KBaIpaTa NMITYIbCa, YHOCHMOTO
JienToHHoi napoit. IlonpaBku 3a cueT BKJIaJI0B aHHUTUJIAIMOHHBIX JHATPAMM,
a TaKzKe BKJIQJIOB OOJIBIINX PACCTOSHHUNA OT BEKTOPHBIX ME3OHOB, YJIyUIIAIOT
corjlaciue Teopuu u dKcrepumenta npu ¢° < 1 I'aB?, rae skcnepumenTab-
HbIe JJAHHBIE CYIECTBEHHO ITPEBOCXOJIAT MepTypOATUBHBIN BKJIa . Bojee Toro,
IpeacTaB/ideT HHTepeC OICHUTDL BJIMAHNE 3TUX JOIIOJHUTE/IbHBIX BKJIaJA0B Ha
Bech ciekTp 1o ¢2. Taxoit anammus aas pacuaga BY — mrutu~, a Taxxe ms
aHaJIOrnIHOro pacuaga BT — 777777 npeacrasien B HacTosmel pabore.
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ANALYSIS OF LONG-DISTANCE CONTRIBUTIONS
IN BT — nt¢T¢~ DECAYS

Irina M. Parnova!, Alexander Ya. Parkhomenko!
1P. G. Demidov Yaroslavl State University, Yaroslavl

Abstract

Among the rare semileptonic B meson decays due to the b — d flavor changing
neutral current (FCNC), the exclusive BT — 77"~ decay is the one of a few
observed experimentally. It is well studied theoretically, and the experimental
data on this decay obtained by the LHCb collaboration in 2015 are consistent
with the Standard Model (SM) predictions in almost all regions of the ¢
spectrum, where ¢? is the momentum squared, transferred to the lepton pair.
Accounting for subleading contributions, such as Weak Annihilation and Long
Distance contributions, gives better agreement between theory and experiment
at ¢> < 1 GeV?, where experimental data are substantially larger of the
perturbative contribution. Moreover, it is of interest to evaluate an impact of
subleading contributions on the entire ¢? spectrum. Such an analysis for the
BT — 7tutu~ decay, as well as for the analogous BT — w777~ decay, is
presented in this paper.
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1 Bsenenune

Penkue pacasibl a/ipoHOB, UIyIue 3a cYeT HeHTpaJbHbIX KBAPKOBBIX b — d
n b — s TOKOB C M3MEHEHHEeM apoMara, IPeJICTABIAIOT 0COOBII MHTEPEC Mpu
[IPOBEJICHUN UCCJIeI0BaHU 110 (DU3MKE BBICOKUX SHEPIHUil, TIOCKOJIbKY, 00Ia/1ast
MaJIBIMUA BEPOSITHOCTSIMH paciiajia, OHU OCOOEHHO IYBCTBHUTEIbHBI K 3P deK-
tam usuku 3a pamkamu Crangapraoii mogesu (CM). Dtu nponeccer 8 CM
perynupyiorcs ['TIM mexarmsmom [1], B paMKax KOTOPOro Takue Mepexo/Ibl
OTIPEJIETITIOTCS SJIEKTPOCTIabbIMU TIETJIEBBIMU JHarpaMMaMu. B HacTositiee Bpe-
Ms WHTepec K (PU3UKe PEJIKUX PACIaI0B aJpOHOB B 3HAYUTEIBHON CTEITeHN
crumysinpyercs sxcrepumerTamu LHCb, CMS u ATLAS na LHC, kotopsie
IIPEJIOCTABJSIOT OOJIBIIIOE KOJUIECTBO HOBBIX M TOUHBIX IKCIEPUMEHTAIbHBIX
JIAHHDBIX, KACAIOIINXCA POXKJIEHUN U pactaoB B-Me30HOB U MPEJIECTHLIX Oapro-
HoB. HoBble jlannble mocrymaior Tak:ke u oT Kosutaboparun Belle-I1, mposois-
meit uceaenopannsa Ha (pabpuke B-mezonoB SuperKEKB.

Penkue mosryenTonHble Paclaibl, UIYIAE 3a CYeT KBApPKOBOro b — S TOKa,
takue, Kak BY — K®* i+~ B — K&+~ u B — ¢utp~ n ux anasorn
B 9JIEKTPOHHOM CEKTOPE, JOCTATOIHO XOPOIIO U3YUEHbl SKCIEPUMEHTAILHO 1
TeopeTUIecKr. BOJIBIMMHCTBO JAHHBIX 110 9TUM PACIaIaM, B YACTHOCTHA BEPOSIT-
HOCTH PAacCIIaJIOB, pacupeaeseHns 110 MHBAPUAHTHON Macce JIEITOHHON napbl 1
YIJIOBBIE pacrpe/ienenust, moydenbl kosrnabopanueit LHCb [2-8]. Bouio obnapy-
JKEHO, 9TO HEKOTOPbIE€ U3 ITUX U3MEPEHHIl He COrJIacyloTCd ¢ IPeacKa3aHuaMI
CM, 9T0 BBI3BAJIO BCILIECK MHTEPECa K MOJIEJIsIM, BKJIIOYAIOIINM HOBYIO (DU3HUKY,
C TIEJIBIO0 O0BIICHUTHL OOHAPY2KeHHbIe pacxoxkieHus mex iy CM u sxcrepumen-
tom [9-13].

ITeppoe mabmomenue peakoro nomynaentonnoro BT — wtut ™ pacmana
kosutaboparueit LHCb B 2012 roay [14] crano nauanom uccienosanuii mporec-
COB, MIYIIUX 3a cUYeT HeHTpajbHOro b — d ToKa ¢ u3MeHeHHeM apoMarta. BoJee
toro, B 2015 romy 3Toii ke KoJutabopaleir Ha OOJIbIIel CTATUCTUKE COOBITHIA
OBLLIO TIOJIYYeHO pacIpe/ie/ieHue 0 MHBAPUAHTHOMN Macce ¢° MIOOHHOH Iaphl B
sToM pactajie [15]. smeperHoe pacrpejesierne XOpoIo CoraacyerTcst ¢ Teope-
THYeCKUME npeckasanugmu B pamkax CM [16418] Bo Bcex obsiacTsix criekTpa
3a ucK/oueHneM obyactu ¢> < 1 I'sB?, B KoTopoil sKcIepuMeHTaIbHbIE JIaH-
HbIE 3HAYUTE/ILHO IPEBBIIMIAIOT TEOPETUIECKIE MPEJICKA3aHNsl, OCHOBAHHBIC HA
BKJIAJIaX KOPOTKHUX paccroguuii |15]. OqHako yuer aHHUIMHISIMOHHBIX BKJIAI0B
1 BKJIAJIOB OOJIBIINX PACCTOSHUMN, BOSHUKAIOIIIX 38 CIET PACIaI0B BEKTOPHBIX
ME30HOB Ha JIEIITOHHYIO TIapy, MO3BOJISET COIJIacOBaTh TEOPETHIECKUE TIPE/I-
cKazaHus ¢ 9KcrnepuMeHTabHbiMu janabivu [19-21]. Marepdepentus mexk ity
epTypOATUBHBIM BKJIAJIOM U HEIEePTYyPOATUBHBIMY BKJIAJAMU OOJIBINNX PaC-
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crostHUil ObLIa nccaegopana Kouraboparueii LHCb ma ocnoBe mannbix 2011 n
2012 rr. o pacnagy BT — KTutp~ |22]. Uz ananusa ciemnyer, uro dhasbl am-
IJIATY], COOTBETCTBYIONMX J/1)- 1 1(2S5)-Me30HaM, BaxKHbI, Korga ¢ ~ m?5 T
g~ mfms), OJIHAKO MX BJIMSHUE Ha paclipejiesieHue 110 ¢ B Apyrux obJia-
CTSIX HecyIecTBeHHO. KpoMe Toro, 66111 M3MepeHbl BEPOSITHOCTH PaCIiajioB ¢
pOKJIeHneM boJiee TsZKesbIX cocTostanit apmonust: 1(3770), 1(4040), 1(4160)
u 1 (4415). DTOT aHAIU3 [IPEJICTABIISACTCS TTOJE3HBIM JIJIs U3YYeHUsl JAPYTUX
HOJIyJIENITOHHBIX PaclaloB, B qactHocT BT — ¢t (~. Bonee Toro, nnsa pac-
nmanos B — mete™ u B — wut ™ nerkue Bexropubie p’-, w- W ¢-ME30HBI JIAIOT
3HAYNTEIHHBIN BKJIAJ] B PACIPE/IE/IEHIE 110 MHBAPUAHTHON Macce JUIeIITOHHHON
nape! Bo/msn g2 ~ 1 B2,

B nacrogieit pabore mpeacTaBiieH TEOPETUIECKUN aHAIN3 PEJIKUX I10JTY-
JIENTOHHBLIX pacuagos BT — w0t (= rme { = p, T, ¢ y9eToM BINAHUSA BKJIAJIOB
bosbinux paccrosuunii. [lomydensr npejckazanus Ajs auddepeHuaIbHol 1
[IOJTHON BEPOSATHOCTEH paciajia, a TaK:Ke Paclpeie/ieHus 110 WHBAPUAHTHOMN
Macce Hapbl JICITOHOB.

2 Teopus peaknx MoJIyJIeOTOHHBIX
pacmagaoB B-Mme30HOB

Teoperuyeckuii anan3 ObLT BBIIIOJTHEH B paMKaxX MeTo/1a (D (PEeKTUBHBIX JJICK-
TPOCTAbbIX TAMUIBTOHUAHOB [23}[24], KoTOpBIe moTydaoTCs moce yaaJieHus n3
CM Tsizkesbix creneneii cBobojbl (t-kBapk, W- u Z-6030ub1). D1a sddexruBHast
TEOPHsT TaKKe He COMAEP:KUT (POTOHBI U TJIIOOHBI ¢ SHEPIUSME, TPEBBIIAIOIIAME
Maccy b-KBapka, my, KOTOpas BBICTYIIaeT KakK HanOOJIBIINI SHEPpTreTuIecKuii
MactTadb Teopun. POTOHBI U TVIIOOHBI ¢ 00JIee HUBKUMU SHEPIUSIMHU OITUCHIBa~
forca crangapTaHbiMET JarpamkuagamMu K91 n KX /. B stom momxome oObIYHO
MIPOBOJIUTCA PACUeT PEJIKUX IOJIYJICIITOHHBIX PACIaI0oB B-MEe30HOB, MIYIIUX 34
cueT KBapKOBBIX b — s u b — d nepexonoB. Db eKTUBHBII raMUIbTOHUAH,
omuchIBaloONuit b — d mepexos, nMeeT BUI:

IV G P )+ a0 P )] + (1)

VeV | Cr) PL () + Colp) P ()| = VeaVis - Cil) Pyae) |+ e

i=3

b—d
Hweak

rjae G — nocrogunag Pepmu, Vo, 4, — aementsl MaTpunsl KKM, yirosiersopsio-
mee ycaoBuio yHUTapHOCTH VgV +VeaVis +VigViy = 0, C; (1) — koaddbunuents
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Bunbcona, onpenensemsre Ha Macintabe £ [25], P;(p) — oKaIbHBIE OEPATOPDI
b — d nepexona. Bazuc s1ux yoKaIbLHBIX onepaTropos P;(u) BKIOYaeT B cebst
10 oneparopos [24]. JTugupyromuii Bkiia B8 ammmryy BT — m(*t(~ pacnaza
JIATOT CJIeIYIONINe TpI/I OIIePATOPHI:
_ pv
Py = 1672 [do™ (my R + mgL)b] szv (2)

Por = %(deb);@WL Pror = 5-(dLb) ; 0’0, (3)

riae L, R = (1 F75) /2 — onepaTopsl JIeBoii U MpaBoil IPOeKIun (hepMIOHOB,
F,, — TeH30p 2JIeKTPOMArdHuTHOI'O IOJIs, My U Mg — MACChl b- 1 d-KBapKoB,
npudeM Maccoii d-kBapka OyieM npenebperats, o' =i (Y, — YY) /2, B o =
e?/(47) — mocrosinuag ToHKOf cTpyKkTyphl. CymMmMupoBanue 110 £ IojpasyMeBaeT
CYyMMHPOBAHHKE 110 BCEM 3apsIzKEHHBIM JIETITOHAM.

Marpudanbie s;ieMentsl B — P niepexosa, rje P — 1ceBiocKaagpHblil ME30H,
CTAHIAPTHBIM 00PA30M OIPEJIEIIIOTCA TpeMs MepexoHbIMu (hopMdaKkTopamu:
Fo(@®), fola®) mt fr(a®) [26), mae " = (p — k)¥ — vermipexaeprbiti mmyaibc,
YHOCHUMBIH JICIITOHHON IIapoii:

(PRI HBw)) = £ (00 o + K = B ) MR g, g
(P 0 Blos)) =i [+ 1) (i —m)] L )

(P(k)|py"vsb| B(ps)) = 0, (P(k)|po"v5q,0| B(ps)) = 0, (6)
rje mpg U mp — MacChl B- U [CEBIOCKAJIAPHOIO ME30HA, COOTBETCTBeHHO. [1pn
HYJIEBOM IIePEeIaBaeMOM UMILYJIbCE /ISt BEKTOPHBIX (OPpMQAKTOPOB BLIIOIHAECT-
ca coornomtenue: f1(0) = fo(0).

Hunddepennuaabayio BepoaTHOCTL paciiaga B — P{T{~ ¢ yaeToM BKJIAJI0B
6OJII)H_H/IX paCCTOHHI/Iﬁ 1 aHHUTHUJIAIIMOHHBIX Jdual'paMM MO2KHO 3allliCaTb B
sue [20):

dBr (B — P{T(7) 2G0T |, 3/2( 2\ @BP( 2 2.9
i = Spar 55 3{n)m IV Vi PAY2(¢*)FPF (¢%)y /1 — 4mi /¢?, (T)
FPP(q?) = Fyi" (%) + Fyg' (%), A((12) = (mp +mp —¢*)* — dmpmp  (8)

Fa(q*) = (1+2qﬂ) Cs'(q®) fp(q2)+m2ﬁ0 (@®) £ (%) +
T LEP(@) + ACEP() (9)
A0t = (1228 e gt B EY e e, o
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rjie Sp — MHOXKHUTE/Ib, YIUTHIBAIOIINN KBAPKOBYIO CTPYKTYPY KOHETHOTO ME30HA,
B yactHOCTH, Spt = 1 u Spo = 1/2 jyist T-Me30HOB, O?,fsg,lo — 3 dekTuBHbIE
koapurnmentsl Bubcona, Brirodarorie KX /I monpasku c/ieIyoImero 3a rias-
HBIM TopsiiKa Teopun Bosmytenuit [27], LEP (¢%) — cnaraemoe, yunrbisaromniee
BKJIaJ] aHHUTUIAIMOHHBIX guarpamm, 1 ACEY (¢?) — craraemoe, oTeuaromiee
38 BKJIAJIbI OOJIBIITIX PACCTOSHUIA.

Brutaibl aHHUTWIATIUOHHBIX TUATDAMM BBIYHC/ISIOTCS B PAMKax TaK HA3bI-
BaeMoit DddekTuBHoil Teopun Oosbinux SHepruit. OHU CyNIECTBEHHBI B HAYAJIE
CIIEKTpa 110 ¢2, 1 UX yH4eT UMeeT CMBIC] TOJIBbKO Jyls paciagos BT — wrete”
u BT — 77 pTp~ 28], Briajbl 60bIIuX pacCTOSTHUI MOy IalOTCsl U3 JIBYX-
JacTu4IHbiXx B — V7 pacrajios, e V — HelTpaabHbIil BEKTOPHBI ME30H, &
umenno, p°, w, ¢, J/1, 1(2S) u Gonee MaccuBHBIE BEKTOPHBIE YapMOHUEBBIE
PE30HAHCHI, C MOCJIEILYIOIUM POKICHIEM ME30HOM JICHITOHHON mapbt V. — (10,
Onu MOryT 6BITH IPEJICTABIEHBI CJieLyomum obpazom [19):

oV H™ (¢?) + V2V, HE (¢?)
v Vib

oy fyr A
H® q2 _ q2—q2 |4 BVrw :
@) = 6= %) 2 G = gmt — g — T

ACE™(¢*) = —167° (11)

,  (12)

rae fv, my u I'?" — nocrosinHas pacnajia, Macca U IIOJHAsl [IMPHHA Paclia-
JIa BEKTOPHOI'O ME30HA COOTBETCTBEHHO, ki — KOI(MD@MUITUEHT, Olpe ie/IaeMbIit
KBapKOBOI CTpyKTypoil Mesona, AY, (p = u, ¢) — ammanTyasl pacnajia, u
cBoGomubIit mapamerp ga = —1.0 ['sB? Beibpan Takum ke, kak u B [19]. Tudde-
peHIuaIbHasg BEPOSITHOCTD Paciajia @ cozep:kut tpu dopmbakropa B — P
nepexona: f1(q%), fo(q¢*) u fr(¢*). VI3 usBecTHBIX B JIATEpaType MapameTpu-
zaruit 3Tux GopMdpaKTOPOB B HACTOAIIEH paboTe BbIOpaHa IapaMeTpu3alusl,
npejioxkentas boppeseem, Kanpunn u Jlesmomem (BKJT) [29).

3 PesyabTaThl 1 aHAJN3 BKJIAJI0B
0OJILIINX PACCTOAHMIA

Paciipeiesiennst 10 MHBApUAHTHO Macce JIeNTOHHOM napsl B pacnagax BT —
7tputu” m BT — 77T ¢ yueroM BKJIAIOB aHHUIMJIAIUMOHHBIX JIMArpaMM
U BKJIAJ0B OOJILINUX paccTodgHuii npejcrasienbl Ha Puc. |1 Teopermueckue
IpeIcKa3aHns JJIs IOIHOM BepogTHocTH pacnanos BT — ntuty~ u BT —
7t7T7T B cilydae ydera TOJIBKO HePTYPOATUBHOIO BKJIAAA Brpey, ¢ yIeTOM
BKJIQJIOB GOJIBINNX PACCTOAHUN U BKJIQJIOB AaHHUIHIAIMOHHBIX JUarpamm (Jijis
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MIOOHHOTO pacnajia) Bry, B CpaBHEHHH ¢ MMEIOIIUMUCS SKCIIEPUMEHTATbHBIME
JAHHBIME Brey, mpescrasienst B Ta0o. .

25 1.0

»
o

0.8

o
o
=)

o
o
~

dBridg?+10%, Gev2
dBr/dq?+10%, Gev2

o
o
=3
N

0.0 0.0 s s s s s s s
0 5 10 15 20 25 12 14 16 18 20 22 24 26

q2 ,Gevz q2 ,Gev2

Puc. 1: Teoperuueckue rpejackaszanus i pacipee/ieHril 10 nHBaApUaHTHO
Macce JIETOHHON mapbl B pactagax BT — wtutu~™ (cnesa), rue kpecruka-
MM yKa3aHbl SKClepuMeHTaabHble Januble |15], 1 BT — 7t777~ (cupasa).
ObJtacTu 3eJ1€HOrO0 IBETa MOKA3hIBAIOT Pa3dpPOC 3HAUEHUIT, BOSHUKAIOIIUI 13
HeolpeJie/IeHHOCTel B BhIOOpe MacinTaba (haKTOPHU3aIUy U OIMIHOKHI SKCIIEpUMEH-
TaJbHOIO OmIpejeenns s1eMenTa Vg marpuibl Kabucoo—Kobastmmu—Mackasa.

Kak moxuO Bugers u3 Puc. [I Becomblil BKas B pacupejesieHne 1mo nHBa-
PHAHTHOII Macce MIOOOHOI mapel B pacuage BT — 7wt ut ™ maror Braager or
JIErKUX BeKTOPHBIX p’-, w- 1 (-Me30HOB B 06J1aCTH MaJIbIX g2, a TakKe oT J /- n
1(2S5)-me30H0B. Bosiee MaccHBHBIE BEKTOPHBIE YADMOHUU HE JIAI0T 3HAIUTEILHO-
ro BKJaJa B pacipeesienne. Haimm npejgckasanus ¢ y9eToM BKJIAI0B OOJIBIINX
paCCTOHHHﬁ, KaK MO2KHO BH/I€TH, XOPOIIO COIJIaCYIOTCd C 9KCIICpUMEHTAJIbHBIMU
JIAHHBIME, TToJTy9eHHbIMEU KoJutaboparueit LHCb mo stomy pacmaty BO BCex
06J1aCTAX CIIEKTpa II0 ¢2.

Tabmuna 1: Teoperuveckue mpejicKa3aHus JJIsl TOJTHBIX
BepoaTHOCTel pacranos BT — w0t~ rne £ = p, 7

Bt > rtutu” | BY > ntrtro
Brpe x 108 .72 0.60755%
Bry, x 108 1.9170%7 0.61755%

Brog X 105 | 1.83 %+ 0.29 -

ITocKOJILKY pacIpe/ie/ieHie 10 MHBApUAHTHONH Macce TayOHHOH Iaphbl B
pacnage BT — 77777 nomagaer B mnrepsan ¢* € [4mZ (mp — my)?,
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Ha Hero JIOJIKHbI OKa3blBaTh BiusiHUE 1)(2S)-ME30H U Cjejyroliue 3a HUM
gapmonuesble pesonanchl [30]. 13 npasoro rpaduka na Puc. [1] Bugno, aro
1 (2S5)-pe3oHanc Jaer 3HAUUTEBHBIN BKJIAJ B PACIPEJIEICHNE 110 MHBAPUAHT-
HOIl Macce JIENTOHHOI mapbl. AHAJIN3 BO3MOXKHOCTH BINAHUS Ha PacIpejieie-
HUE 110 I/IHBapI/IaHTHOﬁ Macce JIEIITOHHOMI ITapbl 60ﬂee BbBICOKUX 9YapPpMOHHEBBIX
PE30HAHCOB MOXKHO IPOBECTH Ha npumepe 1(3S)-Me30Ha. DTOT ¢C-Pe30HAHC
Tak:ke msBecreH Kak 1(3770). BepostHoctn pacnajgos BT — 7t (3S) u
¥(3S) — 77T eme He M3MEPEHBI IKCIEPUMEHTATBHO, HO MOYKHO OIEHHUTD
BepoaTHOCTh BT — 71)(3S), ncnosnn3yst KaoHHBIE MOJIBI pactajia B-Me30Ha,
a umenno BT — KT¢(2S) u BT — KT¢(3S), orHOCUTE/IbHBIE BEPOSTHO-
cti KoTopbIxX cieiytomme: Br(BT — KT(2S5)) = (6.2440.20) x 107* u
Br(BT — K*(35)) = (4.3 £ 1.1) x 107 [31]. Ucnonbayst SU(3) p-cummerpuio
ApOMAaTOB KBapKOB, HafijieM 1osiHyo BepostHocTh BT — m+)(3S) pacnana us
COOTHOIIICHUAI:

Br(B* — 74(35)) _ Br(BT — 77 ¢(25))
Br(BT — K+1(35))  Br(Bt — K*¢(25))’

(13)

riae Br(BT — 7t(29)) = (2.44 £+ 0.30) x 107° [31]. Cunrag (13 TounbiM,
ITOJLY IHM:

Br(B" — 7¢(39)) = (1.7£0.5) x 107°. (14)

[TockoubKy (3770) — mmpoKuii pe3oHaHC, OCHOBHBIE KaHAJIBI PACTIAIa Y KOTO-
poro Ha DT D~ u DD napsl, To 4nCTO JENTOHHBIE KAHAIBI PACIAJIA IS HEro
1oJIaBJIEHBI. TOOBI OTIEHNTH BEJTMINHY 3TOTO ITO/IABIEHN, MOXKHO UCTIOTb30BaTh
CBOWCTBO JIENTOHHOM YHUBEPCAJILHOCTH, & TAKyKe BOCIIOJIL30BATHCS U3MEPEHHOI
BeposaTHOCTBIO pacnaja Br(y(3S) — eTe™) = (9.6 £0.7) x 107 |31]. dudde-
peHnuaIbHble BeposTHOCTH pacnajios Br(¢(3S) — ete™) u Br(¢(3S) — 7777)
OTJIMYAIOTCS TOJBKO (A30BBIM 00BEMOM, U JIJIsT UX OTHONIECHUS CJIE/LyeT:
Br(¢(3S) = 7t77)  A(My@3s), mr, my)

Br(¢(35) — ete™) - A Mp(zs), Me, me)’ (15)

rae AM(M,m,m) = M~/ M?—4m? |32|. Ucnons3ys 3nauenus macc Mysg)y =
(3773.7£0.4)MsB, m, = 0.511 MsB u m, = (1776.86 £0.12) MsB [31],
HOJTy 9aeM:

Br(y(3S) — 7777) = (3.2 4+ 0.2) x 107, (16)
9TO0, B CBOIO OUePENbh, JAET CIIEAYIONIYIO OIIEHKY BEPOATHOCTHU pacHaaa:

Br(B* = 77(3S5) = 7trtr7) = (5.4 +£1.9) x 107 (17)
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CpasauBas ¢ BepogaTHOCTbI0O BT — 717177 pacnana, yaursiBatomeit ToJabK0
neprypbarusnblii Bkja (Ta6u. (1)) u mo nopsiiky Besmauubl pasHoit ~ 1079,
JIEFKO 3aMeTUTh, 4TO BKJaj or ¢ (3770)-pe3onanca He OKas3blBaeT Cyllle-
CTBEHHOI'O BJIUSIHUS Ha OTHOCHUTEIHLHYIO BEPOATHOCTD, OY/IyYH MOPsJIKA ONUOKH
nepTypObaTUBHOTO BKJIA/IA.

Bosee Tsizkesible BekTopHbIe YapMonnn, a umenno ¢(4040), 1 (4160), 1»(4230),
1(4360), 1 1)(4415), TaxxKe B OCHOBHOM paclajaioTca Ha DD mapy, mosToMmy,
Kak u Jyist ¢ (3.5)-Me30Ha, UX JIEKTPOHHbIE U MIOOHHBIE MOJIBI MojiaB/enbl [30).
CrenoBaTeIbHO, UX BKJIQJIAMEI MOYKHO IIPEHEOPEUb U yYeCThb BKJIAJIbI BILJIOTH

710 y3KOro 1)(2S5)-Me30Ha BKIIIOUATENBHO.

4 3akJIro4eHue

B nacrosmeit pabore mpeJIcTaBIeHbI TEOPETUIECKIE TTPEJICKA3AHUS JIJId [TOJTHON
BEPOATHOCTH, & TAKXKE pacCIpeacJIeHUN 110 MHBAPUAHTHOU Macce JICHTOHHON
napsl g pacuagos BT — 77yt u” u Bt — 7t 7T ¢ yyerom aHRUrMISIIMON-
HBIX BKJIAJIOB U BKJIaI0B OOJIBITIX paccrogumii. [IpoBeien anams BKIaI0B 00JIb-
IIUX PACCTOSTHUN U MOKA3aHO, YTO BKJIAJIBI OT CJELYIONHX 3a 1)(2S)-Me30H0M
PE30HAHCOB HE ITPEBBIIIAIOT HEOIIPE/IEJIEHHOCTh TEOPETUYECKUX PACUETOB, YUl-
TBIBAIOIINX TOJILKO 1epTypbaTuBHbIil BKIa. [Ipeackazanus, momydeHHble Jiisd
BT — 7t pacnana, HaxomgTes B XOPOIIEM COVIACUH C 3KCIePHUMEeHTAIbHbI-
MW JAHHBIMU B IIpeJie/IaX MOTPeNnTHoCTel. Y To XKe KacaeTcs 9KCIePUMEeHTaTbLHOM
IPOBEPKU IpecKasanuii aya pacuaga BT — 777777, To obnapyzkenue 3Toro
pacrajia MOXKHO OXKUJIATh IIPU HADOPE JOCTATOYHON CTATHUCTUKU PACIA/IOB B
nocseaytonux mnepuogax paborsr LHC u Belle-11.

baarogpapaocTu

Mper 6/1arogapum Axmeia Ay 3a COBMECTHYIO pabOTy 10 JIAHHON TeMAaTHKe U
obcykaenne pe3yabTaToB. PaboTra BhINOIHEHA TIpU (PUHAHCOBOMN MOJJIEPIKKE

PH® (mpoekr Ne 22-22-00877).
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CHARGED AND NEUTRAL PION POLARIZABILITY
MEASUREMENT IN THE CPP/NPP EXPERIMENTS

Ilya F. Larin!?, Victor V. Tarasov'
! National Research Centre “Kurchatov Institute”, Moscow
2 University of Massachusetts, Amherst
on behalf of the GlueX collaboration

Abstract

Polarizability is a fundamental particle property. Measurement of pion
polarizability values allows checking strict ChPT prediction. Charged and
neutral m-mesons polarizability will be extracted from the CPP and NPP
experimental data using Primakoff pair production cross section on nuclear
target. The CPP/NPP experiment run at TJINAF Hall-D was conducted in the
summer of 2022 and utilized a polarized photon beam with an energy range of
4.5-6.0 GeV and the lead-208 target on the upgraded GlueX experimental setup.
The report considers existing experiments on measuring pion polarizability,
theoretical predictions of polarizabilities, setting up CPP/NPP experiments
at the GlueX facility, expected results in these experiments, and preliminary
analysis of the collected data.
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N3MEPEHUE ITOJISPU3YEMOCTE 3APSI>KEHHOI'O 1
HEWTPAJIbBHOI'O IINOHOB B SKCIIEPUMEHTAX CPP/NPP

Nnba ®. Jlapun'?, Buktop B. Tapacos!
HUAII “KypuaroBckuii nHCTUTYT’, MOCKBa
2 MaccauyceTcKkuii yHuUBepcutet, AMXepcr,
ot Kosutabopanuu GlueX

1

Annoranuga

[TosrapuzyemocTh — pyHIaMeHTaIbHAS XapaKTepUcThKa Jactul. zmepe-
HUE BEJIMYUH IOJIAPU3YEMOCTEH ITHOHOB IT03BOJIAET OCYIIECTBUTH ITPOBEPKY
npejickazanuii kupasbhoit neprypbarusuoii Teopun (ChPT). [Moxsipusyemoctu
T-Me30HOB OyayT omupeesnerbl B skcuepumentax CPP u NPP mocpencrsom
n3Mmeperust [IpuMakoBCKOTro ceueHnst (DOTOPOXKIEHUST 3aPAKEHHBIX U HEHTPaJIb-
HBIX TTHOHHBIX MMap Ha siepHoit mutmenn. C 31oit mespio tetom 2022 roga Ha
yckopurenae TJNAF nposenen Habop SKCIEepUMEHTABHBIX JaHHBIX 110 B3au-
MOJIEHCTBHUSAM IOJIIPU30BAHHOTO (POTOHHOTO IyuKa ¢ sHeprueit 4.5—6.01%B ¢
aapamu cBuHIa-208 Ha MoaepHu3upoBaHHO# ycranoBke GlueX. B mokiamie
PaACCMOTPEHBI CYIIECTBYIONINE IKCIEPUMEHTHI 110 U3MEPEHUIO TTOJIAPUIYEMOCTH
MIIOHOB, TEOPETUYECKHE MPEJICKA3aHUs TTOJIIPU3YEMOCTEl, TOCTAHOBKA, SKCIIEPH-
mentoB CPP/NPP na ycranoeke GlueX, oxujiaembie B 3TUX 9KCIIEPUMEHTAX
pPe3yJIbTAThI U IIPEIBAPUTE/ILHDBIN aHaIn3 HAOPAHHBIX JIAHHBIX.
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1 Introduction

Polarizability is a fundamental particle property. The pion is the lightest
strongly interacting observed particle. The measurement of the m-meson
polarizability is an important test of the fundamental symmetries in QCD
at low energy. Among all hadronic polarizabilities, the pion polarizability is
significant, since it provides a test of fundamental QCD symmetries in the
leading order of perturbation theory. ChPT prediction at leading order O(p*)
for the electric @ and magnetic 8 charged 7 polarizabilities is given by formula

4o , ,
O+ = —fp+ = W(Lg_[/lo)

with O(p®) corrections predicted to be relatively small [1-3]

pt — Ber = (5.74£1.0) x 10~ *fm?
and for neutral pion polarizability (one loop chiral contribution) [4]

(0%

 96m2m, F2

~ —0.55 x 10~ *fm?

l

Qn0 = _ﬁﬂ'o =
with O(p®) corrections [5]

0 — Bro = (—=1.940.2) x 10~ fm?,

where m, — pion mass, F — pion decay constant, a — fine-structure constant, Ly
and L7, are low energy constants in Lagrangian |6]. The pion polarizability also
plays an important role in the (g — 2),, anomaly [7], the interest in measuring
which has grown since it was recently reported 4.2 standard deviations from
the Standard Model prediction [§].

2 Previous measurements and theoretical
predictions of the pion polarizability

The charged pion polarizability a,+ — .+ was measured by three different
methods. These are (1) radiative pion Primakoff scattering in the nuclear
Coulomb field 77 — 7 Z~, (2) two-photon fusion production of pion pairs vy —
7 via the efe™ — ete ntn~ reaction, (3) radiative pion photoproduction
from the proton yp — 7 + n. The most up to date measurement in each
type are COMPASS [9] where a, — 8 = (4.0 £ 1.244 £ 1.44,5) x 10~ *fm?,
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MARK-IT [10] where oy — fr = (4.4 £ 3 25at4+syst X 107*fm?) and MAMI
where a; — B = (11.6 4 1.5510¢ £3.05y5t £0.5,m0de1) X 107*fm?. Until now only the
COMPASS collaboration measurement has reasonably small uncertainties and
coincides within the uncertainty with the theoretical calculations . Previous
measurements grouped by different experimental techniques and theoretical
predictions of a,+ — [+ shown in Fig. 1.

The neutral pion polarizabilty was estimated by as (0.842.0) x 10~*fm?
according to the only currently existing measurement of the cross section for
the vy — 797% reaction in the mass region below 0.7 GeV in studies of the
ete™ — etem'7¥ interactions in the Crystal Ball experiment at DESY [13].
A large uncertainty in the measurement of polarizability arises from the low
statistics collected for the reaction vy — 707% at Wioro < 0.7 GeV (about 300
events).

18 | | T T | i | ]
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— (Serpukov) : (DR) =
12— Imam ]
[ (MAINZ) i
10— —
8~ =
i s e e GlueX(Projected) ¢+ Ta o -
61 = P Gasser _PasquinH
: L lJLﬂ'-'l ,. (ChPT) (DR) : C
42%':&:)(“ """""""""" cOomMPASS - S (I
E (CERN) i
2 ==
0 i | | | | | | | [l
L y '{p—;nn*‘y L j 7K—>7r'n:'x | I— |
YY—>ntn TA—-T'YA Primakoff Theory Predictions
Collider Primakoff

Figure 1: Experimental data for o+ — 8,+ grouped by measurement type along
with the theoretical predictions
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3 CPP and NPP experiments at Jefferson Lab

The goal of the CPP and NPP experiments is to make a precision measurement
of pion polarizabilities by collecting of a high statistical data set of the vy —
atn~ and vy — pi®7® reactions near the threshold through the Primakoff
process (Fig.2.). The cross section of this reaction can be accessed in a
tagged-photon beam measurement of YA — 77~ A(vA — 7%7°A) at very low
momentum transfer:

dPop. 2027 E3 (% sin” 0

|F(QH*(1 + P, cos2¢.)o(yy — 7m),

where op, is the Primakoff cross section of two pions production, €2, is the
solid angle in the laboratory frame for the emission of the 2w system, M, is
the invariant mass of the 27 system, F. is the energy of the incident photon
beam, Z is the target atomic number, 3 is the velocity of the 27 system,
F(Q) is the electromagnetic form factor for the target, 0., is the lab angle for
the 27 system, P, is the linear polarization of the incident beam, ¢, is the
azimuth angle of the 27 system, and o(yy — 7) is total cross section which
is sensitive for the pion polarizability. Existing theoretical calculations for the
pion pair photoproduction at forward angles and near the threshold should
provide opportunity for extracting m-meson polarizabilities [14].

Fig. 3 (left) presents calculated total cross sections for 4y — 777~ from
Pasquini et al. [3] for the different o, — 5, values (with | cos0,.| < 0.6). The
black curve is a calculation with no polarizability effect. The blue dashed curve is
subtracted dispersion relation (DR) calculation with a+ — B+ = 5.7 x 10~ *fm3.
The dotted curve is the subtracted DR calculation with the polarizabilities
from [15] with o, — 8, = 13.0 x 10~*fm3. Comparision of the curves with
Ozt — B+ equal to 5.7 x 107*fm? (blue dashed) and 13.0 x 10~*fm? (black
dotted) shows a change in the cross section at Wy, = 0.4 GeV of approximately
20%. The red data points are expected for the Jlab CPP experiment and black
data points from the Mark II experiment for vy — 77~ reaction. Simulation
for the CPP measurement [16] predicts the total cross section uncertainty about
1% and az+ — B+ ~ (6.0 +0.6) x 10~*fm? with an expected accuracy of about
10% which is few times more precise than best available. The main uncertainty
components are the trigger efficiency, u* = background, beam polarization.

Estimated cross section uncertainty for the NPP experiment — about 5%
gives azo — Bro expected value about (—2.0 £ 0.8) x 10~*fm? (uncertainty
about 40% in determination of the 7 polarizability [17]). Total uncertainty
in NPP comes from available statistics, yield extraction, acceptance. Fig.3
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(right) shows predicted total cross section of yy — 797° reaction with estimated

uncertainties for NPP experiment (assuming that about 2K pairs of neutral
pions will be collected during the run). The data points from the single previous
Crystal Ball measurement [13] are shown for the comparison.

2R y

>

Figure 2: Diagram of the vy — w7 reaction

4 Experimental setup

The simplified layout of the GlueX detector is shown in Fig. 4. The spectrometer
is based on a 4 meters long solenoidal magnet operated at the maximum field
of 2T. The lead-208 target is located inside the upstream bore of the magnet
and placed upstream of the nominal GlueX target by 64 cm. The central drift
chambers(CDC), are cylindrical straw-tube detector, starts at a radius of 10
cm from the beam line. The CDC consists of 28 layers of straw tubes in axial
and two stereo orientations. The forward drift chambers(FDC) are located
downstream of the central tracker and consist of four packages, each containing
6 planar layers in alternating u-y-v orientations. The Time-of-Flight scintillator
paddles(TOF) located downstream of the magnet. This system consists of two
planes in a crossed pattern. Photons arising from 7° decays are detected by
two calorimeter systems. The Barrel Calorimeter(BCAL), located inside the
solenoid, consists of layers of scintillating fibers alternating with lead sheets.
The Forward Calorimeter(FCAL) is located downstream of the Time-of-Flight
planes, and consists of 2800 lead-glass blocks. Special muon detector was
developed to distinguish charged pions from muons placed behind FCAL. Muon
detector consists of one lead, four steel walls and 6 MWPC chambers. This
detector was used only for the CPP experiment. NPP experiment doesn’t need
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Figure 3: (Left): vy — 77~ cross sections. The solid, dashed, dotted curves
are subtracted dispersion model calculations with o, — 5, — equal to 0.0,
5.7 x 10~*m? (ChPT), and 13.0 x 10~*fm? respectively. The black data points
are from the Mark II, the red data points are projected data points from
the CPP experiment. (Right): Estimated total cross section for vy — 7%7°
from NPP experiment and data points from the single previous Crystal Ball
measurement

an additional equipment as all gammas from 7% decays were analyzed via FCAL
and BCAL.

The diamond radiator (installedin the electron beam direction) sets the main
coherent peak edge of the tagged photon beam near 6 GeV. This enhances the
polarization significantly and also the tagging ratio compared to regular GlueX
conditions. Also Diamond radiator was installed in two positions during run
where beam polarization angle was 135 and 45 degrees respectively (positions
where beam polarization is maximum — 72%). To reduce the systematic
uncertainties beam polarization angle was changed every four hours.

More detail information about GlueX setup can be found here .
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Figure 4: Experimental setup

5 Experimental conditions and
preliminary data analysis

Simultaneously with the data collection for the experiment on measuring the
polarizability of charged pions (CPP experiment), the data collection was
carried out for measuring the polarizability of neutral pions (NPP experiment).
For CPP the Time Of Flight detector based trigger has been used. The trigger
is organized in such a way that makes it possible to select events with two
charged particles reached the GlueX time-of-flight (TOF) system [19]. This
is ideal for detecting pairs of charged tracks. In the further offline analysis
muon pairs will be rejected by muon detector and electron pairs will be rejected
via electromagnetic calorimeters. For NPP experiment FCAL/BCAL trigger
has been used as the Primakoff reaction will convert almost all of the beam’s
energy into four photons. Most of the energy will be deposited in FCAL, with
the exception of beampipe leakage and a small amount deposited in BCAL.
This simple trigger with 1 GeV energy threshold has a very high efficiency for
neutral pion production events.

Summer 2022 run was lasting from June 8 to August 17, used 107 photons
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per second from a tagged, collimated coherent bremsstrahlung beam. 106B
triggers have been recordered on lead-208 target and 23B triggers with no
target for out of target background subtraction. During and after the run,
a preliminary analysis of the data was performed, and important several
distributions were produced to ensure the data quality. Examples of such
distributions are present in figures 5,6,7. The MWPC performance has been
tested on the w — 77~ 70 decay (Fig.5). Black points are showing the events
with pion tracks with sufficient energy and correct trajectories to hit MWPCs
beyond the 2nd chamber, without requiring those hits. Red points — the same
selection criteria but with the requirement of hits beyond the 2nd chamber.
It is clearly seen that this simple muon criterion does not reject charged pion
events. In fig. 6, the invariant masses for the reactions 7 — 7 (on the left,
around 250K events, o ~ 7MeV) and  — 7 (on the right, around 2.5K events,
o ~ 23MeV) are shown for the beam energy ranges 4.5-6 GeV and 8-11 GeV,
respectively. The thick red curve in the upper figures is the invariant mass
without a target and bottom pictures are for invariant mass of two gammas
with the background subtracted. Fig.7. shows very preliminary plot of the
invariant mass of two charged pions in the CPP experiment.
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Figure 5: Invariant mass of 777~ 7" (see the text for the details)
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6 Conclusion

In the summer of 2022 at Jefferson Lab in Hall D, the CPP experiment has
been successfully conducted. Simultaneously the NPP experiment has been
collecting the data. 106B triggers have been collected on lead-208 target, 23B
triggers have been collected on empty target for out of target background sub-
traction. As a test of data quality, distributions for various kinematic variables
(in particular, for the invariant mass of two photons) have been plotted. The
collected distributions have the expected shape, indicating good quality of the
data. The calibration and further analysis are currently ongoing.
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INTRODUCTION TO PHYSICS OF ATOMIC NUCLEI.
I. NUCLEUS AS A SYSTEM OF NONRELATIVISTIC
NUCLEONS

Eugene G. Drukarev
Petersburg Nuclear Physics Institute of NRC “KI”, Gatchina

Abstract

We present the main points of the nowadays knowledge of physics of atomic
nuclei without running for technical details. The lectures consist of three Parts.
In Part I we consider the nucleus as a system of nonrelativistic nucleons. In
Part II we consider the nucleus as a relativistic system. In Part III we discuss
the approaches based on quantum chromodynamics.

From editor:
Unfortunately, Eugene Grigorievich Drukarev passed away before preparation
for publication of these lectures was completed. However the already existing
Part I may be interesting for the readers. Therefore we decided to publish the
text in the School Proceedings.
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BBEJEHVE B ®PU3UKY A1PA.
I. 41P0O KAK CUCTEMA HEPEJIATUBUNCTCKUNX
HYKJIOHOB

Esrenunii I'. /Ipykapes
Ilerepbyprckmii macTutyT simepHoii pusnku HUIL «KW», l'atanna

Aunnoranusa

MpbI M3J102)KUM OCHOBHBIE TI0JIOYKEHHSI COBPEMEHHBIX 3HAHUI 110 (DU3HKE aTOM-
HBIX $Jep, He BJIaBasgCh B TEXHUYECKHUE IOJPOOHOCTU. JIeKIum cocTodT us
tpex dacteit. B Hactu I MBI paccMaTpuBaeM s/Ipo KakK CUCTEMY HEPeIaTUBUCT-
ckux HyKJg0HOB. B Hactu II MBI paccMaTpuBaeM sJIpo KaK PETATUBUCTCKYIO
cuctemy. B Hactu III Mbr ob6cy)1aem 10J1X0/IbI, OCHOBaHHbIE Ha KBaHTOBOM
XPOMOJIMHAMUKE.

Om pedaxmopa:
K coorcanenuro, Fezenuti I'puzopvesuy Jpyrapes nokurys Hac 0o 3a8epuLeHUS
nodzomosku nybaukrayuu sexyut. Odnaxo yorce cywecmsyrowas Hacmo [
Moorcem Ovims unmepecta wumamenam. Iloamomy mor pewuny onybisurkosams
mexcm 6 Tpydax LKxonwvt.
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1 Introduction

1.1 The contents of the lecture

The lecture is addressed to the people who know very little about the physics
of atomic nuclei but want to have a general view. Thus we present the main
points of the nowadays knowledge of the subject without running for technical
details. We also say very little about the experimental methods, just reporting
the main experimental data.

In early thirties of the XX century the people realized that the atomic
nucleus consists of protons and neutrons. This was just several years after the
equations of quantum mechanics were written down. The theory of nucleus
developed together with the progress of theoretical physics. The nowadays
knowledge consists of the results obtained in framework of nonrelativistic and
relativistic quantum mechanics, combined with some aspects of the field theory
and includes the results based on the quantum chromodynamics (QCD). We
try to present the main points.

In Part I, we consider the nucleus as a nonrelativistic system. The R ~ A!/3
dependence of the nucleon radius R on the number of nucleons A lead to
conclusion of that the nucleon density does not depend on A and is constant
inside the nuclei. This provided a qualitative picture of the nucleons in nuclei.
The observed structure of the energy levels analogous to that of an atom
prompted the possibility of single-particle description of nucleon in the nucleus
with the rest A — 1 nucleons (the core) treated as a source of the field described
by potential U(r). The small values of the nucleon kinetic energies stimulated
further analysis by employing the nonrelativistic wave equation. Calculations
with simple well potential provided the shell structure of nuclear levels and
explained the existence of most stable magic nuclei.

Much further progress was achieved in framework of the nonrelativistic
approximation. The theory of the nonspherical nuclei was built. The quadrupole
moments were calculated. The rotating spectrum was obtained.

In the next step interaction of the nucleon in nucleus was expressed in terms
of NN interactions. The latter was extracted from experimental data on the
NN interaction. It was understood that at large distances the NN interaction is
determined by the one-pion exchange. However the self-consistent calculations
for heavier nuclei contained uncertainties due to large role of small internucleon
distances where the quark structure of the nucleons becomes important. Also,
the phenomenological expression for the LS interaction was employed to obtain
the quantitative results.
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The attempt to find the lowest order relativistic corrections to the energies
of nuclear levels, i.e. the spin-orbit (LS) splitting, in the way analogous the
one used in atomic physics was unsuccessful. The calculations provided the
wrong sign of the effect and undershoot the absolute value of the observed LS
splitting by an order of magnitude. This stimulated to apply the relativistic
approach.

In Part II, we present the relativistic view on the problem. Large progress
was obtained by employing the Dirac wave equation for description of nucleon
in nucleus. The nucleon can be considered as moving in superposition of vector
and scalar fields V' and S. These fields were found to be of about several
hundred MeV (recall that the nucleon mass is m ~ 940 MeV). The fields
compensate each other to large extent leading to the potential energy of about
-60 MeV. The operator of kinetic energy appeared to be more complicated than
in nonrelativistic case. The relativistic approach provided proper value of the
LS splitting.

In the Walecka model, the scalar and vector fields were considered as due
to exchange by mesons with the corresponding quantum numbers. Equations
of the model have been solved in the mean field approximation. The couplings
of the vector and scalar mesons to the nucleons can be considered as free
parameters. They can be fixed by fixing the observed values of saturation
density and of the binding energies in nuclear matter. The saturation of nuclear
matter is a relativistic effect in this approach. It is caused by the difference in
values of densities of the vector and scalar fields.

The scalar-vector approach has its weak points. The observed vector mesons
have the masses of the order 700 MeV which are close to the nucleon masses.
Thus we expect the vector mesons to be of the same size as the nucleons and
it does not look to be sufficient to calculate the meson exchanges between
the nucleons. In other words, the radiative corrections to the lowest order
contributions are expected to be important. On the other hand, the radiative
corrections have ultraviolet divergences. Thus we face the problem of small
distances between the nucleons. Also, the effective scalar interaction includes
the two-pion exchanges between the nucleons. Here we again come to the
problem of small distances.

In part III, we consider the QCD motivated approaches to the physics of
nuclei. The consistent calculation of pion-nucleon interaction can be carried
out by employing the chiral low energy pion-nucleon Lagrangian (ChL). The
ideas of chirality come from the particle physics. The ChL enables to calculate
the scalar part of the nucleon interaction. Another important point is that
it enables to trace the density dependence of the scalar quark condensate
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(M|qq| M) which characterizes the chirality symmetry breaking effects. The
evaluation of this condensate as well as that of the nucleon axial coupling
constant confirms the tendency to restoration of the chiral symmetry at larger
densities. Another approach, based on dispersion relations, known as the QCD
sum rules is also discussed.

1.2 Parameters and structure of free nucleons

The QCD describes the nucleons as the lightest systems of three light quarks
surrounded by the sea of quark—antiquark pairs [1]. The proton consists of
two u quarks with the electric charges 2e/3 (the electron charge is —e with
1/2 while o = 1/137 is the fine structure constant) and one d quark with
the charge —e/3. The neutron has the structure (ddu). This insures the proton
charge z, = e while the neutron charge is z, = 0.

Sixty years ago the nucleons were viewed as the structurless elementary
particles. Large part of the knowledge about the atomic nuclei, described in
Part I of our lecture is based on this picture. However we shall see that view
provided by quantum chromodynamics (QCD) appears to be useful even in
nonrelativistic physics of nuclei.

€=

Figure 1: The Feynman diagram describing the leading order electron anomalous
magnetic moment. The solid lines stand for electron. The dashed line denotes
photon.

The proton radius can be found from experiments on the elastic ep scattering
an fixed values of three dimensional momentum q transferred to the proton
— Fig. [1] The angular distribution is determined by the squared amplitude
M (g)]?

do

— ~ |M(q)|%
0 M (q)|

The amplitude can be written as M(q) = My(q)F(q) with My(q) = 4ra/¢?,
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the amplitude of electron scattering on the point-like proton while

Fla) = [ drptye

Here p(r) = p(r) is the density of the charge distribution inside the proton,
J &rp(r) = 1. For the point proton [ d&*rp(r) = 1, and M(q) = Mo(g). At
small values of ¢r < 1 we find

2112
a*(p|r
Flg) = 1-— (pl6 P
with (p|r?|p) = [ &rp(r)r?. The value
re = ((plr*p))"/? = 0.86 fm (1)

is called the proton charge radius. It is often assumed to be the size of the
proton.

The values of the proton and neutron masses are very close. The mass of the
neutron is m,, = 939.57 MeV /c? while that of the proton is m, = 938.27 MeV /2.
The free neutron is unstable and transfers to the proton, positron and electron
antineutrino via the beta decay

n — p+e+r,. (2)

The neutron half-life is about 14.7 minutes. In the Standard model the
proton is stable. However in some of the theories going beyond the Standard
model the proton is also unstable. Anyway, the experimental data require that
the proton half life is more than 103! years. Hence, we assume the proton to
be stable.

The potential energy of the proton at rest in the time-independent magnetic
field H is (we employ the system of units with h = 1) Uy = —p,H (we
omitted the terms of the order H?), with ., the proton magnetic moment. In
nonrelativistic quantum mechanics this term is introduced “by hands” and
one can attribute any value to p,. The proton and neutron are the fermions,
carrying the spin s = 1/2. Thus one could expect that nucleon can be described
by the relativistic (Dirac) equation which determines the operator of magnetic
moment. The latter is related to the spin operator s. The Dirac value for
the proton magnetic moment is p)’ = (e/my)s with s = /2 while o are the
Pauli matrices. For neutron, as for any neutral fermion p2 = 0 since the static
magnetic field interacts only with moving charges.
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However the experiments carried out in 1933 provided |2} 3]

K, = 2.79u5. (3)

The standard notation is p, = ) + ps" where p" = 1.79u” is called the
anomalous part. This was a surprise result. However the data on the neutron
magnetic moment obtained a year later [4,|5] were still more surprising. The
experiments provided

p, = —191p), (4)

with all magnetic momentum being its anomalous part.

The steps to solve the puzzle were made about 15 years later when it was
found that the electron magnetic momentum also has an anomalous part [6].
The experiments provided p" = 1.16 - 1073ul. The result was immediately
explained in terms of recently formulated quantum electrodynamics. The Dirac
part of the electron magnetic moment comes from direct interaction of the
electron with the magnetic field. However the electron can radiate a photon
before interacting with the field. The photon is absorbed after the interaction
takes place — see Fig. [ The mechanism is described by a nice formula

pe" = o/ (2m) - g (7).

|
|
I a
|

Figure 2: The Feynman diagrams describing leading order contributions anoma-
lous magnetic moments of proton (a,b) and neutron (¢,d). The solid lines
stand for nucleons. The dashed line denotes photon. The wavy line is for pions.
Only the nucleon intermediate states are shown.

In an attempt to explain the origin of the nucleon anomalous magnetic
moments in similar way one can include the radiation and absorption of a 7
meson by the nucleon while interaction with the magnetic field takes place
between these events — see Fig. [2l The neutron anomalous magnetic momentum
is not a surprise any more due to the reaction n — p + 1~ — n, with the
intermediate state proton and pion interacting with the magnetic field. Direct
calculations reproduced the nucleon magnetic moments with the errors of about
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20 percent [8]. The role of the heavier hadron intermediate states is obscure.
Thus the hadron language results are not reliable. The accurate values of the
nucleon anomalous magnetic moments were obtained in framework of QCD.

There are the positive and negative charges inside the neutron. One can
view the neutron as a system of the charges ez and —ez separated by distance x
and the modulus of the dipole moment is |d,| = e?z2x. Electric dipole moment
can be written as d,, = e(r) with the last factor being the expectation value of
r in neutron. One can see that d,, obtains a nonzero value only if the spacial
parity (P) is violated. A more detailed analysis demonstrates that the time
reversal symmetry also should be violated. The latest experiments provide
|d.| < 3-107%ecm, i.e. very small on the nuclear scale.

1.3 Notations and definitions. Stability of nuclei

Usually the number of the protons in nuclei is denoted as Z. It is called also the
atomic number. The number of neutrons is V. The total number of nucleons
A =7+ N is called the mass number. The standard notation of the nuclei X
is 2X or just 4X. The nuclei with the same numbers of Z but with different
values of N are called the isotopes. For example the nucleus 3He is the main
isotope of helium, while 3He is helium-3. The nuclei with the same numbers
of A but with different compositions of N and Z are called the isobars. Also,
the nucleus with Z protons and N neutrons and that with Z neutrons and N
protons are the mirror nuclei (making a special case of isobars). The nuclei of
5He and that of tritium ?H provide an example. There are about 3500 stable
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Figure 3: Region of stability of nucleons. The little squares denote the stable
nucleons
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nuclei. In the (N, Z) plane (see Fig. [3|) they are grouped mostly a little bit
below the line N = Z, having thus a small neutron excess. The symmetry

parameter
N -7

ay = — (5)

is small enough in real nuclei, |a4| < 1. In neutron-rich nuclei with larger
numbers of N the neutrons undergo 3~ decay. In the proton-rich nuclei S+
decay of the proton takes place. Thus the 3T decay

p = nte +u, (6)

becomes possible. Also, the heavy nuclei with large proton excess decay into a

lighter nuclei and « particle (the nuclei 3He). For example, 23Pu decays to the

nuclei 23U and 3He.

The nuclei with atomic number Z < 92 (Z = 92 corresponds to uranium)
can be found in nature. Some of the nuclei with the larger atomic number can
be created in laboratories (there were reports about some traces of the nuclei
with Z = 93,94 in nature as well). The half life of these nuclei decreases with
Z very fast. Being 4.47 - 10? years for Z = 92 it is 900 years for Z = 98. It is
100 days for Z = 100, 1 minute for Z = 107 and 10~2 seconds for Z = 118.
There are also some theoretical speculations about the ”islands of stability”
— the values of large Z and N for which the half life can become larger. The
most attention is devoted to the nuclei with Z = 114, N = 184. These are the
magic numbers of the shell model (see Chapter 2). The other possible islands
of stability are at Z close to 126 and 164.

At Z = 170 one finds new physics connected with quantum electrodynamics.
In the limit of point-like nucleus the electron energy in the ground (1s) state of
the Dirac equation is £(Z) = m.(1 — a?Z%)Y/2, with m, ~ 511keV the electron
mass. Thus e(Z) = 0 at Z = 137. The nucleus containing 137 protons and
the same nucleus binding two 1s electrons (the interaction of the latter can be
neglected up to the terms of the order 1/7) have the same energy. There is no
solution for the point-like nuclei at larger values of Z. The reason is that the
effective Schrodinger equation for the large component of the wave function
contains the term (3/4 — a?Z?)/2r?. Tt describes attraction at a*Z? > 3/4
leading to the ”fall on the center” situation at (a?Z% —3/4)/2 > 1/8 |9], i.e. at
a?Z? > 1. Thus one should include the finite size of the nucleus. This changes
the shape of the dependence £(Z) [10]. Starting at £(0) = m,, the energy
decreases with Z. Unlike the situation with the point nucleus, the curve ¢(2)
passes smoothly the point where ¢(Z) = 0. At certain Z = Z, ¢(Z.) = —m,,
and the ground state becomes degenerate. Except the nucleus containing Z.
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protons, there can be two electrons bound in 1s state with energies (Z,) = —m.
and (due to the Dirac equation) two positrons at rest. At larger Z > Z, the
positrons obtain kinetic energies |¢(Z)| — m. and go away being repulsed by
the nucleus. Thus the nucleus containing Z > Z. protons can exist only with
the two bound 1s electrons. It was found in that Z, =~ 170.

The neutron stars is a special example of the system with many nucleons.
The neutron stars emerge as one of possible scenario of what happens to the
star [11] with the mass between 1.3 and 2 solar masses. The star consists
of protons and electrons. It is compressed by gravitational forces. The work
of these forces increases the kinetic energy of the electrons. When the latter
exceed the neutron—proton mass splitting, the inverse beta decay

p+e — n+r, (7)

takes place. The compression is going on since the pressure of the classical
nucleon gas cannot balance that of gravity. However that of the Fermi gas can.
Finally we come to the equilibrium state of the system consisting mostly of
neutrons. A small fraction of protons is needed to prevent the beta decay of
neutrons. Thus

N -7

QA:T%:l

The density of the neutron star is close to that in heavy nuclei (see Ch.2).
However, the neutron star cannot be considered as a “giant nuclei” since
the neutrons are kept together by gravitational forces but not by the strong
interactions.

1.4 Isospin invariance

The isospin invariance known also as isotope invariance postulates that proton
and neutron are the two states (charged and neutral) of the same particle
called nucleon. Thus all strong interactions of proton and neutron are the same.
Forgetting for some time about the proton charge, we can replace the states
|p) and |n) by their linear combinations

p) = alp) +0ln');  |n) = d'[n) + V]p’). (8)

Due to normalization condition a® + b* = 1 and a2 4+ b? = 1. Also, it is
natural to assume that [(p/|p)|*> = [(n/|n)]* and [(p'|n)|*> = |(n'|p)|*. Thus
|’|> = |a|* and |b'|* = |b]%. The set of parameters, corresponding to rotation in
a two-dimensional space a' = a* and b’ = —b* satisfies these conditions.
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Thus Eq. can be written in the matrix form. Writing the nucleon wave

function as
. p
v = ("), (9

v o= UV, (10)

v-( 50 (1)

One can see that U is a unitary matrix U = Ut with the determinant equal to
unity, det U = 1. Such matrices form the SU(2) group.

The SU(2) transformation corresponding to rotation on the angle w with
direction of the axis of rotation n is

we can present Eq. (8)) as

with

U = e®T™m (12)

with g a constant factor, while 7 are just the Pauli matrices

() () ()

Following this analysis it looks reasonable to attribute a new quantum number
T = 1/2 called isospin to the nucleons. The protons have the projection
T, = 1/2 while for neutrons 7, = —1/2. The notations I and I, for the isospin
and for its projection are used quite often.

To demonstrate how the isospin invariance works, consider interactions
between nucleons and pions. Recall that there are three m mesons or pions
7 7t and 7° with very close values of masses. There are four pion-nucleon
vertices corresponding to interactions pm°p, prtn, nm~p and n7’n. Suppose, we
know nothing about isotope invariance. The Lagrangian density of interaction

contains four terms

L(z) = (@) ()¢ (x) + Pu(@)TP" "y(z)0" (x) +
n nw nmin
+ P (@)I" P ()07 (2) + P ()T " ()" (2),
with ¢°(z) and p* () the fields of the neutral and charged pions correspondingly.
The matrices [P™ P TPm n Tnm p Trmn a0t on Lorentz indices of the proton and

neutron bispinors. The second and third terms of the Lagrangian density are
equal due to the time invariance. There are three terms of the Lagrangian
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density which are quite independent. Even if somehow know, e.g. the first
term, we can say nothing about the other ones. Thus one cannot make any
predictions on the relative values of three independent vertices of the nucleon—
pion interactions.

Assuming that there is the isotope invariance, we can treat the pions as the
components of the isovector ¢ with 7%, 7% and 7~ corresponding to the isospin
projections T, = 1,0, —1 correspondingly. The Lagrangian density written in
isospin invariant way is

L) = U(@)T(r- @) ¥(a), (14)

with I' acting on Lorenz indices of the nucleon bispinors. It is convenient to
introduce matrices

L T1tim _ T — T 0
T = ;T = ;T =T,

(33 (1) ()

In these notations

') =1Ip); THP) =0; TIp)=In); T In) =0, (16)

Ip) = Ip);  On) = —|n).
Thus

L) = Yp(a)Tp(2)¢’(2) + V2Un()Ty(2) 0" () +
+ V20, ()¢ (2)p™ (2) = dn()Thn(2)¢" (x). (17)

Thus all vertices of the nucleon pion interactions rpep , D™ TP ognd
77" can be expressed in terms of one of them, e.g

Ivmr"'p TP :\/il-\pwop’ Fmron _ _prop' (18)

The isospin invariance is one of the key ideas of particle and nuclear physics.
It was introduced by Heizenberg in 1932.

During several decades there was a general belief that the isospin invariance
is an exact symmetry and that the small neutron-proton mass splitting is caused
by electromagnetic interactions. At least in framework of QCD this is not true.
Electromagnetic interactions of the three valence quarks in nucleon make proton
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heavier than neutron by 0.7 MeV [12]. Thus the strong interactions contribute
2MeV to the neutron-proton mass splitting. In QCD, the isospin symmetry
breaking effects manifest themselves in different values of the scalar condensates
of light quarks with |((0|au|0) — (0]dd|0))/({0|au|0) + (0]|dd|0))| ~ 2 - 1073.
Of course, large relative difference between the light quark current masses
m,, ~ 4MeV, my =~ 7MeV, corresponds to isospin symmetry breaking by about
30 percent. However, since the current masses are small on the particle physics
and nuclear physics scale, it is difficult to observe this 30 percent effect directly.

In physics of nuclei the isospin symmetry breaking manifests itself in differ-
ence between the masses of the mirror nuclei which remains after the electro-
magnetic effects are included.The difference increases with A reaching 0.9 keV
for A = 208. This is known as the Nollen—Schiffer anomaly [13].

The invariance under transformation expressed by Eq. is called the
global invariance since it corresponds to the same rotations in (p,n) plane in all
space-time points x. It can be generalized by allowing independent rotations
at each point x, i.e. the invariance under transformations

U = eig(x)wT-n. (19>

Unlike Eq. g is a function of x now. This is called the local isotope
invariance. The consequence of the local isospin invariance for physics of nuclei
is discussed in Part III.

PART I
NUCLEUS AS A NONRELATIVISTIC SYSTEM

2 Qualitative picture of a heavy nucleus

2.1 The A dependence of the size of heavy nucleus

The scattering of high energy electrons on the nuclei provides the data on the
size of the latter. The results combined with those obtained by other methods
(see, e.g. [14]) give the dependence of nucleon size on the total number of
nucleons A. Assuming that the nuclei have spherical shapes, one finds that for
sufficiently large A > 20 the radius of a nucleus is

Ry = roAY3, (20)
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with rg = 1.25 fm. Here the lower index in notation Ry means that we assumed
spherical shape of the nucleus. This equation provides a qualitative picture of
a nuclei with A > 20. We shall call them the “heavy nuclei”.

Employing Eq. we find that the volume of spherical nucleus containing
A nucleons is

V(A) = WA, (21)
with A
Vo = gﬂrgz(Qfm)S. (22)

Thus the nucleon volume is proportional to the number of nucleons A. What
happens to the nuclei with the mass number A when we add one nucleon? One
can see that additional nucleon just adds its volume Vj to the total volume
V(A). The density

A 4 N\t
M=) (57%) (23)
remains the same. Numerically
po = 0.17fm™>. (24)

Note also that the nucleons undergo the short range interaction. It becomes
much weaker when the distance between the nucleons exceeds 2 fm.

This leads to several consequences. Since the distance between the nucleons
is about 2fm, each of them interacts only with several closest neighbors. Also,
strictly speaking the nucleon density depends on the distance r from the center
of mass of the nuclei. However all the nucleons except those at the surface are
in similar position. Hence they are distributed with uniform density inside the
nucleus, where p(r) = py with py expressed by Eq. (24)).

The liquid drop model treats nucleus as incompressible system of high
density. Such view enables to obtain several quantitative relations.

2.2 The Weizsacker formula

The work which should be carried out for total disintegration of the nucleus
consisting of Z protons and N neutrons is called its binding energy e > 0.
Thus the binding energy of such nucleus can be expressed as eg = m,Z +
mpN —m(Z, N), with m(Z, N) the mass of the nucleus. Now we try to express
ep as a function of Z and the total number of nucleons A = Z + N. Recall
that we deal with large number of nucleons A > 1.

We can predict at least four ingredients of the expression for eg. Each of
the nucleons interacts only with several neighbors. In other words it interacts
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with a constant number of nucleons independent of A. Thus the energy of each
nucleon does not depend on A. Hence, the total energy is proportional to A.
It is called the volume energy ey since the volume of a nucleus is proportional
to A.

The nucleons on the surface of the nucleus have smaller number of nearest
neighbors than those which are deep within the nucleus. This can manifest
itself in a correction to the volume energy which is called the surface energy
Equr- Since the square of the sphere is proportional to R? ~ A%3, we can guess
that eg,, ~ A2/3.

Another contribution ¢ (C' stands for Coulomb) is caused by the electro-
static interactions between the protons. Each of the protons interacts with
all the other ones. There are Z(Z — 1)/2 independent pairs of protons in the
nucleus. Since the size of the nucleus is proportional to A3 ¢ is proportional
to Z2/ A3,

The fourth contribution reflects the phenomenological fact that the stable
nuclei are located close to the line N = Z in the (NN, Z) plane (see Sec.2 of
Introduction and Fig. 3| ). Thus the binding energy can be expanded in powers
of (N — Z)/A. Due to isotope invariance only the even terms of the expansion
contribute. Since |N — Z|/A < 1 we include only the quadratic term of the
expansion. The corresponding contribution is called the symmetry energy. It
is denoted as egym. One can see that egym ~ (N — Z)?/A%

Thus we can write

B =€y + Esur + €C + Esym - (25)

or

EB — alA—a2A2/3—agZz/Al/?’—a4(N—Z)2/A, (26)

with the coefficients a; > 0 (i = 1,...4). This expression is known as the
Weizsécker formula [15]. Now we explain the sings on the right-hand side of
Eq. .

Due to definition of the binding energy the potential energies corresponding
to the first three terms on the right-hand side of Eq. are

The volume potential energy corresponds to attractive forces. Thus Uy < 0
and a; > 0. The surface energy diminishes the contribution of the volume
energy. Hence ay > 0. Since Uz > 0 we find a3 > 0. Note that these results
are obtained in framework of classical physics, without applying the quantum
mechanics.
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However, to predict the sign of ay we must recall the Pauli principle of
quantum mechanics. The nucleons occupy the states with momenta p, and
pr, limited by conditions p < pp, and p < pp, with pp,, the values of the
Fermi momenta. Thus the kinetic energy of the nucleons can be written as
Eun = 3/5(ppp%p/2m + pup%,/2m). As we shall see in next chapter, p%,; ~ pf/3
(1 = p,n). Thus Ey, is proportional to the sum pf,/?’ + pi/g. Adding the
potential energies U; we find that —ep = Eyin + U, + U,,. Presenting Ej;, in
terms of p, + p,, and p, — p,, we find that it reaches its minimal value at p, = p,
for the fixed value of p, + p, (i.e. for fixed value of A). As to the potential
energy, note that the main contribution to wave function of two nucleons comes
from configurations in which the space part is given by s wave. Otherwise the
function is dominated by larger distances where the strong interaction becomes
smaller. Thus the wave function of two nucleons is mostly space symmetric. In
the case of two protons and two neutrons the wave function is isospin symmetric
and only the single spin asymmetric state is available. The system consisting
of proton and neutron (7, = 0) can be either in symmetric or asymmetric
isospin states. We have just more possible states if the two nucleons are proton
and neutron. Thus the nuclei with N = Z nuclei bound stronger. Hence, the
contribution of £4y, to the binding energy obtains its largest value at p, = py,
ie. at N =27.

The values of coefficients obtained by fitting the observable masses of heavy
nuclei are |16]

a; = 15.78 MeV; ay = 17.90MeV; a3 = 0.724MeV; a4 = 23.72MeV.
(28)
The evaluation of the dependence ep(A) with successive inclusion of the terms
on the right hand side of Eq. is illustrated by Fig.
The value of the Coulomb energy £~ can be calculated assuming that the
electric charge is carried by protons distributed uniformly in the nucleus. The
density of the electric charge is thus

po(r) = p5 - 0(R =), (29)

with p§ = eZ/V, while V = 47/3 x R® is the volume of the nucleus. The
energy of the electrostatic field is

1
Uém = & drE*(x),

with E the strength of the electrostatic field. The upper index (0) denotes the
energy related to the spherical nuclei (see next Subsection). One can write

143



16

- Volume energy
S 14 TITTTTITIII77
§ % Surface energy/
512
& \
Coulombenergy
>
7z Q\\\\\X\\X\\mﬂm N\
= > ALLLLZ777
% a B \_ Net binding
-_Em 6 “ energy Asymmetry
5 energy
&% 4
s
3 2 O Mn®%
Sz:i CUGB 112’1 thﬁ Bkzts
bl Ll o ol 1,

0 30 60 90 120 150 180 210 240 270

Mass number A

Figure 4: Evaluation of the dependence e(A) with successive inclusion of the

terms in the right-hand side o

E = -V with

f Eq. (26)

p(r) = / )

v — x|’

the potential of the field. Calculating

p(r) =

we find
Uy

Thus in this approach

e r?

(s TN <R
2R( R2>’ =
_ 3e*Z? 3e* 277

_5 R _57‘0/11/3'

3¢

as — .
57'0

(32)

For ry = 1.25fm™~! we find a3 = 0.692MeV. This is very close to the value

provided by Eq. .

In theory of liquids the surface energy is usually presented as

U0 = 8,

sur
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with o called the tension coefficient while S = 47 R? is the surface of the drop.
Thus the nuclear tension can be defined as

o = ay/(4nry). (34)

The energy per nucleon provided by Eq. is

B(A) = gf =ay —a, ATY3 — a3Z2/A4/3 —ay(N — Z)Q/AQ- (35)

Neglecting the Coulomb energy presented by the third term we would find
B — ay at A — oo. However, since Z ~ A/2, the Coulomb energy increases as
A?/3 at large A. Thus the energy B(A) increases at small values of A, reaching
the largest values at A ~ 56. It experience a slow drop for heavier nuclei —
see Fig. 5] One can assume that for A > 60 the binding energy per nucleon
does not depend on A with B ~ 8.3MeV. The three mostly tied nuclei are

s

Average binding energy per nucleon (MeV)

0 30 60 90 120 150 180 210 240 270
Number of nucleons in nucleus

Figure 5: Binding energy per nucleon B(A) as a function of the atomic number A
%Fe (Z = 26), %®Fe (Z = 26), and °Ni (Z = 28). Their binding energies

per nucleon are B = 8790.35keV, B = 8792.25keV and B = 8794.53 keV
correspondingly [17,[18]. The nuclei *Fe are formed in the final step of stellar
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nuclear fusion reactions

p+p—d+e +,,
p+d— SHe+r,
SHe +5 He — SHe+p+p,

5aFe +5 He — 55Ni,
with the nucleus 33Ni unstable to 3™ decay. Thus in the next chain [19]
oNi — 35Co + et + v,

59Co — SFe+et +u.

The nuclei of nickel §2Ni cannot be produced in this chain since such process
requires several additional neutrons. One cannot find them in the stars [20].
Hence 58Fe is the end product of the stellar nuclear burning process. This
explains why the abundance of 33Fe is higher than that of 52Ni although the
latter is bound more tightly. The iron fusion is the final step of evolution of
the stars with the masses larger than about 10 solar masses [20].

Note that Eq. for the binding energy per nucleon presents a smooth
dependence of B on A resented by Fig.[5l However the experimental dependence
ep(A) experience jumps. They can be described by inclusion of the fifth term
on the right hand sides of Eqs. (25), and [21]. Unlike the other
contributions it is of purely quantum mechanical origin, being based on the
Pauli principle. The binding energy becomes larger if the number of protons
or neutrons is even. We explained earlier that the main contribution to wave
function of two nucleons comes from configurations in which the space part is
given by s wave. Thus two nucleons with the same projection of isospin (two
protons or two neutrons) have the largest energy of interaction if they form
spin asymmetric state, with spin projections having the opposite directions.
Thus we can assume that there is additional attractive interaction between two
nucleons of the same type (in other words, with same projections of isospin).
This causes additional contribution to the right hand side of Eq. called the
pairing term. Now we have

EB =€v t E&u +Ec + Esym + Epair (36>
with
Epair = J- K3 6> 07 K= (<_1)N + <_1)Z) /2 (37>
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In other words €pa;; = ¢ if both Z and N are even (even-even nuclei), €pair = —9
if both Z and N are odd (odd-odd nuclei), epair = 0 if A is odd. To fit the
experimental data we must assume that ¢ decreases slowly with A. The usual
parametrization is

0 = CL5/A1/2,

with the value a5 = 11 MeV provided in [16]. Sometimes the parametrization
§ = as/A%* with a5 ~ 34 is also employed [14]. Expression for the binding

energy is often called the Bethe-Weizsacker formula.

A, rse

Figure 6: Deviations between the binding energy of nuclei provided by Eq.
and the observed value as a function of the number of neutrons in nucleus.
Dependence on the number of protons has similar shape

Expression given by Eq. reproduces the binding energy g with the
error which does not exceed 10 MeV — see Fig.[6] The largest deviations between
the experimental data and predictions of Eq. take place for magic number
of neutrons. The average energy per nucleon is reproduced with the accuracy
of about 1%.

2.3 Lines of stability

The Weizsacker formula provides constraints on possible values of A, N and
Z for stable nuclei. We can find also the value of N to Z ratio for which the
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binding energy reaches its largest value at fixed value of A. This determines
the center of the region of stability. We replace N = A — Z in the last term on
the right hand side of Eq. . Calculating the derivative with respect to Z
and putting it to zero, we find the value of N to Z ratio for which the binding
energy reaches its largest value at fixed value of A (one can see the second
derivative to be negative). This provides

N QA2 _ A1/ as
—=14+b—-r; b=—. 38
A + 1+bA-1/3 7 4ay (38)
This is in good agreement with Fig.[3] At fixed value of A the largest value of
the binding energy is reached at

A 1+bA°Y3
=_. +— (39)
2 1+ bA2/S
Neglecting the second term in numerator of Eq. (39)) we obtain
A 1
7~ = (40)

2 1+ (A/1500)2/3°

Thus at A close to the lower limit A = 20 the deviations from the line Z = A/2,
or N = Z are small. They are about 7 percent at A = 30. However they
become larger for large A, e.g. making 26 percent for A = 200.

To find the limiting possible values for the number of neutrons N at fixed
Z introduce the neutron separation energy Sy(Z). This is the work which is
needed to move a neutron from the nucleus containing A nucleons N of which
are neutrons.

Su(Z) = ep(N,Z) —ep(N —1,2). (41)

Also, —S,(Z) is the binding energy of the neutron added to the nucleus
(N —1,Z). The condition
Sn(Z) <0

means that the nucleus (A — 1, Z) cannot join a neutron. There are no nuclei
with N > Ny, where Ny, is solution of the equation

S.(Z) = 0. (42)
In similar way the proton separation energy is

Sp(N) = e(N,Z)—e(N,Z —1),
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and the condition
Sp(N) = 0 (43)

determines the upper limit for the values of Z at fixed value of N. The curves
determined by Eqgs. and are called the drip lines.
Stability against the alpha decay is described by condition

€B(A,Z) < €B(A—4,Z—2)—|—€B(4,2). (44)

Since the binding energy of helium is not supposed to be described by the
Weizsacker formula, one should use the empirical value. In the same way one
can find condition for stability with respect to fission of a nucleus to any other
fragments.

To obtain the condition of stability with respect to beta decay n — p+e~ 41,
we consider the total energy of the nucleus

E(A,N) = muN +m,(A— N)—ep(A,N) (45)

with m,, , the vacuum masses of neutron and proton. The condition of stability
is

E(A,N) < E(A/N—-1). (46)
Employing Eq. we find that Eq. is equivalent to

— my, + azA%3 + 2a5/AV3

m
N-Z< -2
ag/A1/3~|—4a4/A

(47)

Due to the numerically small value of a3 denominator is dominated by the
second term. Near the lower limit of applicability of the approach all three
terms of numerator are important. For example, at A = 30 we find N — Z < 4
for even—enen nuclei while N — Z < 1 for odd-odd nuclei. At large A we obtain

5/3
N-7Z< B A58 (é) . (48)
4@4 19

This provides N — Z < 50 for A = 200.
In similar way the condition of stability with respect to  decay p —
n+ety, is
E(AZ) < E(A,Z—-1), (49)

where

E(A,N) = mu(A—2Z)+m,Z —=(A, Z). (50)
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Similar to Eq. we find

g N < T + agA?3 — 2a5 /A3
- &3/A1/3+4CL4/A

(51)

5/3
with Z — N < (A/19> at large A.

2.4 Stability against small perturbations

As we have seen, for nuclei heavier than nickel it is energy not prohibitive to
disintegrate into lighter fragments. The process, called spontaneous fission
should last for a typical nuclear time 10722 — 10~23sec. However, usually this
does not happen.

To understand why, note that the spherical nuclei should change its shape
before the fission takes place. We assumed that the volume of the nucleus does
not change. This leads to the change of two ingredients of the binding energy.
The surface (S in Eq. (33))) changes leading to the change of the potential energy
Usur- Also does the energy of the proton electrostatic interaction Ugs. External
perturbations change the shape of the nucleus. The values corresponding to
the nucleus with the changed shape (it is usually referred to as the “deformed
nucleus”) are Ug,, = Ul + OUgye and Up = Uém + 60Uy with U9 and U((;O)
corresponding to the spherical nuclei. The change of the potential energy is
0U = Uy + 0U¢.

The spontaneous fission can take place if 0U < 0 since under this condition
the nucleus moves to a more bound deformed state. Thus the condition of
stability is

oU > 0. (52)

We consider the case of small deformations which do not alter the A and Z
dependence of the surface and Coulomb energies. Since Uler ~ A2/ while
Uéo) ~ Z?/AY3 the condition of stability against the spontaneous fission is
expected to provide be the upper limit for the ratio Z2/A.

Each point on the surface of deformed nucleus is described by vector R.. Its
length R = |R| depends on the angle § between R and z axis and on the angle
¢ in (z,y) plane. The distance between the origin and a point on the surface
of the deformed nucleus can be presented as

R(07 QO) = Ro + )‘(‘97 90); >‘(97 90) = Ry Z Oéfmnm(gv @)7 (53>
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with Y, — the spherical garmonics. We shall use also notations R(£2) and A\(€2).
One can see that

1
am = g [ AOR@)Y;,(©).
Ra

The term with £ = 0 on the right-hand side of Eq. corresponds to modifica-
tion of the value of R keeping the spherical shape of the nucleus. Perturbations
with ¢ = 1 lead just to the shift of the center of mass without changing the
shape of the nucleus.

If cpr, = aupdmo the nucleus is symmetric with respect to rotations in (zy)
plane, thus having the axial symmetric shape with z the axis of symmetry. In
this case R does not depend on ¢ and in the lowest order

20+ 1
R(0) = R0<1 + Zeng(t)); t=cost; € =] 4—; Qo (54)
‘

while P,(t) are the Legandre polynomials. (In the second order we cannot
neglect the term gy — see below).

For the quadruple deformations with ¢ = 2 we find R(0) = Ry <1 + EQPQ(t))
with Pp(t) = (3t> — 1)/2. At t = £1 the values of R reach the largest values
R = Ry(1 + €), while R = Ry(1 — €¢/2) in (zy) plane corresponding to ¢t = 0.
The nucleus has a shape of spheroid

372 + y2 22

a? ﬁ:1

with the minor axis a = Ry(1 — €/2) and the major axis b = Ry(1 + €). The
volume of the nucleus did not change being V' = 47 /3-a?b = (47 /3)R3(1+o(€)).
In this section we consider the small deformations

|tm| < 1. (55)

The volume of deformed nucleus is

R(Q) 1
VélZ/dQ/ drr? = §/dQR3(Q).
0

Once we assumed that deformations do not change the volume of the nucleus,

1 1 . 4
g/mmmbgfmﬁzgﬁ. (56)
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Keeping only the terms linear in «y,, we should put agy = 0. However, we shall
see that the deformation leads to the second order effects. In this approximation
Qo 1s not an independent parameter since Eq. provides

1 2
oy = ——— E a, ;0> 1. 57
00 \/E o m ( )

Now we are ready to calculate the shifts of the energies U,,, and Uz —
[2224]. Recall that we include the terms up to a7,,. The surface energy of the
deformed nucleus can be written as

R*(Q
A / st (58)
COST
with 7 = VR(€). For small deformations 7 < 1, cos7 = 1 — 72/2. Thus we
can write

2
Ve = 0 / dQ(R?(Q) R+ %(VR)Q).

Integrating the last term in the parenthesis by parts and doing simple algebra
rearrangements we present

R2
SUpy = 0 / d) (21@(9) FA2(Q) — EORVQR)

One immediately finds for the integral of the first term [ dQA(Q) = ago while
the contributions of higher ¢ vanish due to orthogonality of Y;,, and Yy,. We
obtain [dQA*(Q) =3, af,. The third term can be evaluated by noting that
R*V?Y,,, = {({ 4+ 1)Yy,, and by presenting 1/R = 1/Ry(1 — A\/Ry). Employing
Eq. we obtain

oR

2
_ 0 § 2 .,

Thus the deformation of the nucleus increases its sutface energy. The nucleus
becomes more bound.

In the case of axial symmetric quadrupole perturbation mentioned earlier
OUgyr = 9. 2¢2/5. The surface energy does not change due to dipole pertur-
bations (¢ = 1). As we noted earlier, such perturbations just shift the center of
mass of the nucleus.

Let us look how does the energy of the proton electrostatic interaction
change. The electrostatic energy of the spherical nucleus can be presented as

1

vg = 5 [ @ e,
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with the charge density p®(r) and the potential ¢(r) determined by Eq. (30).
Writing similar expression for the deformed nucleus

1

Uo = 5 [ @rs®® r)e™I(r

with

Cdef
dep <I7QZ>
r— x|

PO (1, ) = (5 OR(Q) — 1); ™ (1, Q) = / . (o0)

(recall that pg remains unchanged since the volume of the nucleus does not
change), we present

1 1
U=+ o+ J3; J= §/d3r5pc(r) c(r);  Jo = 3 /d?’rpc(r)&p(r);
(61)
1
B = 5 [ @rotr) -detr),

with 0p° (r) = p“/ (r) — p©(r), dp(r) = ™/ (r) — (r).
Carrying out expansion in powers of A on the right-hand side of the first
equality of Eq. we obtain

MY

50° (r, Q) = pSA(Q) <5(r ~ Ry) = 2 - RO)). (62)

Thus the change of the shape of the nucleus causes additional electric charge
on the surface of the spherical nucleus. Employing Eq. with the second
term on the right hand side being integrated by parts, we find

Ji = —eZp;, RSZ&M (63)

In the lowest order in ay, the change of the potential caused by the first
term on the right-hand side of Eq. is

e/ 3
5o — 25 Do sogm—%ﬂagmym)gm x
T Ro 41
x (<Eo> 0(Ro— 1)+ (=2) G(T—RO)>. (64)

Only the contribution of the term 5(,000 = (Ro/r)0(r — R)) survives after the
angular integration in the integral J, given by the third equality of Eq. . The

153



following radial integration provides for the first order contributions Jg(l) = 0.
In similar way we find that the second order contributions JQ(Q) = 0. Thus
Jy = 0.

Turning to J;, we must include only the first order deformation terms in
expressions for dpc and dp. Direct calculation provides

2
(0%
Js =3eZpi Ry Y (65)
£ 20 + 1
Thus UC = J1 + Jg, i.e
(-1
0Uc = —eZp§ RS mo@m. (66)
Im

Thus the deformation of the nucleus decreases the contribution of electro-
static interactions to its potential energy. For the axial symmetric quadrupole
perturbation 6Uc = U - (—1/5)e.

Combining Egs. and we find

_ RE(C—1) eZpg \ o
§Usur+§Uo;T<(£+2)a— 2£+1)%”‘ (67)
In terms of the coefficients of the Weizsacker formula
. (-1 (6 + 2)@2142/3 5@3 22 2
SUsan + 00 = )~ ( 2 T+l A1/3)O‘fm‘ (68)

m

The monopole perturbations do not contribute in the lowest order due
to Eq. . The dipole contributions do not change the potential energy,
providing only the shift of the center of mass. For ¢ > 2 the condition of
stability expressed by Eq. (52) takes the form

z? _ az ((+2)(20+1)
A as 10 ‘

(69)

Hence we have the strongest limitation for ¢ = 2. The limitations become
weaker while /¢ increases. For ¢ = 2 we obtain

22 2(12
— —. 70
A < as ( )
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This insures stability against the perturbations with larger ¢ as well. Employing
the values provided by Eq. we find

Z2

1 < 49. (71)
For example, for '25Xe we find Z?/A = 23, for 35U we obtain Z?/A = 36. For
transuranium 3{9F1 (Flerovium) Z2/A = 45.

Note that much earlier J. Rayleigh carried out similar analysis of stability
for the charged liquid drop (not nuclear liquid drop) — see [25]. In this case the
potential energy is composed by the surface tension energy and the energy of
the electric field caused by the charge localized on the surface of the drop.

Recall that dipole perturbations (¢ = 1) lead to the shift of the center of
mass of the system. This is true if the coefficients aq,, are the same for all
nucleons. In interaction with electromagnetic field a4, for the protons are
determined by their electric charges. They are much smaller for the neutrons
being determined by their magnetic moments. This leads to bright consequences
for interaction of photons with nuclei. The atomic physics teaches us that at
the photon energies w < m the process can be treated in dipole approximation.
The electromagnetic wave provides oscillations of the proton sphere of the
nucleus while the neutron sphere remains at rest. This phenomena called the
giant dipole resonance was first observed in photoionization of the nuclei of
uranium and thorium at the photon energies 15-20 MeV [26]. It was explained
in [27].

2.5 Fission of nuclei

A nucleus which is stable against small deformations may appear to be unstable
against large ones. This happens because the distances between the nucleons
increases in large deformations. Thus the surface tension energy which is due
to short range interaction is less effected by the large deformation than the
electrostatic energy which is due to the long range Coulomb repulsion. The
short range attraction caused by the surface tension changes slower than the
long range Coulomb repulsion, and the change of the potential energy runs
negative.

The case of large deformations, for which |e,| (see Eq. (54))) is of the order of
unity was analyzed in [28]. It was demonstrated that in the decays of the nucleus
(A, Z) into two fragments (Ay, Z;) and (Ag, Zs) (A1+ Ay = A, Z1+ Z5 = Z) the
probability reaches its largest value for the symmetric fission A; = Ay = A/2,
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Zy = Zy = Z/2. The energy released in the symmetric decay is

& = 26B(A/2,Z/2)—€B(A,Z). (72)
Employing Eq. we find
£f = 20 A3(271 — 273) fag 72 ATV3(1 — 27/3), (73)

The symmetry terms cancel on the right hand side of Eq. .
The condition of stability against fission is 5 < 0, i.e.
22 2&2 1

Y

— = ———— ~(.35. 4
I < @ 21/3(21/3 1 1) 0.35 (74)

This condition differs from the condition of stability against small deformations
expressed by Eq. by the numerical factor v. Numerically

Z2
- < 17. (75)
For example, Z?/A = 12 for 5iFe while Z?/A = 17.6 for }}Zr. Employing
Eq. we see that the nuclei with A > 87 are unstable against spontaneous
fission.

The analysis carried out in [24] provides the explicit picture for the symmet-
ric decay of the nucleus (A, Z). At the moment preceding the fragmentation
into two nuclei (A/2,7/2) it can be viewed as two spheres with the radii
Raj2 = ro(A/2)Y/3 connected by a cylindrical isthmus of the length = and
the radius of the cylinder base r,. To estimate the value of r, note that at
the moment of fragmentation the repulsive Coulomb force between the nuclei
(A/2,Z/2) which is Fo = (eZ/2)?/(Ra/2)? is balanced by the surface tension
force Fyy = —dUgy,/dx where Uy, = 2nr,zo is the potential energy of the
surface tension. Thus F¢ + Fs, = 0. Employing Eq. and Eq. we
obtain

b5 Z%JA
Rajp 6(Z22/A)im

(76)

Here

22 2CL2
— = — =49
(A )lim as ’

(see Eq. (70)) is just the limiting value for the ratio Z2/A consistent with
stability against small deformations. We find r,, /R4 2 = 0.61 for 25U, The
ratio becomes smaller for lighter nuclei. We obtain r,/R4/, = 0.30 for NZr.
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Note that domination of the symmetric mode of the decay is a model result
which contradicts the experimental data. The symmetric channel dominates in
seldom cases. The number of nucleons in the fragments of fission is determined
by the individual properties of the latter. We discuss the point in the next
Chapter.

3. Interaction of nucleons inside the nucleus

3.1. Arguments in favor of nonrelativistic approach

In previous Chapter we considered the characteristics of nucleus as a whole.
Now we try to describe the behavior of a nucleon in the nucleus. In this Chapter
we discuss the nuclei with the number of nucleons A > 4. The nuclei with
A =2 and A = 3 will be studied in Chapter 6.

Note that the very idea that one can choose any nucleon is a very strong
assumption. Anyway, once we have chosen a nucleon, it is reasonable to ask
ourselves if its motion can be treated as nonrelativistic.

To answer the question we express the limiting values of nucleon momenta
throw the value of saturation density which we know to be py = 0.17 fm —3 —
see Ch. 2. Start with the case of free nucleons, assuming them to be placed
in a cube of volume V = L?. The motion of the nucleon with momentum p
corresponds to propagation of the wave with the wavelength A = 27/p. The
quasiclassical boundary condition is L/A = n with n being an integer number.
Thus p; = 2wn;/L for each of the three components of the nucleon momentum
p. Hence the total number of states is Ay = VV,,/(27)? with V, = p,p,p. the
volume in momentum space. Since the nucleons are the fermions, there can
be four of them in any state with momentum p. This corresponds to two
possible spin and isospin states. Thus the number of nucleons is A = 44, and
in differential form

d3p
2n)
The values of p are limited by condition p < pr with the Fermi momentum pg
defined by the equation

dA =4V - (77)

dA  40(pr — p)dp

dp= — = —————
providing for the density
= 2P (79)
PO= 32
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Employing the observed value of saturation density py we find that it
corresponds to the Fermi momentum pp = 268 MeV/c (pr = 268 MeV in our
units). It can be expressed also as pp = 1.38fm~!. The nucleon kinetic energy
T(p) on the Fermi surface is T'(pr) = Tr = p%/2m. Thus

T
Tr ~39 MeV: —= ~ 0.04, (80)
m

looks to be a good small parameter. For the ideal Fermi gas we can calculate
also the averaged kinetic energy

. 3
T — / 0(pr —)T(W)d°p o4 MoV
po(2m)3

In infinitely heavy nucleu{] the potential energy is the same for all nucleons
while the binding energy is eg = 16 MeV. Thus we can estimate the nucleon
potential energy in nuclear matter U = —eg — T =~ —55MeV. The binding
energy in finite nuclei is eg = 8 MeV. Thus in the interior (accept the vicinity
of the surface) U ~ —50 MeV.

Thus the ratios Tp/m and Tg,/m in the Fermi gas are rather small. How
will the nucleon interaction change these estimations? To answer the question
note that in the system of A > 1 interacting nucleons each of them can be
viewed as a quasiparticle [29,30]. This means that the motion of each nucleon
causes virtual excitations of the other ones and is influenced by them. It can
be demonstrated (employing the Fermi liquid theory) that integrated Eq.
holds for the interacting fermions as well [31]. Interactions shift the position of
the pole of nucleon propagator. Thus the vacuum value m is shifted to certain
effective value m*. The experimental data are consistent with a small shift
|m* —m|/m < 0.1. Thus for interacting nucleons the ratio Tp/m* = 0.05 is
still small.

This prompts that the nucleon motion can be considered in nonrelativistic
approximation. We shall see in PartII the ratio is not always a proper
parameter and relativistic treatment becomes necessary. However, much of
understanding was achieved in framework of nonrelativistic approach.

3.2. Effective potential

As the stating point we try to describe the motion of nucleon in nucleus as
the elastic rescattering on the other nucleons. The distribution of the latter is

!The system of nucleons with A — oo and N = Z in which the electromagnetic interactions
are removed is called the nuclear matter. We shall sometimes appeal to the results for such
system.
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not changed in such processes. In such approach a nucleon in the nucleus can
be described by external field Schrodinger equation with the potential energy
U(r) which depends on the position of the nucleon r in the nucleus center mass
frame.

In this Chapter we consider the spherical nuclei. Hence in the first step we
assume that U depends only on r = |r|.

The wave equation is

H@DA(I‘) = 5,\@&,\(1"). (81)
Here €, is the energy of the nucleon in the state A\ while
A,

om

H=T+U(r), T=- (82)
The shape of the potential U(r) is chosen the reproduce the different exper-
imental data: spectra of one-particle states, collective states, nuclear charge
density, et al.

3.2.1. Light nuclei

In this case the density p(r) drops rapidly with increasing of r. Thus it is
reasonable to try the harmonic oscillator potential

m2w2r2

U(r)=-Uy + 5 Up=-U(r=0) >0, (83)

since it provides the rapidly dropping wave functions (see, e.g. [32]). For the
lowest state ¢ (r) ~ exp (—mwr?/2), providing the density p(r) ~ exp (—mwr?).
The wave function of the higher states have polynomial factors. The energies
of the bound states are

en = —Upg+ (n+3/2)w, (84)

with n = 0,1, 2.... There are several states with different values of the orbital
momenta ¢ < n corresponding to each value of n. For even values of n = 2k
we find ¢ = 2k; with k; < k. For odd n = 2k + 1 we obtain ¢ = 2k; + 1 with
k1 < k. Thus ¢ is even if n is even and ¢ is odd if n is odd.

One can trace the A dependence of the frequency w. Since in the oscillator
(n|T|n) = m*w?(n|r¥|n)/4 (see, e.g., [32]) and the total binding energy is
proportional to A, we find that w? > (n|r?n) is proportional to A. Thus w?R?
with R? =" (n|r?|n)/A does not depend on A. Since R ~ A'/3 we find that
w ~ A71/3. To fit the observable values of R one can put (see, e.g., [33])

40 MeV

w =
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Following 3.1 we put Uy = 50 MeV. The potential with these parameters
provides reasonable description of the light nuclei.

3.2.2. Heavy nuclei

For heavy nuclei the shape of the central potential U(r) follows that of the
nuclear density p(r). This can be understood considering the potential to be
caused by interaction with the nucleon of the nucleons located at the points r;.
We present

U(r) = /dSTiu(r—ri)p(ri), (86)

with u(r — r;) interaction between the nucleons (later we shall see that this is
a rather rough approximation). Since the scale of the interaction u is much
smaller than the size of heavy nucleon, we can put u(r — r;) = —Cd(r — r;)
with a constant factor C' > 0. This provides

U(r) = =Cp(r). (87)

As we have seen earlier, at larger values of A the density p(r) actually
depends on r only in the thin layer |R — r| ~ a < R. Here it drops from the
value pg = p(0) to zero. The r dependence of density is usually approximated

by the Fermi function
Po

p(r) = 1+ er—R)ja"

Here

R = ryA'Y3, (88)

with 7o &= 1.25fm is size of the nucleus, while a ~ 0.5fm. The field of the
nucleus can be approximated by the Woods—Saxon potential

Uo

U) =15 comrn

Up=-U(r=0)>0, (89)

with Uy ~ 50 MeV, a ~ 0.5 fm. Such potential provides reasonable description

of heavy nuclei. However the calculations should be carried out numerically.
To have a feeling of the level structure we consider the limiting case a — 0.

Now Eq. turns to
U(r) = =Ud(R—r). (90)

Recall that 6(z) = 1 for > 0 while f(x) = 0 for x < 0. This is the quadratic
well potential.
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Start with a simplified version the well potential has infinitely high wall
Ur)=-Uy (r<R); U(r)=occ (r>R). (91)

In this case the nucleon experience free motion at » < R. The nucleon
wave function vanishes at » > R. The nucleon in the bound state with the
quantum numbers A carries the energy €y and momentum ky = (2m(ex+Up))*/2.
Introducing the nucleon energy counted from the bottom of the well £\ = e)\+Uj
we write ky = (2méy)"/2.

Separating the angular variables in the wave equation we come to equation
for the radial wave functions R,,(r) with orbital angular momentum ¢ while n
numbers the states with fixed value of £. The lowest states with ¢/ = 0,1 are
labelled as 1s and 1p correspondingly. Note that such notation differs from
that accepted in atomic spectroscopy.

We find

Ruo(r) = Cyolkr), (92)

with C' a normalization constant while j, are the spherical Bessel functions
of the first kind. Since the wave functions vanish at » > R, the values of the
binding energies are determined by the border condition

je(kR) = 0. (93)
The functions jy(z) can be expressed in terms of the trigonometric functions

. sin . sinx cosx
Jo(w): :r;; ]1(-75):

x2 x

etc. Denoting the roots of Eq. as T,y we present

z2,
Ex = ——. 94
N Wages (94)
One finds x,,0 = nm for £ = 0. For ¢ = 1 the values x,; are solution of the
equation x = tanx. The numerical values of x,, for several values of n, ¢ are
given in Table 1.

In the case of finite square well with the potential U(r) determined by
Eq. the wave function drops as ¥,(r) = Ce % at r > R with k/, =

(—2mlene])Y/2. At r > R the solution of wave equation is

Ryo(r) = Cyh{V (ik! 1), (95)

with A1) the spherical Hankel function with the purely imaginary argument.
One finds the spectrum of the wave equation with the potential determined by
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Table 1: Values of z,, = k,0R. Second column — the infinite square well; third
column — finite square well with (2mUy)*/?R = 10.

nl | Tpe | Tne
1s [ 3.14 | 2.85
1p | 4.49 | 4.07
1d | 5.76 | 5.23
2s | 6.28 | 5.70
2p | 7.72 | 6.96

Eq. matching the solutions and at r = R. After some algebra [34]

we come to equation
tanx = fo(n,x/n); x=kR;, k= (2mé)"? (96)

and denote

n = (2mUy)Y*R. (97)

The functions fy(n, x/n) for the lowest values ¢ = 0, 1,2 are presented in [33].
For ¢ = 0 the function fy = &/+/1 — &2 depends only on x/n = £. The energy
levels are determined by Eq. but x,, depends now on parameter n. The
values of z,, for several values of n,¢ at n = 10 are given in Tablel. For
Up = 50MeV and ro = 1.25 fm (see Eq. (88))) the value n = 10 corresponds to
the nucleus with A ~ 140 nucleons.

Equations for the bound state energies in the Woods—Saxon potential
can be obtained by some mathematical evaluations. For ¢ = 0 [34]

- 2ka ka
JR— / .
k = —k'-tan (k:R — g (arctan S 2 arctan . k’a>> ;

n=1

r = kR; K = (—2mleno))V% (98)

For a = 0 this provides Eq. for the finite square well. In the lowest order
of expansion in powers of a/R < 1

2
k= —k(1— " kka®) tankR. 99
3

The further calculations should be carried out numerically.

162



3.3. More complicated forms of effective potential
3.3.1. Momentum dependent forces

In general the nucleon-nucleon interaction depends on the momentum of nucleon.
Now we show that for a small momenta this dependence can be accounted for
introducing the effective mass m*.

The point is that the forces are resulted from the meson exchange. Since
the meson is emitted by one nucleon and is absorbed by other one, the forces
depend on the distance between the nucleons, that is they are not the local
ones. So the nucleon interaction u(r; — r2) (Eq. (86]) can be written in the
momentum space in the form

(plulp’) = (Qi)g [ e (100)

Here (plu|p’) is a constant if u(r) is a ¢ function but nonlocality of u(r)
leads to the momentum dependence. Expanding the dependence in a powers of
momenta at the lowest (p?) order we get

u(p,p’) = uo+ui (p° +p?) +uz (p-p). (101)

where p, p’ are the relative wave vectors of two nucleons. In the coordinate
space p denotes the operator (V1 — V3)/(2i) acting on the right and p’ denotes
the operator —(V1 — V3)/(2i) acting on the left.

The best is to construct the NN interactions inside the nuclei from the
interactions of the free nucleons. This was done in the Brueckner theory [35]
using a lot of suggestions and simplifications.

Another possibility is to study the nuclear properties using the phenomeno-
logical NN interactions. The most useful is the Skyrme interaction [36]. It
depends on the momenta of interacting nucleons and the nuclear density and
include 2-particle and 3-particle interaction. Two-particle part reads

1 .
(plulp’)y = to(140 Po)+3 t1(p>+p”)+t2 (p-p)+iWy (o1+02)-[p,P'], (102)

The parameters x, to, t1, t2 and W, are obtained by fitting the binding energy
of nuclear matter and radii of the finite nuclei. P, is a spin-exchange operator
of two particles. The last term gives the spin-orbit contribution into the
one-particle potential (see the next Subsection).

Turning (p|ulp’) into the coordinate space and using Egs. (86),(100]) we
obtain the one-particle potential. This is the effective potential that is included
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in the Schrodinger equation Eq. which now takes the form

-V (G ¥) U0 ) = enaio) (103)

where m*(r) we consider as an effective mass of nucleons in matter.

Indeed, adding the term ¢;p*/2 to the kinetic energy p?/2m we can write
the result as p?/2m*. In symmetric nuclear matter (N=Z) and without the
Coulomb force taken into account we obtain the following view for the effective
mass:

1 1
= t t9)p. 104
2 (1) 2m+(01 1+ eata)p (104)

c; and ¢ are the numerical factors.

We see that momentum dependent terms of the effective NN interaction
lead to the effective mass of nucleon in nuclei and nuclear matter. Using the
Skyrme interaction we get the effective mass considerably smaller than m:
m* ~ m/2. Besides this in the nuclei m*(r) depends on the coordinate through
the density p(r).

3.3.2. Forces depending on angular momentum

In previous Subsection we discussed the forces proportional to the squared
momentum p?. There can be also a contribution linear in p. Momentum p can
compose three combinations with the distance vector r and with the nucleon
spin S which is a pseudovector. However the combination r - p is impossible
due to the time invariance of strong interactions while the product r - S would
violate the space parity The only way to construct a scalar structure linear in
p is to write pseudovector [r, p] multiplying it by S. One can see that [r, p] is
just the operator of orbital angular momentum L. Thus the contribution is
proportional to the product LS. The corresponding term in the Hamiltonian is
denoted as Upg and the effective potential is

Uesp(r) = Ue(r) + Ups(r), (105)

with the first term on the right hand side being the central part of interaction.
The interaction Upg has analog in atomic physics where the moving electron
magnetic moment interacts with electrostatic field of the nucleus. Thus it is
called the spin-orbit interaction.

The dependence of the spin-orbit interaction on r can manifest itself only
as Vp(r). Since Vp =r/r - dp/dr, we can write

Urs(r;p) ~S - [pV]p(r),
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which can be written as

LS dp(r
ULS(r;p)NT' ZEA)

In heavy nuclei this interaction has noticeable values only in the surface
region of the nuclei, where the p(r) changes rapidly.

Recall that in heavy nuclei the shape of the central potential is chosen to
reproduce of that of » dependence of density. Hence, we can write for heavy
nuclei [33]

U(r) = U.(r) — 2a(r)LS; L = [rp], (106)
with > 17
a(r) = ufs%#, (107)

where U(r) is the central potential, while uys is a certain coefficient. Employing
the Woods—Saxon potential given by Eq. one finds that the values uy ~
17MeV fit the experimental data on the scattering of nucleons on nuclei [33].
The operator of total angular momentum of the nucleon J = L + S and
operators L and S compose a set of commuting operators. Hence,
J2 L2 - 82
LS = ——. (108)
2
Thus in the action of the potential (106]) on the function with fixed values of j
and ¢ the operator LS can be replaced by its eigen value

j+1)—e(l+1)—3/4

ls = : 1
s ) (109)
Hence for the potential defined by Eq. (106

U(r)pje = Uess(r)thje (110)

with the effective central potential
Uepp(r) = Ue(r) + a(r)ky. (111)

Here vy = —{ for j = ¢+ 1/2 while k, = ({ + 1) for j = ¢ —1/2 for ¢ > 0.
Certainly, k, = 0 for £ = 0.

The potential which include the terms Uy proportional to L? was sug-
gested in [37]. Satisfactory description of all nuclei was obtained by employing
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harmonic oscillator potential combined with the spin orbit term and the one
proportional to L?

m2w27,2

U(r) = —Uo + —2a(r)LS+ DL?* Uy=-U(r=0)>0. (112)

One can put D = 0 for light nuclei. The values D = —(0.056 £ 0.043) MeV
provide description of single-particle states in the nucleus *Pb [38]. The last
term on the right hand side of Eq. is of the order of hundreds keV. This
is much smaller than the depth of the well Uy. However it becomes important
for the energy splitting of nucleon levels.

3.4. Shell structure of nucleon levels

Consider first the light nuclei with the spectrum determined by Eq. (84). The
energies do not depend on the orbital momentum ¢ of the nucleon. There can be
(204 1) - 4 nucleons in the state with fixed value of ¢. They correspond to 2¢+ 1
possible values of the orbital momentum projection m = —¢, —¢ +1..4 — 1,¢,
two possible values of the spin projection s, = +1/2 and two possible values
of the isospin projection 7, = £1/2. In other words, there can be 2(2¢ + 1)
protons and 2(2¢ + 1) neutrons in a state with orbital momentum /.

Only the value ¢ = 0 is possible for the lowest state with n = 0. There
can be 2 protons and 2 neutrons in the state 1s. Next comes the state with
n = 1. Only the value ¢ = 1 is possible, and there can be 6 protons and 6
neutrons in the state 1p. The values of n = 2 are consistent with the values
¢ =0 and ¢ = 2. They form the 2s and 1d states with 2 and 10 nucleons of
each kind correspondingly. The nucleons in the states with n = 3 can carry
orbital momenta ¢ = 1 or £ = 3. There can be 6 nucleons in the former case
and 14 nucleons in the latter case.

Thus in the light nuclei described by totally nonrelativistic potential given
by Eq. the nucleons occupy the strongly degenerate levels with n = 0,1,2,3
There can be as much as 2 protons or neutrons at n = 0, and 6, 12 and 20
nucleons of each kind at n = 1,2, 3. The sets of states with fixed values of n
are called "the shells”. Thus the nuclei with totally occupied shells contain 2,
8, 20 and 40 nucleons of each kind for n = 0, 1, 2, 3 correspondingly. They are
called "magic nuclei”. In "double magic nuclei” both protons and neutrons
form totally occupied shells. The single particle binding energies for the double
magic nuclei are presented in Table 2.

A small perturbation can eliminate the degeneracy of the levels with different
values of £. However the energy splitting remains much smaller than the energy
interval between the shells.
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Table 2: Single particle binding energies in the field given by Eq. . The
quantum numbers n and ¢ are presented in two first colons. The number of
protons and neutrons are given in the third colon. Single particle binding
energies are given for double magic nuclei (N=2) in MeV units.

1 N and Z R
0 2 12.5
1 6 10.3

0;2 12 9.1
1:3 20 8.1

W N~ O3

It follows from analysis carried out in Ch.2 that the nucleon separation
energies reach their largest values for the closed shells, i.e. for the magic
number of nucleons. The purely nonrelativistic Hamiltonian reproduces
three lowest magic numbers 2,8 and 20 with the corresponding double magic
nuclei 3He, SO and 35Ca. The binding energy per nucleon is 7.1 MeV jHe,
while for neighboring nuclei it makes 2.8 MeV for tritium $H and 2.6 MeV for
5He. Also, there are no stable nuclei with 5 nucleons.

However, the approach predicts magic structure of nuclei with N = 40.
This is not confirmed by experimental data. Also, the experiments show the
nuclei with the number of protons Z = 28, i.e. the isotopes of nickel to be
very tightly bound. This is missed by the Hamiltonian (83)). Similar situation
took place for heavy nuclei. The well-type potentials predicted a set of magic
numbers. It did not coincide with those where the separation energies obtained
from experiments experienced jumps.

The problem was solved by inclusion of the spin-orbit interaction. Consid-
ering the light nuclei we combine the harmonic oscillator potential given by

Eq. with the spin-orbit one presented by (106))

—2a(r)Ls; Uy=-U(r=20)>0. (113)

We consider the states with definite values of orbital momentum ¢. This enables

to present

m2w2r2

Uess(r) = =Us +

+ a(r)ky. (114)

Recall that ry is defined after Eq. (115). Now let us trace what happens when
we add nucleons to the nuclei with totally occupied shells with n = 0,1,2. Now
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we are adding nucleons which have definite values of total angular momentum
j = ¢+ s and its projection j,. Two states with orbital momenta j = ¢ 4+ 1/2
correspond to each value of j. Since «a(r) ~ dU(r)/dr > 0, the lowest laying
states with n = 3 correspond to j = 3 + 1/2 = 7/2. There are 8 such states
corresponding to the values j, = 7/2,5/2... — =5/5,—=7/2. They form new
closed shell containing 8 nucleons.

To trace the A dependence of the energy shift caused by the LS interaction
de = (Y|ULs|y) we employ Egs. and and use the square well central
potential (90). We find (1|Urs|v)) ~ r3/R? - R*)*(R). Since the normalization
integral [ d*ry*(r) ~ R3y)?(R) does not depend on A we find de ~ A72/3 (see
Eq. ) The ¢ dependence of the shift is determined by the factor x, defined
in the line below Eq. (116). Finally, [33]

10:‘%
A2/3
For N = Z = 28 we find |d¢| &~ 2MeV. This is of the same order as the energy
splitting between the shells with n = 3 and n = 4. Thus 28 becomes a magic
number.

We face similar situation with heavier nuclei described by the well-type
central potentials. The wave equation predicts the shell structure of the levels.
However the magic numbers differ from the observed ones. Inclusion of the LS
interaction removes the discrepancy. This adds 50,82 and 126 to the sequence
of the magic numbers. The approach predicts the "islands of stability” for the
heavy transuranium nuclei which were not observed yet.

This picture is sometimes called the shell model. Note that the very shell
structure of levels is a direct consequence of the wave equation. The model
assumption is the large value of spin-orbit interaction.

The explanation of the magic numbers was obtained mainly due to the
studies of Maria Goeppert-Mayer and Hans D. Jensen. They worked on the
subject separately in USA and in Germany correspondingly. In their Nobel
lectures (they shared the prize in 1963 ) the two scientists recalled that it was
not easy to get the physical community to accept the key role of the spin-orbit
interactions [39].

Goepert Mayer told the people about her discussion of nuclear levels with
Enrico Fermi. ”One day as Fermi was leaving the office he asked me: "Is there
any indication of spin-orbit coupling? ...Only if one had lived with the data as
long as I could one immediately answer: ”Yes, of course and that will explain
everything.*“ Fermi was sceptical and left me with my numerology... After a
week when I had written up all the consequence carefully, Fermi was no longer
sceptical. He even taught this in his classes in nuclear physics.”

Je = MeV. (115)
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Also Hans Jensen recalled how Robert Openheimer told him that “Maria
[Goeppert-Mayer| and you are trying to explain magic be miracles... ” and
also ”...Wigner ”said something quite similar...in his careful way of choosing
his words”. Jensen told also that ”a serious journal refused to publish our
first letter [on the magic numbers|, stating ‘it is not really physics but rather

P

playing with numbers’ ”.
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HEPABHOBECHDBIN TUJIPOJINHAMUYECKUI ITOJIXO0/T
TIJIS OTIMCAHUS SMUCCUU BHICOKOSHEPTETUYECKIX
BTOPUYHBIX YACTUIL B CTOJIKHOBEHUAX TAYKEJIBIX
MOHOB ITPOMEKYTOYHBIX SHEPTUI

Anekcanap T. Ibauenko'?

! Tlerep6yprckuii uncruryt aaepuoii dusuku HULL «KW», FaTuuna
2 TleTep6yprckuii rocyJapcTBeHHbIl yHUBEPCUTET IIyTeil coobIIeHs

Annoranugd

C nebio pa3BuUTUS THIPOIUHAMUYECKOTO TIOJIX0/Ia JIJIS OTIMCAHUS CTOJKHOBE-
HUl TSYKeJILIX HOHOB IIPOMEKYTOUHBIX SHEPIUil B paboTe MpeJyIozKeHO COBMECT-
HO C pellleHreM yPaBHEHUI I'MIpPO/IMHAMUKN pellaTh KHHETUYeCKOe ypaBHEHHE.
DTO MO3BOJIMIO BK/IIOUNTH B PACCMOTPEHNE HEPABHOBECHYIO KOMIIOHEHTY U
YCIIEITHO OIKMCATD JIBOIHbIE U depeHInabHble CeUeHUs UCITyCKAHUA KyMYy-
JIATUBHBIX IPOTOHOB, TMOHOB M (DOTOHOB IIPU CTOJIKHOBEHUSAX TAYKEJBIX SIeP
yriepojia ¢ GepusuineBoil Mumenbio B obsactu suepruit 0.3-3.2 I'9B /nykiion,
nosryderubie B skcrepuMenTax U TO®. [1pu onucanuu 3Tux crekTpoB ObLIn
yUTEHBI II0IIPaBKa Ha MUKPOKAHOHMYECKOe paclpe/iesleHe U BKJaJ, IIpoliecca
dbparmenTaru Jijis BHIXOJI0B POTOHOB. lloydennoe onucanue sKCrepuMeH-
TaJIbHBIX JIAHHBIX OKAa3aJI0Ch JIYUIlle, YeM B KaCKa/IHBIX MOJEJIX U MOJIEJIAX
KBAHTOBOI MOJIEKYJIAPHOI nuHaMuKn. [I[poBejieHo cpaBHEHUE ¢ JIpyIrUMH peak-
nusaMu 1 nojxogamu. Okazasiochk, 9To 3¢hdeKThl KOPOTKOIEHCTBYIONMNX KOP-
pensdnuit BKJIIOYEeHbl B MPEJJIOKEHHOM I10/IX0/1e, TTOCKOJIbKY B HEM YCIIEIITHO
OTIMCBIBAIOTCS SKCIIEPUMEHTAIbHBIE JIAHHBIE 110 CIIEKTPaM YKeCTKUX (POTOHOB,
KOTODBIE B MOJIEKYJISIDHOM JIMTHAMUKE COTJIACYIOTCS C SKCIIEPUMEHTOM TOJIBKO
pu J100aBJIEHUN BBICOKOUMITYJILCHOM KOMIIOHEHTHI. B TepMOIMHAMUYIECKO
MOJIEJIN TIPEJIIOYKEHA MHTEPIIPETAINS CIEKTPOB MATKUX (DOTOHOB I10 TIONEPeY-
HOMY UMITYJIbCY B pp-CTOJKHOBEHHUAX ¢ ydeToM Oozona X17 ¢ maccoit 17 MsB
— HOBOU YaCTHUIIbI, BOSMOXKHOT'O KaH/I1/laTa Ha POJIb YACTUI] TEMHON MaTepUN.
Ha ocnoBe 00bemHeHNsT IBYMEPHBIX KBAHTOBOM XPOMOJIMHAMUKI W KBAHTOBOI
9JIEKTPOJIMHAMUKHI B MOJIEJTN TPYOKHN Haii/leHa Macca JacTull.
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NON-EQUILIBRIUM HYDRODYNAMIC APPROACH FOR
DESCRIPTION OF THE EMISSION OF HIGH ENERGY OF
SECONDARY PARTICLES IN HEAVY ION COLLISIONS
INTERMEDIATE ENERGIES

Alexandr T. D’yachenko!?
I Petersburg Nuclear Physics Institute of NRC “KI”, Gatchina
2 Emperor Alexander I Petersburg State Transport University, St.
Petersburg

Abstract

In order to develop a hydrodynamic approach for describing collisions of heavy
ions of intermediate energies, it is proposed in this paper to solve the kinetic
equation together with the solution of the equations of hydrodynamics. This
made it possible to include the nonequilibrium component in the consideration
and successfully describe the double differential cross sections for the emission
of cumulative protons, pions, and photons in collisions of heavy carbon nuclei
with a beryllium target in the energy range 0.3-3.2 GeV /nucleon obtained
in the ITEP experiments. When describing these spectra, the correction for
the microcanonical distribution and the contribution of the fragmentation
process for proton yields were taken into account. The obtained description
of the experimental data turned out to be better than in cascade models and
models of quantum molecular dynamics. A comparison with other reactions and
approaches was made. It turned out that the effects of short-range correlations
are included in the proposed approach, since it successfully describes the
experimental data on the spectra of hard photons, which in molecular dynamics
agree with the experiment only when a high-momentum component is added.
In a thermodynamic model, an interpretation of the transverse momentum
spectra of soft photons in pp collisions is proposed, taking into account the
X17 boson with a mass of 17 MeV, a new particle, a possible candidate for the
role of dark matter particles. Based on the combination of two-dimensional
quantum chromodynamics and quantum electrodynamics in the tube model,
the mass of particles is found.
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1 Bsenenune

Yerex nmpuMeHeHus THIPOIMHAMUKY K CTOJTKHOBEHUSIM JIEMEHTaAPHBIX YaCTHIL
BBICOKOIT sHeprun HadaJicda ¢ padborsr JI. . Jlarmay 1mo MHOXKeCTBEHHOMY POXK-
nennto BropudHbix dactur |1]. B 2] Buepseie mcnomnzoBano paBHOBecHOE
ypaBHEHHE COCTOsIHUs, TIPEJIIOIAraloNee yCTaHOBIEHNE B CHCTEMe JIOKAJIbHO-
0 TEPMOJIMHAMUIECKOTO PABHOBECHS JIJIs OTIMCAHMS CTOJIKHOBEHUI TsZKETbIX
nonoB. B [3,4] mis suepruit crposmerocs 8 OUSAU (/ly6na) yckopureapHOTo
komiraekca «NICA» mpeioXKeHO UCIOJIBb30BaTh THOPUIHYIO MOJIE/b, KOTOPAs
BKJIIOUAET B ce0s OBICTPYIO HEPABHOBECHYIO KMHETHIECKYIO CTA N0 HA OCHOBE
koja HSD (ajponHast cTpyHHAs JUHAMUKA) U TIOCTE/IYIOIIee OMUCAHTe JTMHA-
MUKH siJIPO-$IJIEPHOTO CTOJIKHOBEHUsI Ha OCHOBE PABHOBECHON PEeJISITUBUCTCKOMN
rugpoausaMukn (eM. takzxe [5,(6]). B 5| rubpunnas mozmesns Gblta ycoBeplieH-
CTBOBAHA BKJIIOUEHUEM BA3KOCTHU B PEJIITUBUCTCKYO TUIPOIMHAMUKY U 3aMEHOI
koza HSD na PHSD (mapron-ajiporHas cTpyHHasi JUHAMUKA). DTO JOMOJIHSIET
OIMCaHME TPOIECCa CTOJTKHOBEHUS TSAKEJIbIX HOHOB, POBEJICHHOE KAK B PAMKAaX
OJHOKUAKOCTHOM [7], Tak 1 nByxzKuaKocTHON [8] 1 TpexzxKuKocTHOl 9] pes-
TUBUCTCKUX T'UAPOIMHAMIIECKUX MOJIEJIel, TIOCKOJIBKY CYIIIECTBEHHYIO POJib B
[IPOTIECCEe CTOJIKHOBEHUS siJIEP UI'PAET ero HEPABHOBECHBIN XapaKTep.

C apyroit cropossl, HauaThkiit A.M. BaaguabiM MOMCK 00bsICHEHUST MEXaHU3-
Ma SJIEPHBIX KyMy/IsATHBHBIX mporeccos [10,[11], kunemarudyecku 3anperneHHbx
BO B3aMMOJIEHCTBUSIX CBOOOIHBIX HYKJIOHOB, JIO CUX TIOD SIBJISETCS HEPEIIeHHON
pobJiemoii. Bouto mpeiozkeno 60JIbIoe KOJUIECTBO TEOPETHIECKUX TT0/IX0/I0B,
BapbUPYIOIIUXCS OT 00pPa30BaHMsl MHOTOKBAPKOBBIX KJIACTEPOB B SJIEPHON MaTe-
pun [12,|13] 10 3dbdekToB MHOrOKPATHOTO paccesHust IPU MTPOXOXKIEHUH TIaCTHIL
gepes sapo [14,15]. UccaemoBanne 3moro siBjieHus: B ciiydae CTOJKHOBEHUS
TSI’KeJIBIX MOHOB IIPEJICTABJISET HWHTEPEC C MEJIbI0 BhIACHEHUS KOJIIEKTUBHOTO
MHOTOYACTHIHOTO MEXaHU3Ma KyMY/ISTUBHBIX ITPOIECCOB U IIPOBEPKHU PA3INI-
HBIX MOJIEJIEN $1JIPO-51/IEPHOTO B3aNMOJIEHCTBUSI IPU IPOMEXKYTOYHBIX U BBICOKIX
SHeprusx. I1o ormevaercs B 003ope [ A. Jlekcuna [16], crenannom na XXXV
Bumreit mkose [TNAD.

B [17H22| namu 66110 TOKA3aHO, YTO JIOKAJIBHOE TEPMOJAMHAMUIECKOE DaB-
HOBECHE B ITPOIECCE CTOJKHOBEHWI TSZKeJIbIX MOHOB YCTaHABIUBACTCS HE CPa3y,
[IOCKOJILKY Ha CTaJIMH CXKaTUsl BaXKHA HEpaBHOBECHAs] KOMIIOHEHTa, (DYHKITUI
pacrpeie/ieHusi, TPUBOIsIas K (hOPMUPOBAHUIO OECCTOTKHOBUTE/IHHON y1ap-
HOIT BOJTHBI, AaHAJIOTUIHO OECCTOTKHOBUTEILHBIM YAAPHBIM BOJIHAM B pacdeTax
o 3aBucsieMy or Bpemenn Merony Xaprpu—®Poka (TDHF) [23]. Jia yaera
HEPABHOBECHON KOMIIOHEHTBI OBLIIO MTPEJJIOKEHO COBMECTHO C YPABHEHUSIMU TH/T-
POJIMHAMUKHN peIaTh KuHeTnueckoe ypasuenue. B [21| wamu Obuta ycoepren-
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CTBOBaHA MOJIE/b YAAPHOH BOJHBI ¢ M3MEHAIONIMMCS (PPOHTOM, MPEJJIOYKEHHAS
B nmonepckoit padore W. Scheid, H. Muller, W. Greiner [24], koropas 3aTem
[PUMEHEHa K IIPOIECCY CzKAThs 00pa3yIolierocs ropsidiero mnsrua — hot spot.

B nacrosimeit pabore paccMoTpeHO He0OXO0MMOe pa3BUTHE THIPOIMHAMIIE-
CKOTO TIOJIX0/Ia TIPU OIMCAHUN CTOJKHOBEHUI TSKeJIBIX NOHOB IIPOMEZKYTOTHBIX
SHEPTHil, C OJIHOI CTOPOHBI, U €r0 MPUMEHEHNE K OIMUCAHUIO CIIEKTPOB KyMy-
JATUBHBIX BTOPUYHBIX YaCTUIl, ¢ ApYyroii. B npeapiaynmx paborax [17-H22] B
paMKax HEpaBHOBECHOI'O THJIPOJIMHAMUYIECKOTO MTOJIX0/a PACCIUTAHbI judde-
pPeHIUAIbHBIE cevueHUsT 00Pa30BaHUsl IIPOTOHOB, THOHOB U JIETKUX (PPArMEeHTOB
[P OTHOCHUTEJIBHO HU3KUX dHeprusx (£<1-2 I'sB na nykion). B mporecce
Pa3BUTUs TUIPOIMHAMUYIECKOTO MMOJIXO/Ia ¢ HEPABHOBECHBIM yPABHEHUEM CO-
crognus [17-20] namu pacemorpennt cronkuoBenus sjep 2C ¢ Gepuimesoit
MUIIEHBIO TIPH YHEPIHsIX HAJIeTAIONMX A1ep yriaepoia 2.0 u 3.2 ['5B /uykiion [25],
9KCIIEpUMEHTAILHO UccienoBaHabie Ha yekopuTeae UTID, ¢ ucinyckanuem mpo-
ToHOB [26},[27], mmonos [27] u dboronos [28|. dannsie nemasneit paborot |27]
rpymibl UTO® 6butn ipetocrasiens: Ham B.B. Kynmukosbiu.

Permenne rupoinHaMuydeckux ypaBHEHUH 3/1eCh HANICHO YUCJICHHO, HO Ha-
MU ToKazaHo 29|, 4ro, B IPUHIUIE, MOKHO TIOJIYIUTH AHATUTHUECKOE DellleHne
YPaBHEHUI C TOMOIIBIO COJIUTOHOB. Tak:Ke ypaBHEHUs] KBAHTOBOW PEIITUBUCT-
CKOIl THJIPOJIMHAMUKH MOTYT OBITH CBsi3aHbI ¢ ypasaerneMm Kieitna-Toprona [30)
AHAJIOTUYIHO TIpeicTaBennio MajiemyHra s BpemMeHHOro ypasuenust [pema-
repa.

Anamusupys Beses [31] sxenepumenTasnbhble Jansbie [32| mo crekTpam
MATKUX (POTOHOB B 3aBUCUMOCTH OT IIONEPEIHOIO UMILY/IbCA, B JAHHOM padore
[peJUIaraeTcs MHTEPIPETHPOBATh Y2KECTOUeHHe CIIeKTpa |32| Kak mposiBiieHne
BKJIaJIa HOBOW YacTHILl Oo3ona X17, Maccoit okoso 17 MaB, asnsiontyrocs Kan-
JINIATOM Ha POJIb YACTHUIl TeMHON MaTepun. [Ipesioken aJiroOpuT™M HaXOXK JI€HIs
Maccnl 6o3ona X17 Ha ocHoBe Mojiean TpyoKu [33).

Hacrosiiast pabora siBjisieTcsi eCTeCTBEHHBIM TPOJIOJI?KEHUEM JIEKITUH, TTPO-
qynTaHHoil aBTopoM Ha XXXV 3umueit mkosie [IMAD u nocesimennoi mo-
MTOPOTOBBIM TSI?KEJTBIM ME30HAM W aHTUIIPOTOHAM B CTOJIKHOBEHUSIX TSIZKEJTBIX
noHoB [34]. Jdasee usoxkenue mocTpoeHo cieyomnmm obpasom. B pasmene 2
oIrcaH HEePABHOBECHBIN THIPOIMHAMIIECKNI 110/1x0/1. B pasjesne 3 onucana
cxeMa HAIUX THIPOIUHAMUIECKAX PACIETOB C yIETOM MUKPOKAHOHUIECKOMN
noripaBku. B pazsene 4 npuseeHbl GOPMYJIBI JIJIsI YI€Ta CTATUCTHIECKOTO Me-
xaHu3Ma parmenTaly, npeioxensoro [35,136]. B pasnenax 5-7 npuseseno
CpaBHEHNE C HKCIEPUMEHTATbHBIMUI JTAHHBIMEA U JPYTUMU MOJEIAMA U KOJIAMHE.
[Tokazamn ycrex HAIIEro THIPOIUHAMIIECKOTO MOJIX0OA ITPU OITUCAHUN IKCIIE-
pHUMEHTaJIbHBIX JaHHBIX Kostabopaimun HADES (GSI) [37] u npenmyecrso
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HAIIIEro MOJX0/Ia B OIMMCAHUN CIIEKTPOB KYMYJIATUBHBIX YACTHUIL (IPOTOHOB, MHO-
HOB U (DOTOHOB) TI0 CPABHEHHUIO C KOJIAMHU, UCIIOJIL30BAHHBIME B paborax [26427],
a takxke ¢ kKogom HSD [38], ncosnbzoBanaom mamu. Vcrosssyemsie B |26, 27|
KO/IbI SIBJISTFOTCSI BIIOJTHE COBPEMEHHBIMU, U OHU BCTpoeHb! B makeT GEANT4,
TaKzKe BOCTPeOOBAHHBIM sIBJIsieTcss  Koj HSD, co3maHHbIil B HHCTUTYTE TEope-
tudeckoit dusuku B leccene (lepmanus). B pasene 7 Takzke MokaszaHo, 9To
HAIII TIOJIXOJI OIUCHIBAET CIIEKTPBI KeCTKUX (POTOHOB, KOTOPBIE B padore [39|
OIUCBIBAJIUCH TOJILKO 3a cueT 3PpdeKkTa KOPOTKOJIEHCTBYIONNX KOPPEIIINii
(SRC). B pasnere 8 maitgennt hopmyiisl 17151 GOTOHOB OT paciiaia HOBBIX TaCTHI]
U TIPOBEJICHO CPaBHEHUE C IKCIEePUMEHTATbHBIMU JAHHBIMEU, 0OOCHOBBIBAIOTCS
Macchl bo30m0B X17 m X38 B 3akmouennn, pasjen 9, npuBeeHbl OCHOBHBIE
pe3yJIbTaThl pabOTHI.

2 HepaBHoBecHbIII TIIPOAMHAMUYECKIA IIOIXO]I

st onmcanus cucTeMbl HYKJIOHOB BOCIOJIB3YeMCs OJHOYACTUIHON PyHKITHE
pacnpegnesenus: f(r,p,t) (r — mpocTpaHCTBEHHAS KOODMHATA, P — UMILYJIbC,
t — BpeMsi), Jijisi KOTOPOI TIPU TTPOMEZKYTOUHBIX SHEPTUSX CTATKUBAIOIINXCS
TSZKEJIBIX MOHOB MBI UCIIOJIB3yeM KuHeTndeckoe ypasuernue |17-20]:

i _ fo-f

- =, (1)

dt T
rie fo(r, p,t) — JlokasbHO paBHOBeCHAs (DYHKINS PACIPEETeHNs, T — BPeMs
pesakcaruu. YpapHenue (1) JOJKHO PeIaThCs COBMECTHO € YDABHEHUSIMU
IUJIPOJIMHAMEKH, caepyionmu u3 (1) B3gTueM MOMEHTOB ¢ BecoM 1, p, p? B
UMITYJIbCHOM ITPOCTPAHCTBE JJIsl HAXOXKIeHusT (PyHKIUU pacipejenenns. Bxos-
Ui B “IEHBI B3AMMOJICHCTBHIS CaMOCOTVIacOBAaHHBIH morentmarn W (p) 3amgaercs
TaK ¥Ke, KaK 9TO JIEJIAeTCs B CJIyYae 3aBUCAIINX OT IJIOTHOCTH 3 DEKTUBHBIX CHJT
tuma cuit Ckupma. Bpems perakcarmn 3/1ech BEIOpAHO B TPAIAIIMOHHON (hopme
T = M vr |17-20], rme mmuna cBoGogHOrO 1Mpobera HYKIOHOB A = 1/op,0 ~
40 MOH — 3JIEMEHTapHOE TIOJIHOE HYKJIOH-HYKJIOHHOE CedYeHue, p — HYKJIOHHAs
IUIOTHOCTD, U — CPEJIHsAs CKOPOCTh TEILJIOBOIO JIBUXKEHUS HYKJ/IOHOB. [Ipu Hus-
KUX YHEPrUusXx Jijid BIOpAHHON (POPMBI T €ro YUCIeHHOe 3HaUeHne OJIM3KO K
3HAYEHUIO, TIOJIyIeHHOMY I (pepMU-KuIKOCTH. [Ipu BBICOKUX SHEPTUAX HY K-
HO BMECTO CEUYEHUsI 0, BOOOIIE TOBOPsI, MOJICTABIATH TPAHCIIOPTHOE CEYCHHE O,
YTO yBeJIMIuBaeT BeuduHy 7. [Ipu 60bInx BpeMeHax pesiakcalini MOXKHO
UCIIOJIb30BATh YPaBHEHUs] HEPABHOBECHO JIJIMHHOIPOOEZKHOM MU IPOINHAMIKN
B IPUOJIMKEHIN JIOKAJIbHOM mtoTHoCTH [21].
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Perenne ypapuenus (1) uiercst B Bujie

fr,p,t) = fig+ fo(1—q), (2)

rie dyukius fi(r, p,t) COOTBETCTBYET COCTOSHUIO ¢ jiehOPMUPOBAHHON hepMu-
noBepxHocThIO, ¢(r,t)(0 < ¢ < 1) — pestakcanoHHbIH (haKTOpP, HAXOMATIHHACS
13 KHHETUYECKOTO yPABHEHNUs € HOMOIIBIO B3sATHsI MOMEHTa ¢ BeCOM p° — p 2,
ONPEJIEJISIONIErO CTENeHb AaHU30TPOINE (DYHKIMU PACIIPEIEICHUSA B UMITYIHCHOM
npocrpancrse [17-20] (p # p1 — cOOTBETCTBEHHO, IIPOJIOIBHAS U HOLEPETHAS
cocrasisionie uMIysibca). [lpu ¢ = 0 mojydaem ypaBHEHHsI PABHOBECHOI
I'MIPOJIMHAMUKY, & IPU ¢ = 1 MOJIydaeM ypaBHEHUA HEPABHOBECHON JIJIMHHOIPO-
GexKHOIl ruapoAMHaAMUKU. B pesy/braTe, nMeeM 3aMKHYTYIO CUCTEMY YpPABHEHUiT
JUIsT HaXOXKJIeHusT IoTHOCTH p(r,t), moss ckopocteit v(r,t), moss remieparyp
T'(r,t) u perakcanmorroro dakropa ¢(r,t), HO3BOISIONYIO HATH (DYHKIIIO
pacopezesnenust f(r,p,t).

3 HMMuakmosuBHoe nuddepeHnuaaibHOe cedeHune
ITpoIiecca

[Tocne BbLIenenust obaacTu JIOKAJIbHOrO HarpeBa hot spot — obsractu mepe-
KPBITHS CTAJKUBAIOMINXCS siJIep — MbI IIPOAHAJIM3UPOBAJINA CTAIUN CXKATHSI,
pacIIupeHusi U pasJieTa BEIeCTBa B IIPOIECCe CTOJKHOBEHUM TSIKeJIbIX MOHOB.
Ha cragun cxkatust dpopMupyroTcst 6€cCTOIKHOBUTEIbHbBIE YIapHbIE BOJIHBI C
m3MenstorumMcst pporrom [20421].

Ha crajguu pacmmpenus [17H20] 1o gocturkennu yiaapHOil BOJTHON rpaHuUIy
hot spot npoucxomuT pacmmuperue mepBoHAYAIBHO CXKATON CUCTEMBI, KOTOPOE
OIIMCBLIBACTCA C YUYETOM AJEePHON BAZKOCTHU, HANJCHHON HAMU B PEJIAKCAIITMOHHOM
T-upubamkeHnu. B paccmarpuBaeMoM Jialia3oHe SHEPruil Ha 3TO# CTaJun KO-
sddunuent BazkocTH 1) goctaTodHO BesuK (dncio Peitrosbiaca Re= ﬂ;ﬂ <1).
DTO0 yMeHbITaeT CKOPOCThH pasJjeTa hot spot m yBemdIuBaeT ero TeMieparypy.
[To mocTrzKkeHUN PACHIUPAIONIENHCS sAIEPHO CUCTEMON KPUTUYIECKOM ILJIOTHOCTH
(IIOTHOCTH 3aMOpaYKUBaHUs) p*, ONpPEIe/ISIeMOil U3 YCIOBHs %—VZ = 0, mpoucxo-
uT (GOPMHUPOBAHUE BTOPHYIHBIX YacTUI (HYKJIOHOB, (DPArMEHTOB, IIMOHOB) 1
ux pasier. uBapuanTHoe JiBoitHOe JuddepeHInabHoe CeUeHne UCITYCKAHTA

nporoHoB B peaknnu A + B — p + X umeer Bug (b — mapamerp yiaapa):

d’o 2

Edede = Grh) /G(b)bdb/dr”y(E—pv)f(r,p,t), (3)
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rie G(b) = 01/0, — daxTop, yunTsBatonmii, 9To cedenne obpasosanns hot spot
oy = 7 < R, >? Bcerga 6oJIbIle N€OMETPUIECKOTO 0 -CEeUeHNs] TIEPEKPHIBAIO-
muxcst gacreit, £ = y/p? +m?, v =1/y/1 —v? u p — COOTBETCTBEHHO, TIOJIHAS
sHeprus, JIopeHi-hakTop U UMILYJIbC IPOTOHOB, §) — TesecHblil yrou, v(r,t) —
noJsie ckopocreii, f(r, p,t) — dyHKINA pacipeieieHnst UCIyCcKaeMbIX TPOTOHOB
B IIPEeHEOPEKeHNT HEePaBHOBECHONH KOMIIOHEHTON Ha CTaUN 3aMOParKNBAHUS

—1

B (4) cnmuoBblit daktop g = 2, u(p = pr + m) — XUMHYIECKUN TOTEHIHAI,
KOTOPBIN HAXOJIUTCSA U3 YCJOBUS COXPAHEHUS B CPEIHEM UHCJIa TaCTHUIL IS
6OJIBIIONO0 KAHOHMIECKOro ancambist, T — TeMieparypa, ¢ — HOIpaBKa Ha MUK-
pokaHoHHUecKoe pacupesesenne [17]. 3Hak «+» o3HAYAET, COOTBETCTBEHHO,
«+>» 171 GEPMUOHOB U «—» 11 O030HOB. [lJIs onmcanuss UCIyCKaHus IIMOHOB
MOKHO WCIIOJIb30BaTh BhipazkeHus (3) u (4), rae B KadecTBe OYHKINE PACIIPe-
JIeJIeHNsT THOHOB MOYKHO HCIIOJIb30BaTh (DYHKIHIO (4), MOJOKUB BE3/Ie Maccy
[IHOHOB PABHOM My, & XUMUIECKUI OTEHIMAJ PABHBIM HYJIIO, IOCKOJIBKY THUCTIO
MOHOB He 3aaH0. [l GOoTOHOB Macca U XUMUYECKUii IIOTEHIINA PABHBL HYJIIO
¢ yaeroMm AByX moJisipusaruii. s 6030008 B (4) BeIOUpaeM 3HAK «—» MEPE/T
1. Kpome Bkitaja (3) B cedeHne oT MCIyCKaHUs IPOTOHOB 13 hot spot Hamu
YUUTBHIBAJICA TAKXKe BKJIAJ OT CJIMSTHAS HENEPEKPLIBAIONIUXCS JacTell cTajlKuBa-
IOIIUXCA SIIEP — «CIIEKTATOPOB», KAK B MOJEIN «KOPOHA~KOP» IIPH BBICOKUX
sueprusx [40]. Bpemennas sposrorust hot spot, cxkaTue u mocJie/Iyomiee ero pas-
pexKeHre HAOMUHAIOT (DJIYKTYAlun B sJIepPHOi cucreMe, 1mo100HbIe (DIYKTOHY
.11 Brioxunresa [41], BBegeHHOMY U151 00bsICHEHHST KyMYJIATHBHOTO 3bdeKTa.

f(r,p,t) = g |exp

4 CraruncTudeckmnii MexaHu3M (pparmMeHTaIum

Jl1s1 onmcanus MSArKOi 9acTH CHEKTPa MCIYCKACMBIX IPOTOHOB HAMU HUCIIOJIb-
30BaHa CTATUCTHYECKAas MOJEIb (PparMeHTAIlnH CTAJIKUBAIOIINXCH TAKEIbIX
HOHOB, npemiokerHas B |35} 36]. CoracHo 9T0it MOJe/ I, BEPOSITHOCTD BBIXOJA
(bparMeHToB U3 COCTABHOTO $A/Ipa MPOIOPIUOHAIbHA exp (—p?/20%), T1e p —
UMITYJIbC (DparMeHTa B CHCTeMe HOKOs si/Ipa, JUCIIepPCHs O

R )
rae A — MaccoBoe "ncyio pparMeHTUPYIONIero aapa, a K — 4ucao HyKJIOHOB BO
dparmente,

<p*> 13,

%= Ty Tk ©)



pr — uMiynbe Pepmu. OrpanmduMes ucmycKanueM mpoToHos ¢ K = 1, a
HOPMUPOBOYHBIH MHOKHUTEIb C' J1JIst OIPEJICJICHUs BBIXO/@ [IPOTOHOB HalijieM
u3 ycaosus [36):

Cin / %exp (—2%22) — AV, (7)

0

A(2mh)?
W, rie V — obbeM cucTeMmsbl. MCHOJIBSYH (7),
0

onpejienseM, 18], Bkias B cedenne npu (pparMenTanuy IpoToHoB (b — mapameTp
yaapa):

o 2 (P — Po)°
E - E— _P — Do)
dpdC) 2l /bdb/Cdr’y( pv) exp( 202 ), (8)

rie F — mosHas sHEprus ucImyckaeMoro npotona, p (p = v E? — m?) — nMmyibe
IPOTOHA C YUYETOM JBUXKYIIElics co CKopocTbio v(r,t) cucrembr orcuera (r
— paJinyc-BeKTOp, t — MOMEHT BpeMeHH Hadaja (pparMeHTalin), Po = YMv.
Ormernm, uro cederne (8) OTHOCHTCS K HENEPEKPBIBAIOIINMCS YACTAM CTaJIKH-
BAIOTIIXCS TsZKeJIBIX MOHOB — Tepudepnieckas dpparmentarms. B (8) yureno,
YTO TIPH BBLIETE IPOTOHBI MOTYT 3alUPATHCS CPEJIHUM TIOJIEM 38, CIET SHEPIrUu
CBA3U, OT KOTOPOI HAJI0 OTCUYUTHIBATEL dHepruio F. Briaj or dparmMerTanun
COCTABHOIO sI7Ipa, 0OPa3yIOIIErocs U3 MePEKPLIBAIOIINXCS YacTell, MOoJIydeH
AHAJIOTUYHBIM 06pa3oM. B 3ToM ciiyvae MOXKHO UCIO/b30BaTh (8) ¢ of = mT
npu temmepatype 1’ 0bpa3yIolerocsi COCTaBHOTO sijipa — hot spot, BpemenHas
9BOJTIOIUS KOTOPOI'O PACCMATPUBAECTCA HAMHU B T'HJIPOJIMHAMUYECKOM I0JIXO-
ne [17-21].

B pesymwrare, C' =

5% CpaBHeHI/Ie C 3KCIIEepuMEHTaJIbHbIMU JaHHbIMU

B kadecTBe MILTIOCTpAIME ycCIlexXa THPOIMHAMUIECKOTO MOJIX0Aa Ha PHC.
(JleBasi maHeJIb) TPUBEJIEHBI PACIIPE/IeJICHUST png) — HCIIYCKaeMbIX [N-IIPOTOHOB
110 TIONIepedHOMY HMITy/Ibcy pr B peaknmn Y7Au+1""Au — p + X na dukcn-
POBAHHO#I MUIIIEHU [P SHEPIUM HaJjeTalmux aaep 3oyo0ra 1.48 9B /HykiioH.
MozkHO BU/IeTh, YTO HAI pacder (CIUIONIHAS JIMHUSI) HAXOIUTCS B COTTIACHN
¢ JPYTUMH pacdeTaMd, MPOBEJICHHBIMU B PAMKaX PEIICHUS KUHETHICCKOTO
ypasHenusi bosbivana—Ynunra—Yiaenteka (BUU) [38,42] u moenn kBaHTOBOI
MOJIEKYJIApHO# quHaMukn [43,44]. DTu pacderbl NPUBEEHBI JJisi CPABHEHUS

Pa3IIIHBIX KOJIOB B [45)].
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Ham nmogxon mpuMmeHnM He TOJIBKO K JIaHHOM peakiun. Hampumep, Ham
yaanoch Bocuponssectr (en. puc. [I npasast naness) SKCIepEMEHTAIBHbIC JAH-
uete Kosutaboparmun HADES [37] mo sHepreruaeckuM criekTpam MpOTOHOB B
peakuuu Ar+K— p+X npu suepruu sijiep Ar, pasuoit 1.76 I'sB /uykiion. B pac-
YeTax BBIXOJIOB ITPOTOHOB YUUTBIBAJICA BKJIAJ OT (pparMeHTaInuu B 00JIacT Kak
[IEePEKPHIBAIOIINXCs, TAK W HEMEPEKPHIBAIOIINXCA 00I1acTell CTATKUBAIOIIIXCS
siiep. Ha puc. |1| (npaBast nanesin) npuse/ieHbl HHBApUAHTHBIE JIBOIHBIE Judde-
peHIMaIbHbIe PACIPE/Ie/IEHUs IPOTOHOB B 3aBUCUMOCTH OT IIOIEPEYHONH MACCHI.
Hamm pacyeTbl m300pazkeHbl CIUIONTHBIMU JTUHUSAMU, SKCIIEPUMEHTAJIbHBIE TOY-
K B34ThI 13 |37]. BIX01bI IPOTOHOB GBI HOPMUPOBAHBI HA YHCJIO YIACTHUKOB
Ny = 38.5 |37|. Kak BuHO U3 prCyHKa, [OJIYYIEHO XOPOIIee COrIache pacueTHbIX
pacIpejieJIeHnii ¢ SKCIIEPUMEHTAJIBHBIMI BO BCeX MHTEpPBAJIaX OBICTPOT Y, TIe

2
y=1In :L—‘:‘F +4/1+ (%) , D|| — NPOJIOJIBHBII UMITYJIbC, My = \/mg +p2T —

nonepevdHas Macca. JIpyrumum ciioBamMu, HaIll pacdeT OKa3aJiCsl HUIeM He Xy-
e boJiee JIeTaJIbHOIO pacdera, IpoBeJieHHOro panee B [46]. Pacemorpennbie
PeaKINU PEJICTABIAIOT HHTEPEC /It 9KCIIEPUMEHTOB, POBO/IMMbBIX HA YCKO-
puresie SIS/GSI (I'epmanusi) 1 MOTyT OBITH HIepEHECEHBI HA 00JIaCTh SHEPIHil
crposiimerocss B ONAN ([lybra) yekopuresnsroro komiiekca NICA.

6 Onncanme cneKTpPoOB KyMYJISATUBHBIX IIPOTOHOB
1 MUOHOB B 3KcnepumeHTax UTID

Ha puc. 2 npuBejieHbI UMITYJIbCHBIE CIIEKTPBI IIPOTOHOB, UCIIYyCKAE€MbIX B pe-
akrmn 2C+?Be— p+X mox yroom 3.5° mpn sueprum monos 2C, pasnoit 2.0
['sB/mykion (puc. 2 (neBas nanens)) u 3.2 9B /mykion (puc. 2 (nmpasas na-
HeJIb) ). DKCIepUMeHTa IbHbIE JaHHbIe, MoJydeHHble B 9KcrepumenTe FRAGM
(UTOD) |26,27], norazansr Toukamu. Kpusbivu 1, 2 mpejicTaBIeHbl PE3YIIBTATHL
HaIllIX PACYeTOB B paMKax I'MIPOIMHAMUYECKOTO MOIX0/a JIJIg Beeil obacTu
UMITYJIbCHOTO CIIEKTpa, TIPU 3TOM ITapaMeTpbl pacdeTa — < 1) > — cpeaHdas
TeMmIiiepaTypa hot spot, < ur > — cpejHuit XumMudecKuit moreHua, < R, >
— cpeanuit paguyc hot spot — 3aBucar or sueprun. Kpusnie 3, 4, 5 — pe3yJib-
TaThl PACIETOB 110 TPAHCIOPTHBIM KojaM [26]: 3 — kacka/Has moens [47)], 4
— TPaHCIIOPTHAS MOJIEJIb KBAPK-IVIFOOHHBIX CTPYH [48], 5 — Mojesb KBaHTOBOI
MostekyaapHoit puaamukn (QMD), BcTpoeHHOH B MOHTe-KapJIOBCKHIA MAKeT
GEANTH4 [49|. Kpusas 6 — Hain pacder 1o KOy aJipOHHOl CTPYHHOI JTUHAMUKI
(HSD) [38].

Kak BuIHO U3 5TUX PUCYHKOB, B KyMYJIATHBHON 00JIACTH CIEKTPOB IIPHU UM-
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Puc. 1: JleBas nmanesb.Pactpeiesienust IpoTOHOB IO ITOIEPETHOMY UMITYJILCY P B
peaknun Au+Au — p+X npu sHeprum moHOB 3070Ta 1.48 9B /Hykimon c
napamerpoM yiapa b=1 Owm. Crtorinas KpuBasi — HAIll PACUET IIPU TeMIepaType
hot spot < T}, >=84.8 M3B. 3naukamu moka3zaHbl pe3yabTaThl PaCIeTOB 110
TpaHcnopTHBIM KogaM [45]: o — [38], A — [42],v — |43], B - [44]. [Ipasas nanes.
VaBapmaHTHBIE pacipeiesleHus TPOTOHOB B 3aBUCUMOCTH OT TIOIEPETHON MACCHI
myp B peakiun Ar+KCl— p+X, ucnyckaeMbIx B UHTEpBaJje ObICTPOT ¥y NpH
sueprun nonos Ar 1.76 I'sB/nyksion kpusbie: 1 — x10% (0.1<y<0.15), 2 — x10*
(0.2<y<0.25), 3 — x10% (0.4<y<0.45), 4 — x10'? (0.6<y<0.65, 5 — x10'°
(0.8<y<0.85) mpu < T}, >~91 MsB, cpeanuii XuMuIecKuii IOTEHIHAT [T A~
155 M»sB, < Ry, >~3,5 M TOUYKHN — IKCIIepUMEHTAIbHbIE JIAHHBIE KOJLTabopaIun
HADES wus3 [37].

myJibce TpOTOHOB p > 2 9B /¢, korma KymysisitusHOe dncio X = —E—I:;OS(’ >1,

HAIIl pacdeT COMIACYeTCs ¢ IKCIHepUMEHTATbHBIME JaHHbIME [26]27]. Crar
BEJIMIMHBI CeYeHnil Ha D TOPAIKOB BOCIPOU3BOIUTCS B HAIIEM IOJIXOJIE HE Xy-
’Ke MOHTe-KapJIOBCKUX TPAHCIIOPTHBIX KOJIOB. IIpudemM, HEKOTOpBIE KaCKa [HbIE
pacueThbl 3aMETHO HEJIOOIEHUBAIOT IKCIIEPUMEHTAIbHBIE CIIEKTPbI B BBHICOKO-
UMILYJIbCHOI obstacTi. B 06s1acTit MaIbIX UMILY/IbCOB [IPU BCEX IHEPIUAX HAII
pacuer TakyKe BOCIPOU3BOJIUT IKCIEPUMEHTAJIBLHBIE CIIEKTPBI, UTO 00YCIOBIEHO
BKJIQJIOM OT IIPOTOHOB, 0OPa3yIOIMXCsA B pesysbrare bparMentanuu (coruac-
HO BbIpazkeHUto (8)) JJIsi epeKPhIBAIONIIXCS ¥ HEIIEPEKPBIBAIOIINXCS 9acTel
CTAJKUBAOIUXCA sijiep. [lonpaBka HA MUKPOKAHOHMYECKOE DACIIPe/IeIeHHe
[POSBJISAETCS B BBICOKOMMITYJILCHOf 00JIaCTH PACHpe/IeJICHH [TPOTOHOB.

Ecim He yauThiBaTh BKJIAJ OT pparMeHTaluy U He BBOJIUTH IIONPABKY Ha
MUKPOKAHOHUIECKOe pacipejiesierne (ITPUXOBble KPUBbIe 2), TO B MSTKO
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d’sldpdQ, 6n- (TB/c)! cp” d’cldpdQ, 6n- (TB/c). cp’
10° ; . . : :

1 2 3 4 5 6
p, MHB/e p, B/

Puc. 2: Jlesast nanesb. Pacrpeseniennsi mpoTOHOB TI0 J1aAOOPATOPHOMY HMITY/IBCY
B peaxiuu 2C+2Be — p+X, ucnyckaembrx 1o yriuom 3.5° npu sueprun 12C
2.01B/uyknon. Kpusas 1 — mamr pacder ¢ snadenuamu < Tj, >~~99 MsB,
< pp >~-180 M»sB, < R, >~ 2 Owm, mTpuxoBasd KpuBas 2 — HaIll pacdeT
6e3 ydeTa MOIMPABKU HAa MHUKPOKAHOHUYIECKOE DACIpeeseHre W BKJIaJa OT
dbparmenTanuy; TOUKM — IKCIEpUMeHTAIbHBIE Janube u3 [26]. Kpusbie 3, 4, 5
— PEe3yJIBTATHI PACIETOB TI0 TPaHCIOPTHBIM KojaM [26]. Kpusast 6 — pesyabrar
nposesierHOro Hamu pacderta B Mogesan HSD [38]. Ilpasast manesns. To ke, aro
Ha JieBoit names npu sueprun uonos 2C 3.2 B /nykion n < Tj, >~122 MsB,
< pp >~-263 MaB, Toukn — sKcriepuMeHTaIbHbIe JJaHHbe 13 [27).

00J1aCTH CHEKTPa pacueTbl HEJOOIEHUBAIOT SKCIIEPUMEHT, & B KyMYJIITUBHO
06J1aCTH JAI0T 3aBBIIIEHHbBIE 110 CPABHEHMIO ¢ HUM 3Ha4YeHus. Pacder Ha OCHOBE
mozesin HSD (kpuBbie 6 Ha puc. 2) Takzke He OMUCHIBAET SKCIIEPUMEHTATbHbIE
nansble. Ha puc. 2 (yieBast aHesh) BBIYUCIEHHBIH B 9TONH MOJIEJIN BHICOKOMM-
IYJILCHBI CHEKTP OKasaJjicsi 6oJiee MOJIOrMM, 9eM SKCIePUMEeHTAIbHbIN, & Ha
puc. 2 (mpaBas maHe/b) OH HEJIOONEHNBAET BesindnHy cedenusi. Popma crieKTpa
U B MSATKOI 00J1acTH HE COBIIAJAET ¢ SKCIEPUMEHTAJIBHOMN, IIOTOMY YTO B 9TOM
KOJIE HE YUUTBIBAECTCS MEXaHU3M (pparMeHTalum.

Harr mmoixo/1 mpuMeHnM U K UCIYCKAHUIO KyMYJISITUBHBIX TTMOHOB, TIOJTyI€H-
ubix B peakiuu 2C+Be— 7~ +X na yckoputesne UTI® npu sHeprusx sjep
12C 3.2TB/uykion [27]. Ham yianoch BOCIPOM3BECTH SKCIIEPUMEHTAIbHBIE
JTaHHbIe |27] O SHEPreTHYIeCKNM CIEKTpaM OTPHUIATEIbHBIX ITHOHOB (puc. 3
(nieBast maHesb)). B cevenne poxKJieHUs T -ME30HOB ITOMUMO TEIJIOBBIX 7T
TakyKe BHOCUT BKJIaJ KaHasa oT pacmaga A —N-+7~, KOTOPBIi Mbl BKJIIOUN-
s B paceMmorpenune anajorngno [50,51]. B kagecTse miutiocrpanuu Ha puc. 3
(/IeBast TaHeJIb) MPUBEIEHBI MHBAPHAHTHBIE JIBOHbIE /i depeHInaibHbe ceue-
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HIS MCITyCKAHIA OTPHIATEILHBIX MTHOHOB B peaknuax 2C+Be— 7~ +X mpn
sHeprun sjiep yriaepoga 3.2 ['9B /HykioH, skcrepuMeHTaIbHbIE TOYKH B3ATHI
u3 [27|. Crtomubie KpuBble 1 — HaIll pacyer, MITPUXOBble KPUBbIE 2 — HAIIl
pacuer 6e3 ydera MONPAaBKU Ha MUKPOKAHOHUYECKOE paclipejiesienne. Kpusbie
3, 4, 5 — pe3ysbTaThl pacueToB MO TPAHCIOPTHBIM KojaM |27 B cOBpeMeHHBIX
TEOPETHYECKUX MOJIEJISIX, KOTOPbIE OBLIN UCIOJIH30BAHBI JJI PACUeTa CIEKTPOB
nporonos. Ham pacdyer B paMKax I'MIPOJAMHAMUYECKOTO MOJIXO0/a IOKA3bIBAET
XOpoIIllee corjiacue ¢ SKCIePUMeHTaIbHbIME criekTpamu [27]. Paccunranubiii
mamu crekTp (kpusas 6) mo mozmenn HSD nokasbiBaer Gostee OBICTDBII cria,
9YeM IKCIIEPUMEHTAJIbHBINA.

d’oldpde, G- (TB/c) -cp’ p'd’cldEdQ, ot en.

b I B Il B Il B AL I B R Bab )

p. MHB/e 0 ! 2 3 E, r3134

Puc. 3: Jleras nanenn. To ke, 9410 Ha pHC. 2, HO JIJIg paCIpe/IeIeHNs] T -ME30HOB
B peakiuu 2C+%Be— 7~ +X, npu sueprun nonos 2C 3.2 5B /nykion n <
Ty, >~122 M5B, Touku — sKcriepuMeHTaIbHbIe gaHuble 13 [27]. [IpaBas maness.
nBapuanThble pacipeseienus GpoToHos 1o sueprun B peaknuu 2C+Be—
v+X, ucryckaembix 1101, yriom 38° npu suepruu nonos 2C 2.0 'sB/nykion
(kpuBas 1 — pacuer ¢ < Ty, >~ 99 MsB) u 3.2'3B/uykion (kpusas 2 — pacuer
¢ < Tj, >=~122 M»sB), Touku — sKcrepuMeHTAIbHbIE TanHble 13 || |28] (KpyKKu
npu sueprun 2C 2.0 'sB/umykion u kBaapatsl — 3.2 ['sB/mykion).

7 CuekTpsbl 2kecTKuxX (pOTOHOB

Ha puc. 3 (upaBasi nanejib) IpUBe/I€Hbl MHBAPUAHTHBIE JBONHBIE Iud depeH-
MUaILHBIE CEUeHUs YKEeCTKUX (DOTOHOB, obpasytonmxcsa B peaxmun 2C+9Be
— v+ X npu sueprusx anep 2C 2.0 u 3.2 '5B/HyKJI0H 101 yIJIOM HCITyCKaHUSA
doronon 38°. 3jiech CIIIONIHBIE JIMHUM — HAII PacdeT. DKCIEePUMeHTaIbHbIe
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toukn u3 [28| B sxcrnepumente FLINT (MITO®). /Ina ncrnyckanus IpsMbIx
dboToHOB MOXKHO HCIOJIb30BaTH Bbhipazkenus (3) u (4). [losyyeHHbie TAKUM CIIO-
coboM npsiMble (POTOHBI TIpeobIaIatoT Hajl (POTOHAMHI OT paclala 7 -Me30HOB,
BKJIAJ[ KOTOPBIX MBI TaKKe yUIu U J00aBWIM K BKJIaLy IpsaMbix ¢hororos. [lo-
CKOJIBKY 9KCIIEPUMEHTA/IbHBIE JaHHBIE TTPUBEIEHBI B OTHOCUTEIBHBIX €IMHATIAX,
pacueTHble KPUBbIE TaKyKe HOPMUPOBAHBI.

Hawm mpejicraBiisiercss, 970 B I'UIPOJIMHAMUYIECKOM TOJIXO/E YINTHIBACTCS
sdderr koporkoeiicTByonmx Koppessumii (SRC), koropomy yiensercs 60b-
moe BHuManue (cM., Hanpumep, |13]). Ha puc.4 (eBas manesns) npusegemns
paccuuTaHHble HAMU JIBOIHbIE quddepenHnuaibuble cedeHns (poTOHOB, UCITYC-
kaembix B peakimn “N+12C+~+X npu sueprugx ajep azora 20 (kpusas 1),
30 (kpuBasg 2) u 40 (kpusas 3) MsB/Hyki0H 1011 yryiom ucryckanust (hoOTOHOB
90°. DkcrepuMeHTaIbHBIE TOYKN B3aThl u3 [52]. Kak BUIHO U3 pucyHKa, Halll
pacyeT HaXOJUTCS B COIVIACUU C SKCIIEPUMEHTAbLHBIMU JIAHHBIMU B OTJIUIHE OT
pacyueToB M0 KBAHTOBOW MOJIEKY/IIpHOi auHamuke [39). s moctmzxkenus co-
[JIaChs € 9KCIIePIMEHTOM B 39| TOMOHUTEIbHO BBOISITCS BHICOKOUMITY THCHBIE
«XBOCTBI» JIJIsi IIPOTOHOB, 9YTO CBHUJETEIbLCTBYET 00 ydeTe 3hdeKTa KOPOTKO-
neiictBOytorux koppestsruit SRC. Coryiacue Hammx pacyeToB ¢ SKCIEPUMEHTOM
6e3 JOMOJIHUTE/ILHON KOppeKImy mokasbiBaeT, 4To 3pdert SRC yunrsiBaeTcs
B PA3BUBAEMOM HAMW T'UIPOIMHAMUIECKOM IIOIXO/IE.

8 Pacnpeaesienns mo 1morepevyHoMy UMITYJIbCY
I MATKIX (POTOHOB

B skcniepumente [32] nsydanuchk Msrkune pOTOHBI, UCITyCKAEMbIE B Pp-CTOJIK-
HOBEHUSX pu HadaabHOM uMItysbee 450 9B /¢ na dbukcnpoBanHol MureHu.
WNurepriperalius sKcIiepuMeHTa Ha OCHOBe MexaHn3Ma bremsstrahlung we Boc-
[IPOU3BO/UT HAKJIOH CHEKTpa [32).

Bour B paborax [31,53] mpe oK nHTEpIpeTupoBaTh ITU JIAHHBIE Ha
OCHOBE TEMIIEPATYPHOT'O CIEKTPA, MOJ0Upast COOTBETCTBYIOILYIO TEMIIEPATYPY
1 BBOJIA BKJIaJ OT pacmaja 603ona X17 Ha doronbl. CylecTBOBaHIe HOBOI
JacThIbl — 6030Ha X17 ¢ Maccoit, npumepHo pasuoit 17 MsB, Briepsbie sKcie-
PUMEHTAJIbHO ObLIO TIpejicKazano B paborax [54,55] rpymnsr ATOMKI.

Harmma unaTepriperaliuss UMITyJIbCHBIX CIEKTPOB (DOTOHOB 3aKJ/IIOYACTCI B
HCIIOJIb30BaHUN (DOPMYJIBI JJIsi IepHOTO Teja pu m = () ¢ COOTBETCTBYIOMIEH

1/4
TeMrepaTypoii st poToHoB coracuo [56|, T = (95_‘0/3 109) , tiie Fy — kuneTu-

JecKasl SHEPIUs B CUCTeMe IeHTpa Mace B I'9B, gg = (2x 8+ 52 X2x3x3) =47,
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Ve = (1.2)3. 31ech 3a cYeT MaJIOCTH KOHCTAHTHI CBSA3HU JIJIST 3JIEKTPOMATHUTHOIO
B3aUMOJIENCTBUS SHEPrus OblIa yMEHbIIIEHAa B COOTBETCTBYIOIIEE YHCJIO Pa3,
T.e. B 137x14.7 pa3. CoorBercrByiornias Temeparypa 1 =5.9 MsB. Bxias or
pacnajia 6o3ona X17 ¢ maccoit 17 M3B ¢ ucryckanuem hoTona MOXKHO y4eCTb
aHaJaoruaHo padore [5H6).

Bce pacripeiesiennst mporopIioHaabHbl TeMiepaType 7', 9ToObl BOCITPON3-
BECTHU IIPOIIOPIHOHAILHOCTL N ~ T3, JIjia BKIaJia UCIlycKanus (DOTOHOB IPU
pacnaie 603ona X17 MOXKHO y4ecTh, 9TO [IPU pacia/jie dacTuilbl X17 B 2 ¢hpoTona
X YIJIOBOE paclipejieieHe B CUCTEME TTOKOS YACTHUITHI U30TPOITHO 1O YTJIaM.
DT0 pacipe/iesieHne MOXKHO MPeJICTABUTh B MHBApHaHTHOI (dhopme |50)

d3
5(2(po1) — 2mEi‘> T’il , (9)

dw:m

2mp}

IJle p; — UMILYJIbC OJHOTO U3 (POTOHOB, Px — UMIIYJIbC X-0030Ha, pj n Ej —
UMITYJIbC ¥ SHeprusi (DOTOHA B CHCTEMe IOKos X-0030Ha. B pesyibrare mHBapu-
aHTHOE CevueHue JIJIsi UCIyCKaHus (pOTOHOB

B, = / Ppx Fx6(2(pxr) — 2mE?) | (10)

m

*
213
e fx — dyHKIMs pacipeenenns s X-0o030na. B pesynbrare nnrerpuposa-
aust B (10), ¢ y9€TOM JOMYCTUMBIX 3HAYEHUN YTJIOB

|cosO| = |EXxE1 — mET|/pxp1 < 1. (11)

[Tocsie pazperenusi TOro HEPABEHCTBA MOJIyYaeM

E_

m

E+

rie caenytormue u3 (11) npejgesnst uarerpuposanus B (12) EL = +p; +m. U3
(12) maxoqaum BKJa B (DOTOHBI OT paciiajia X—O030Ha

% = CT ((E_ +T)exp (%) — (BEL +T)exp (%)) . (13)

ryie Koaddurment C' u remmneparypa 1’ — Takue ke, Kak B (GOPMyJIe JiJisi IepPHOTO
Tesla; XUMUYECKUi morennuas (= 0 1 SHEPIUu JOZKHBI OBITH TIEPECYUTAHbI B
Jiab. cucremy.
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d o JdE/dQ, nou-MdB cp’ dN /dp,
10’
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Puc. 4: JleBasg nanesnb. /IBoiiabie quddepeHnuaabable CeUeHns UCITYCKAHUS
doronos B peaxkuun “N-+12C— v+X nox yriaom 90° npu suepruax N 20(1),
30(2) u 40(3) MsB/nykson. Crommelie JuHAN — HaII pacder npu < T >
paBubix 9.3 MsB, 11.7 MsB u 13.5 MaB, coorBercTBenno. Touku — sxcnepumen-
TasbHble JaHHbe u3 [52] (kpyxku npu 20, kBajgparsl — 30 U TPeyroJbHUKA
— 40 M5B /uykion). Ipasas naneasb. Crekrpbl MATKEX (OTOHOB, HCIyCKae-
MBIX B CTOJIKHOBEHHSAX ITPOTOHOB Ha (PUKCUPOBAHHON MUIIEHH ITPU UMITYJIbCE
450TB/c, B 3aBUCHMOCTH OT TOIIEPETHOTO UMITY/IbCA (POTOHOB pr. CIutomiHasT
JINHUS — HAIl PAcdeT B COOTBETCTBUU ¢ (DOPMYJIAMU YEPHOTO TEJIA U C yIETOM
BKJIaJIa UCITyCKaHUs (DOTOHOB OT pacuasa 6o30Ha X 17, mTpuxoBast JUHAST —
HaIl pacdeT 6e3 ydera BKJaJa 0o30Ha X17, MTPUXIYHKTUPHASA JTUHUAS — BKJIAJ
or ucnyckanusi hpoToHOB pu pacnae X17 cornacuo dopmyste (13), Toukn —
9KCIEPUMEHTAIbHBIE JaHHble u3 pador [31,32]

B ornuuwne ot pabor Bonra, Mmbl He huTHpoBasin SKCIEepUMEHTAIbHBIE JIaH-
HbIE, & BBIUUCJIUIN Temieparypy 1o ¢gopmysie. OTHAKO MBI HE IPETEHIyeM
Ha abCOJIIOTHYIO BeJNYUHY pacipejenennd. [losromy Hamm pacdeTbl ObLIN
HOPMUPOBAHBI Ha 3KcrepuMenTajibibie ganuabie [31,32]. Ha puc. 4 (npasas
[aHe/Ib) IPUBEJIEH SKCIIEPUMEHTAIBHBIN CIIEKTP MITKUX (hOTOHOB — TOUKH [32],
a TaKyKe pacder ¢ yaeroM 0603ona X17 (crutornmHas jnHus) 1 63 HEro (IITPHXO-
Basl JIMHUS ), MITPUXITYHKTUPHAsT JIHHUS — BKJIaJ 0T 6o30Ha X17. 13 pucynka
BHJIHO, 4TO Oe3 ydeTa BKJajga oT 603oHa X17 pacueT HEJIOOINCHUBACT SKCIIEPH-
MEeHTaJIbHbIE JIAHHBIE, a C YIeTOM 3TOI'0 BKJaJ/a BOCIPOU3BOAUT nx. To ecThb
Takasi HHTEPIIPETAIUs CIIEKTPa MATKUX (DOTOHOB (€ro y:KeCTOYEHHE) MOKET
CJIy2KHUTD €I1e OJTHUM CBUJIETEILCTBOM B IIOJIb3Y CYIIECTBOBAHUS HOBON YACTHIIBI
— 6o30na X17. Ha Tom ke puc. 4 (mpaBasi mmaHesb) [IPUBEJICH €Ile B COOTBET-
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crun ¢ dopmysoit (13) Bkias hOTOHOB OT pacmajia JIPyroil HOBOI YaCTHUIIbI —
6o3ona X38 ¢ maccoit 38 MsB (mTpuxiyHKTUpHAs JIMHUSA ), IPEJCKA3AHHOIO B
nposejieHHbIX B JlybHe skcnepumentax [57]. Ograko ero BKIIaJL MPOSIBISETCS
TOJIBKO H& XBOCTE CIIEKTPa U CJa00 BUJEH HA PUCYHKE.

BameTuM, 9TO TaKOe y:KecToUeHre CIeKTpa (hOTOHOB HE MOy TaeTCs 38 CIeT
BKJ1a/1a (poToHOB M3 hot spot, paccmaTpuBaBIieMcs B TPEIBIIYIIEM Pa3Jiesie.
[TockosibKy B 9TOM citydae ero BKIa B 10 pa3 MeHbIIe IIOJTHOTO CeYeHHUsd, a Macca
dOTOHOB paBHA HYJIIO, U Y2KECTOUEHUE CIIeKTPa (DOTOHOB B 00/IACTH SHEPTUil
20 M»B 3a cder Oosbireit TemrepaTypbl hot spot Bce paBHo npenebpekumo
maugto. IIpesckazannbiii B paborax [54,55] 60308 X17, BO3MOKHO, IPOSIBIISETCS
B CIIEKTPe MSTKHX (DOTOHOB. DTO OBLIO PACCMOTPEHO B Hammmx paborax [33)56),
58,/59|. B pabore Bonra |31| npeoxkena unrepnperarnust 370ro 6030Ha Kak
pesynbrar oobeaunenus KX/ u K9/I. [Ipu sTom o0beiunenne npou3BoIuTCs
qutst aeyMepHbix KXo x K9/, B Mogemn TpyOku.

B [56] MBI pemiokum Buon3MeHeHHY 0 MOJieb TpyOKu. [lpu sToM, Tak
ke, Kak u Borr [31], paccmaTpuBaeM u aIpOHHYIO DU KOHCTAHTE CBA3H (v =
(ts ¥ 9JIEKTPOMATHUTHYIO Tpu o = «, = 1/137 1tpybkru. Pajmycer Tpy6Gok
OTIPEJIEJIAIOTC U3 MUHUMYMa SHEPIUU, IIPUXOIAIENCS Ha eIMHUITY JIIMHBI, &
KOHCTaHTa CUJIBHOIO B3amMmojeiictBus o, =~ 0.5. CoryiacHo Mojen Tpyokwu,
HATSIHYTON MeXK/Iy JBYyMs KBapkaMmu [56|, MOKHO HAWTH Macchl 00pas3yrOInIXCs
aJIDOHOB, & B CJIydae 3JIEKTPOMArHuTHO! Tpyoku maccy 0ozona X17. [Ipu sTowm,
corstacto [60,61], miorHOCTD 3HEprUN TPYOKH CKJIAIBIBAETCS U3 JIBYX UJIEHOB:

p = A+G. (14)

[Tepsoriit amen A orpesensieTcss HAIPsZKEHHOCTRIO 1osist F. Ecu 6b1 mosie 66110
pacIipejiesieH0 PaBHOMEPHO, TO B IoJIycdepy pacipejiesieHa Obljaa Obl SHEPIHs
Ha eJINHUILY JJIMHBI TPYOKW pajimyca T, paBHAast

27 1

A = E*~—m?® = ZE%*nr? (15)

4 2
Ho, nockosbKy B HalpaB/IeHUH JIJIUHBI TPYOKU HAJ0 CYyMMHPOBATH TOJIBKO
TeJIECHBbIE YIJIbl, YMHOXKEHHbIE Ha COS 6, MPOEKIINU €JIMHIIHOTO BEKTOPa Ha
HAIIpaBJieHne TPYOKU, TO TEJIECHBIN yroJT

w/2 2m
Q :/ cosGsianG/ dp = m, (16)
0 0
a ue 2m. [losaromy
Q 1
T L B S
A=F el 4E e, (17)
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/2 T
Ir7le TIOTOK BEKTOpa HalpaxKeHHOCTH [ paBeH @ = fo/ E cos0df [ 2nrdr =
2
Emr?, u nanpsikenocts F = -2 = -5 a KOHCTaHTa CBA3H @ = L, 1 — paJayc

2 T2 4m?
Tpyoku. Cjie/loBaTe/IbHO,

A=2 (18)
Bropoii wien BeIpazkaeTcs uepes MermkoByio koucranty B=0.17 T'3B/®wm? |62]

o
G = Bmr?—, (19)
Qs
e HaM# BBEJIEHO OTHOIIEHUE (v/(vs KOHCTAHTHI (v K KOHCTAHTE CHUJIBHOTO B3ar-
MogeiicTBue o,. 3aeck mpu h = ¢ = k = 1 ®m—=513B~!. Jlia komebimomeiics
IPSMOJIMHERHOM cTPYHBI-TPYOKH mostydaem |60] maccy M:

M? = 21 pn, (20)

rie n — KBaHTOBoe uncio. ns anponnoit TpyOkm npm n = 1 mosrydaeMm
M =~ 152M>5B ansa 7%-mesona. Ho eciim MemkoByio KoHcTanTy B BHIOpaThb
pasnoit 0.13T5B/®m?, To nia w-mezona nostyuaem 6oJiee 6JM3K0e K IKCIIE-
pumentasibnoMy 3uadenne M ~ 140 MsB. /Ina snekrpomarauthoit TpyOKu
IIpU TOM K€ paJinyce TPpYyOKM TojIydaeM Maccy HefrpasjabHoro 6o3zomna X17
M ~17 MsB. Ilo dopmyne M? = 27 pm MOXKHO HOJIYUINTh W PE3OHAHCHI, TIE
m — KPaTHO CJIOYKEHHAas CTPyHa C BpallleHneM. Tak MOXKHO IOJIyYUTb MacCy
pP-ME30Ha, a JJIs 3JIEKTPOMATHUTHON CTPYHBI MoJIydaeM mMaccy 0ozona 34 MsB
npu m = 4, moIydeHHyio B pabore BoHra Jpyrum myTem.

OTMernM, 9TO 9T Pe3yJIbTAThI TOJIYIeHbI B HAIIEM IOIXO0JE TT0 (DOPMYJ/IaM,
ormaHbIM OT paborsl Borra. B cBoeii pabore [31] Bonr npeiaraer unreprpe-
TUpoBaTh 0030H X17 Kak YacTHUILy TEMHOI MaTepHH, MOCKOJIbKY OH HeHTpaJIeH,
He 6ApPUOH, U MOXKET OBITh COCTABHOM YacTUIleil acTpOPU3NIeCKnX 00bEKTOB
OOJIBITION MaCCHI.

9 3akJjiroueHue

B neknun B pamMkax MOAUMUIIMTPOBAHHON MUIPOIUHAMIIECKON MOJIETH ¢ (DUKCH-
POBaHHBIMHU TTapaMeTPaMy yPaBHEHUsI COCTOAHUS OIMCAHbI SKCIIEPUMEHTAJIHHBIE
BBICOKOUMITYJIbCHBIE CIIEKTPBI ITPOTOHOB, ITMOHOB U (DOTOHOB, MCITYCKAEMBIX
B CTOJIKHOBEHUAX TszKesbIX MoHOB npu F = 0.3 — 33B /Hyk/0oH, BKIIOUast
KYMYJISATUBHYIO O0JIACTDH CIIEKTPA.

BecbMa BaykKHBIM MOMEHTOM SIBHJIOCH BKJIIOUEHUE B paccMOTpeHue 3 deK-
TOB sIJIEPHON BA3KOCTHU, HAMJIEHHON HAMHU B PEJIAKCAITMOHHOM T-IPUOJINZKEHUN
JIJIsT KHHETUYECKOI0 ypaBHEHUsI, a TaKKe IOIPAaBKU Ha MUKPOKAHOHUYIECKOE
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pacmpejiesieHe, MTPOSBIISIONIENCcA B 00JIACTH BBICOKOIHEPTETHIECKIX «XBOCTOB»
CIEKTPOB MPOTOHOB. [Ipyr MpoMeKyTOUHBIX SHEPTUAX B KyMYJIATUBHON 00J1a-
CTH UMITYJIbCHBIX CIIEKTPOB IIPOTOHOB BaXKEH yUe€T HUCITYCKAHWS ITPOTOHOB U3
0OpazyIoIierocs ropg4ero msaTHa — hot spot — u ux ucyckanusg B pe3y/ibTa-
Te CIUSTHUST HeTIePEKPBIBAIOMINXCS 001acTeil CTaJIKNBAKONNXCS saep. 10 ecTb,
B Pa3BUBAEMOI MOJIEJIN MIPEJICTABIEH MEXAHI3M «KOPOHA-KOD», MOy IUBIITHIA
pacrmpocTpaHenre Ipu BHICOKUX SHEPIUSAX. DTO MOXKET O0bLICHUTH AIIPOKCH-
MaIUIO0 YKCIEPUMEHTAJLHBIX JIAHHBIX JIByMsl SKCIIOHEHTaMU CO CBOUMU TEM-
neparypamu, IpoBeseHHyo B [26]. B obiacti MasbIx UMITyJIbCOB ITPOTOHOB
OTIPEJIETISTIONINN BKJIa)] B CEYeHHe JaeT ydueT (hparMeHTAIlud, TPOBEIeHHbII
HAMU B CTATHCTUYIECKON Mojesn dpparmMenTaruu. [Iposeiennble pacieTsr Boc-
IPOU3BOJIAT IKCIIEPUMEHTAIbHbBIE JIAHHBIE 110 BBIXO/IAM IMPOTOHOB U IHOHOB KakK
JUIS CPEJTHUX, TaK W TAYKEJbIX s/ep B 00JIaCTH ITPOMEXKYTOUYHBIX U BBICOKUX
SHEPruil CTAJIKUBAIOIINXCS SJI€P U MOTYT ObITH IPUMEHEHBI K 00JIACTU SHEPIHil
crpogmierocs B Jlybne yckopurenpHoro komiiekca NICA. Onmcanue crieKTpoB
JKeCTKIX (POTOHOB yKa3bIBAET HA TO, YTO B HAIIEM TOIX0JE MOT'YT OBITh YITEHBI
sdderTbr KopoTkoeiicTyomux Koppessiuit (SRC).

[IpaBoMePHOCTH MCITOIBL30BAHUS MAKPOCKOIUYIECKUX MTAPAMeTPOB JIJIs JIer-
KUX CHCTEM MOYKHO O00bsiCHUTDH. B Harmem ciydae cpejnee qncsio yactut B hot
spot N =10, u mucnepcus ~ 1/ V'N He cromb Beqmka. IlompaBka Ha MEKDO-
KAHOHUYIECKOe PacIipejiesieHne yIydiiaeT onncanue skcrnepuMenta. [Lmedo B
KYMYJIATHBHON O0JIACTU CHEKTPa MPOTOHOB BOCIIPOM3BOIUTCS B HAIIEM TIOIXOJIE
U, KaK BUJHO, MHOT/Ia OHO BOCIIPOM3BOJIUTCS B TPAHCIOPTHBIX KACKAIHBIX KOJAX.
Bo3MOKHO, 9TO 9T0 06YCJIOBJIEHO IepepaccesiiieM MHOHOB [63).

B repmopmraMutieckoit Mojiesin JJaHa UHTEPIIPETAINS SKCIIEPUMEHTATBHBIX
JIAHHBIX TI0 CHEKTPaM MSATKHX (POTOHOB C TOMOIIBIO HOBOI YaCTHUIIBI — ODO30HA
X17, koTopblit HeTpaseH n He siBjigeTcs bapnoHoM. OH MOXKeT 00pPa30BBIBATH
MacCCHBHBIE 00bEKTHI TEMHOI MaTepuu B acTpodusnke. OOOCHOBBIBACTCA HAJIH-
1ne mMacchl 6030ua X17, paBuoit 17 M3B, ucxoss n3 sjpekrpoMarHuTHONl TPYOKH
pu oobeunennn aByMepHbix KXy x K9/, A Takke jana nHTEpIpeTaIus
9KCIIEPUMEHTAJIBHBIX JAHHBIX 110 OOHAPYKEHUIO €eIle HOBOM TacTHIhI D030HA
— X38 ¢ maccoit 38 MaB, orkpbiToro B lyOne na yckopurese B Jlaboparopuu
dusuku BoicOKnX dHepruit OObeIMHEHHOIO HHCTUTYTA SJePHBIX UCCIIeIOBAHMII.

Asrop 6iaromgapen B.B. Beuepuuny, M.B. ZKamnosy, B.T. Kumy, N.A. Mur-
porosibeckomy, O.JI. @emquny, A.B. Crasunckomy, B.B. Kymukosy u C.C. I1lu-
MaHCKOMY 3a IOJIE3HBbIE 00CYKJICHUS.
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KOHIIEIIIMISI HOBOT'O HEMTPUHHOI'O JETEKTOPA
CBEPXBOJIBIIIOTO OB'bEMA B AHTAPKTUJE

Apkagnii A. 3axapoB
Iletepbyprckuii nuacturyT simepuoii pusuku HUIL «KW», NaTunna

Annoranug

st co3aHns HOBOIO HEHTPUHHOTO JIETEKTOPa CBEPXOOJIBIIOro o0beMa
peJjjiaraeTcsl UCIoIb30BaTh MO/IJIETHUKOBOE 03epo BocTok. D1a jokarus nme-
€T OlIpele/IEeHHbIC IIPEUMYIIEeCTBa B CpaBHECHUHN C JIOKaIIUAMN CYIIECTBYIOIINX
JIETEKTOPOB TVI0DAJBHOM HEHTPUHHON CETH U MO3BOJISIET CO3/IaTh AETEKTOP 00b-
€MOM B JIECATKUA KyOMYIeCKHX KHJIOMETPOB B YCJIOBUSAX HU3KUX (poHOB. s
OypeHnsa CKBaxkKMH K 03epy BoOCTOK IIpejIozKeH HOBBIN CII0cOO OBICTPOTO U
9KOJIOTMYECKH YHCTOrO OypeHus M BCKPBITHSA O3€pa, KOTOPBI MOYXKET OBbIThb
TaK2Ke IIpUMeEHEH IJId U3ydeHusd IIOJICTHUKOBBIX O3€PD AHTapKTI/I,ZLbI. B Ka4de-
CTBE JIETEKTOPAa JJI HOBOT'O HEUTPUHHOTO TEJIECKONA MCHOJIB3yeTCd O3epHaA
BOJA W JIEJHUK TOJIIUHON OKOJIO 4-X KHUJIOMETPOB, IPU 3TOM BEPXHUN CJIOi
JIbJIa, OYIeT CJIYKUTH SKPAHOM JIJIsi aTMOChEPHBIX HERTPUHO U 3apsizKEHHBIX
JaCTUI BBICOKUX 3Hepruii. B mpospadnoil o3epHOil BoJie U BHYTPH JICTHUKA
MOI'yT pacliioJlaraTbCd OIITUYICCKHNE U aKYCTHUYICeCKHe JaTINKH, a Ha IIOBEPXHOCTHU
pasMenaTbCcd aHTEHHbI PAINOYACTOTHOTO JIMana3ona. TakuM odpa3oMm, mpeiia-
raeMas JIOKalus JaeT BO3MOXKHOCTH OJJTHOBPEMEHHO 3aJIeICTBOBATH HECKOJIBKO
METOJOB JeTEKTUPOBAHUA, OXBATHIBAIOIINX MUPOKUN SHEPTEeTUYECKU CIIEKTD
Heiirpuno. [IpuMeHenne aKycTudeckoro MeTojia ¢ JaTduKaMu HeOOIBIIOro pas3-
Mepa, IMO3BOJIUT CO3/IaTh JETEKTOP CBEPXOO/IBINOr0 00beMa, OPUEHTHPOBAHHDII
Ha n3y4vdeHnne NCTOYHUKOB BBICOKOIHEPIeTHUICCKUX HeﬁTpHHO.
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CONCEPT OF A NEW ULTRA-LARGE-VOLUME NEUTRINO
DETECTOR IN ANTARCTICA

Arcady A. Zakharov
Petersburg Nuclear Physics Institute of NRC “KI”, Gatchina

Abstract

A proposal to create a new ultra-large-volume neutrino detector with the use
of the Antarctic subglacial Lake Vostok is presented. This location has certain
advantages in comparison with the locations of existing detectors of the global
neutrino network and it makes possible to build a detector with a volume of
tens of cubic kilometers with low background conditions. For wells drilling to
the Lake Vostok, a new method for fast and environmentally friendly ice drilling
and entrance opening of the lake has been proposed. This drilling method can
also be used to study subglacial lakes in Antarctica. Lake water and a glacier
about 4 kilometers thick are used as a detector for the new neutrino telescope,
while the top layer of ice will serve as a screen for atmospheric neutrinos and
high-energy charged particles. Optical and acoustic sensors can be located in
clear lake water and inside a glacier, and radio frequency antennas can be placed
on the surface. Thus, the proposed location makes provides opportunity to
use simultaneously several detection methods covering a wide neutrino energy
spectrum. The use of the acoustic method with small sensors will make it
possible to create an ultra-large volume detector aimed at studying the sources
of high-energy neutrinos.
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Hefirpunnstit Testeckon Ha o3epe Bocrok B AHTapKTHIE OyIeT nMeTh mapa-
METPBI, IPEBOCXOJISAIIIE XapAKTEPUCTUKN TEJIECKOIIOB TJI00aIbHON HEHTPUHHOM
ceru GNN |[1] mazke 110 3aBepiienuo paboT Mo yBeIMIEHIIO 00HEMOB UX JIETeKTO-
poB. IIpu aTOM KOHCTpPYKIINS JleTeKTopa B 03epe BocToK M03BOJIUT BO MHOT'O pa3
COKPATUTh PACXOJIbl M BPEMs Ha €ro CO3J/IaHie B CPABHEHUU C CYIIECTBYIOMUME
anajioramu. [Ipexie dem rmepeidTu K KOHIIEIIUH HOBOI'O HEHTPUHHOI'O TEJIECKO-
ma, KpaTKo PacCMOTPUM HaydHbBIE 3a/a41, JJOKAIUA U YCTPONCTBO HEUTPUHHBIX
nerekTopoB cetn GNN, KoTopasi 00beIMHAET TEJIECKOIIbI CO CBEPXOO/IBITUMEI
oobemamu gerekTopos: KM3NeT, Baikal-GVD u IceCube.

B uccnemosarensckyto nadpacrpykrypy KM3NeT |2| BxomuT gerekrop
ORCA 3| mnst ucenenoBanus ocrmisuii Heiitpuao n gerekrop ARCA [4]
JIJIsT perucTpanuu HefiTpuao BbicoknX suepruii. [IpeamecrBernnk KM3NeT
ueiirpunnbiit resieckont ANTARES [5] 6611 BoiBesien u3 sxciuiyatanuu B heBpadie
2022 rona.

['mybokoBoanast jokanust Heifrpuaaoro jgerekropa ORCA maxomurcs B
Cpemuzemuom mope B 40 kM ot Tymona n mmeer riryouny 2450 merpos. [Ipo-
CTpPaHCTBEHHAA pEIIeTKa JeTeKTOpa, COCTOANIAA U3 ONTHIECKUX MOJTYJIEN I
duKkcau BTOPUIHOTO I€PEHKOBCKOTO U3JIyUEeHHUs B BOJIE, UMEET ILJIOTHOCT,
KOTOpast 00eCIIeInBaeT yIJI0BOE U SHEPreTUUECKOe pa3pelleHne Jijisd IeTeKTHPO-
BaHMs aTMOC(hEPHBIX HEUTPUHO. ATMOCGEPHBIE HEHTPUHO SBJISIOTCS KJIIOUOM K
pereHnio pyHIaMEeHTAJIHLHOIO BOIIPOca (DU3UKH YACTHIL: BOIIPOCA 00 OTHOCUTE b
HOM yropsiodenun Mace Heiirpuno [6,|7]. Tlocie 3aBepiienus: crponresbeTsa
nerekrop ORCA Oyrer cocTosTh U3 TUpJIstHL B KosimdecTBe 115 MTyK, KOTOpbIe
pacnoJiaralorcsd Ha paccroguun 20 M JIpyT OT JIpyra B OKPYKHOCTH PajInyCoOM
106 merpos. Kazkias rupssiaga nmeer BbicoTy 150 M BJI0JIb KOTOPOI € JiU-
cTraHiueir 9 M yCcTaHOBJICHBI ONITUYeCKUEe MOy/Iu. [[pocTpancTBEeHHBIN MacCuB
nerexTopa oobeMoM 5.5x 1063 Gymer comeprxaTh 2070 ONTHYECKIX MOJTYJIEi.

Jlokanus nmeiirpunnoro merekropa ARCA pacmosiozkena npumepro B 100 kM
ot Curmiiuu n umeer riaybuny okosio 3500 merpos. JleTekTop nipeiHa3HAMEH
JUIS PETUCTPAIMN HEHTPUHO BBICOKUX SHEPTHUIl OT JAJbHUX acTPOMU3NIECCKUX
HCTOYHUKOB, TAKUX KaK CBEPXHOBbIE MM CTaJKuBatormecs 3se3/nl [8,9]. B
3aBepIraolieil gpasze MpoekTa MpeJIIoIaracTcs UMeTh JIBa 0JI0Ka JIeTEKTOPOB
BBICOTO 0KO0J10 700 M 110 115 TUpIgH B KaxK1oMm Oyioke. Paccrosgane Mexxmy
coceTHUMU TUpJgHIaMu paBHserca ~ 90 M. I'mpiaarga cogepxkut 18 ontude-
CKHUX MOJIyJIeH, YCTaHOBJIEHHBIX Ha paccTogHuu 36 M gpyr oT apyra. [loanbrii
00beM HEHTPUHHOTO JIETEKTOPA U3 JIBYX PACIIOJJIOKEHHBIX PAJIOM OJIOKOB Oy-
ner pasen npumMeprno 1xm®. IIpocTpaHcTBeHHas CeTh ONTHYECKHX MOJTyJIeil
nerekropa ARCA mocreneHHO paciimpsiercst 1 y»Ke JIaeT [epBble HayIHbIE pe-
syabrarel [10,|11]. CoBeprieHCTBYIOTCSI TaKKe METOIbI U TIOJIXO/IbI K 06paboTKe
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9KCIEPUMEHTATBHBIX TaHHbIX [12)13].

Herekrop HeiirpunHoro reseckona Baikal-GVD [14] pacniosioxken B 10xKHOI
yacTu o3epa Baitkasi B 4 KM oT OGepera. ['1ybuna o3epa B 9TOM MeCTe COCTaBJIAET
1366 = 1367 meTpoB. /leTekTop npeHa3HAYEH JIJIsd [IONCKA HEHTPUHO C SHEepruei
Boiie 100 THB, ncrounuku KoTopwix ere He ujaeHTUUIUPOoBaHbl. 1o cocTo-
aamio Ha 2021 rox on BKoUaeT 2304 onTHYECKUX MOIYJIsI, PACTIOJTOKEHHBIX
Ha 64 rupiagrgax. [71yboKoBoOAHbIE KJIaCTEPbl B KOJUYECTBE 8 MITYK PACIIO-
JIOZKeHBI JIpyT oT Jipyra Ha yiaajsexnun 300 M. Kaxkpiit kiacrep o0beauHsier
8 BEPTUKAJbHBIX TPOCOB-TUPJIAH/I, KOTOPbIE HAaXOAATCA Ha paccTogHuu 60 M
apyr ot apyra |15]. Tupasgana Briaodaer B cebst 36 ONTHIECKUX MOJYJIEl, yeTa-
HOBJIEHHBIX C JucTaHimeil 15 MmerpoB Mexkay HuMu. CHTHAJIBI OT ONMTHIECKUX
MOJLyJIell TIepeJIaloTCs 110 MPOJIOYKEHHBIM 110 JIHY KabesidM Ha Oeper jiid coopa u
00pabOTKY TOJTyYeHHBIX JaHHBIX. JPDEKTUBHBIN 00beM JTETEKTOPa COCTABJISET
0.4 kM3,

Heitrpunnerit Teseckon IceCube [16] pacmonaraercss BHyTpH JieIHUKA, KO-
Topbiii HaxomuTca Ha HOxkuBIM momocoM 3emin. C ero mOMOIIBI0 MOYKHO
[IPOM3BOUTL U3MEPEHUS MOTOKa HeiTpuHo B juamnazone ot 100 THB o yposus
ke 10 ['9B, Ha KOTOPOM HAOJIIOIAIOTCS OCIUIISIIAN aTMOCHEPHBIX HEHTPUHO
U TIPOU3BOJUTCS MMOUCK CTepuIbHbIX HelTpuno. Teneckon IceCube mosposisier
BBITIOJTHATH HENPAMON ITOUCK TEMHOM MATepUu M0 HEUTPUHHBIM CUTHATYPaM
AHHUTUJISIIUN TeMHON MaTePUU B FaJIAKTUIECKOM TaJjio, B CKOILJIEHUSX TaJIaKTHK
1 B IeHTpe 3eMJIN.

s cospanus wHeiirpuaHoro jgerekropa IceCube na cranmun Amundsen—
Scott B redenue 6 sier (2004-2010 rr.) ropsideit Bojoit B JieiHEKE OBLIO TTPOOYPEHO
86 ckpaxkun ryryomHoit 2500 m u auamerpom 60 cm. Ha cosnanue ogHOll ckBa-
JKUHbI TpeboBaiock nopsizka 30 vacos u 21000 i Tomwtusa [17,18]. B ckBaxKkunb!
OBLIN OIYIIEHBI TUPJIAHJIBI C ONTUIECKUMU MOJTY/ISIMU, TIOCJIE Yer0 OHU BMEP3JIH
B JIEI.

lupasaapr gerekTopa IceCube pacrosaraioTces 10 reKcaroHaJIbHON PenéTke
B CKBaXKMHAX C paccTogumeM 125 M MexK iy HuMU Ha riayoune ot 1450 1o 2450 m.
Kaxjtaga rupagnia cocront u3 60 onTudecKnx MOYJIE /It PETUCTPAIUH de-
PEeHKOBCKOTO m3aydenusi. /lerekrop mefirpunnoro tejeckomna lceCube mmeer
obbem 1xM® u comepskur 5160 onruyeckux mogyneit [19]. Bocemb rupsistay
B IIEHTPE MAaCCHBa PACIOJIOXKEHBI 0oJiee KOMIIAKTHO Ha paccrosuuu 70 mer-
POB JIPYT OT JIpyTa, a ONTUYECKHe JEeTEKTOPbI YCTAHOBJIEHBI 110 BEPTUKAJIN C
jucrannueit 7 merpon. Takasi Oosiee TioTHAA KOHGUIYypalus odpa3yer Mmojl-
nerekTop DeepCore, KOTOPBIN CHUZKAET HEPTETUIECKUI TOPOT PETUCTPAIIIT
Heiirpuno npumepno jo 10 9B, co3naBas BO3MOXKHOCTD JIjI0 U3YYE€HUSA OCITHII-
it gHefirpuno. Honomnurenbabie 324 MOyt 00pa3yoT MOBEPXHOCTHBIN
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nerexktop IceTop mnomanio 1 kM2, JlerexTop cocTonT m3 81 CTaHINN, KazKIasd
13 KOTOPBIX 000py/toBaHa 4 ONTUYECKUMU JIETEKTOPAMU, OPUECHTHPOBAHHBIMU
BHI3. CTaHIIUN PACIIOJIATAIOTCS Ha, TIOBEPXHOCTU HAJl OCHOBHBIMU TUPJISTHIAMA.
IceTop, co3mannblii B Ka4ecTBe BETO-JIETEKTOPA U KAJIUOPOBOYHOIO JIETEKTOPA
st IceCube, Takzke oOHapYKUBAET BO3/IYIIHBIE JIMBHA OT HEPBUTHBIX KOCMIU-
qecKux Jydeit B quanaszone suepruii or 300 T5B no 193B. Hazemusbrit maccus
u3MepsieT HAlpaB/ICHUs IIPUX0/ia KOCMUYECKHUX JIydeil B I0XKHOM TIOJIYIIApUM, &
TaKzKe II0TOK U COCTaB KOCMHYECKUX JIYUeid.

B nacrosiiee Bpemst Hadasioch ocyiectsienne npoekta IceCube-Gen?2 |20),
B KOTOPOM IIJIAHUPYETCS JIONOJTHUTEIHHO Pa3MeCTUTh B JieHnKe 120 TupsisaH ¢
ONTHYECKIMI MOJY/IAMI 1 yBeJMIATL 00LEM JleTekTopa 1o 7.9 kM. JlerexTop
Oy/JIeT OTJIMYATHCA YBEJUIEHHBIM PACCTOSHUEM MexK 1y rupJgajgamu. [IpoekT
[ceCube-Gen2 mo3BOUT MOBBICUTH IyBCTBUTEIBHOCTD K HEUTPUHHBIM UCTOY-
HUKaM B IATb Pa3 [0 OTHOIIEHWIO K CYIIECTBYIOIIENH W YJIyUIIATH YIJIOBOE
pa3pelrenwue.

Ha moBepxHocTH mpejioiaraercd yCTaHOBUTD PaJIMOYaCTOTHYIO PENIETKY
CBEPXBBICOKHUX SHEPIHUil I paCIIMPEHHs JIOCTYITHOTO SHEPreTHIECKOTO JTralia-
30Ha KOCMHUYECKUX HelTpuHo. Pajunonerekropuas cranims Gen2 coderaer B
cebe HerryboKue aHTeHHBI (JIydiliee YCUJIeHne, 1yBCTBUTETLHOCTD K IacTOTe
U TIOJIIPU3AINU, & TaKXKe BEeTO Ha aTMOC(EpHbIe SABJIEHUS JJIsd YJIYdIIeHus
HJIeHTHUKAIINE KOCMITIeCKIX HEHTPUHO B ONTHYECKOM MACCHBe) ¢ DIyOOKUME
aHTEeHHAMU 1 TPUITEPHON Ienbio ¢ pasupoOBaHHONI aHTEHHON pelIeTKoi, ITo
naet Oostee acbdeKTUBHBIN 00beM U JydInuii oxBaT Heba. Pajumopererka Oyer
oxBaTbIBaTL 0K0J10 500 KM?. B KoHIenTyaabHOM IIpoekTe mpemnosaraercs 200
CTAHIIMIA, YTO 0DecrieunBaeT OeCIpereIeHTHYI0 YYBCTBUTEILHOCTD ITPU SHEPTUIX
Boire 1011sB.

PaccmoTpum 0cOGEHHOCTH ONMCAHHBIX BBIIIE JIETEKTOPOB, O0YCIOBICHHBIE
ux Jiokanueit. K oCHOBHBIM HEraTUBHBIM CTOPOHAM MOPCKOMW JIOKAITMH HEHTPUH-
HOTO JIETEKTOpa MOYKHO OTHecTH pactajl nzorona ‘°K, koTopblit conep:kuTcs B
MOpPCKOit Bojie u npousBoauT 110 150 YepenkoBckux (oronos Ha pacmas [21]
U COBMECTHO C XEMUJIIOMHHECIIEHITUEN CO3/aeT CBETOBbIE ITOMEXH ITPU PEru-
CTPAIIU YEPEHKOBCKOI'O MU3JIYUYCHUs, U3MEHEHU TEMIIepaTyPhl U COJICHOCTU
BOJIBI, 3HAUEHNE KOTOPBIX BJIUAIOT Ha pacdeT BPEMEHU U OlpejiesieHre MO3UINN
ONITUIECKUX MOJYJIeil B MOMEHT (PUKCAIUU COOBITHUI, & TaK:Ke MOPCKHE TeUeHNUsl,
BO3/IEHCTBYIONINE HA ITPOCTPAHCTBEHHYIO PEIIeTKY U3 OINTUYECKUX MOJYJIEH.
s cHUKeHWs HEraTUBHOTO BJIMAHUA CPEJIbI HA TOYHOCTH U3MEDPEHUi ycTa-
HOBJIEHBI JIOTIOJIHUTE/ILHBIE JIa3ePHbIE U THIPOAKYCTUYECKUE MOJY/IU. BosbIoii
AKyCTUYECKUIl MIyM OT MOPCKHX CYJIOB M oOuTareseii MOpsi OCTaBJ/SET IIO/1
BOIIPOCOM BO3MOKHOCTH UCIIOJIb30BaHUsT aKyCTHIECKOTO METO/Ia PEruCTPaIlin
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HEHATPUHO, O KOTOPOM pedb IoiigeT HuKe. Perucrpanun HEHTPUHO BBICOKHX
sHepruit Memtaer hboH arMocdepHbIX MIOOHOB [22]23)].

B cinyuae ozepnoit jokarnuu Baikal-GVD orcyrcrByer cBetoBoit don ot
pacmasa n3orona YK, ognako Ha riryGrHe MpodBiIgeTcsa XeMUTIOMIHECIICHITHS,
KOTOpas CO3/aeT MOMEeXH JJisi pabOThl ONTUYeCKUX MojyJiei. [Ipospadnocts
03epHOiT BOJIbI TIpejicTaBieHa B pabore [24]. 113-3a HeGoJIbINION TIIyOUHBI pac-
[TOJIOYKEHUsSI JIETEKTOPa MPUCYTCTBYET (POH aTMOCGEPHBIX MIOOHOB, KOTOPDI
MeIaeT PEerucTpaluy HeTPUHO BhICOKUX dHepruii. CyIecTByomme B 03epe
TeYeHUsl U CE30HHBIE MMTOPMbI ITPOU3BOAT CMEIIEHUE TUPJISTHIL C ONTUIeCKUMU
MOJLYJIAMH, KOTOPOE MOXKET JIOCTUTaTh JEeCATKOB METPOB B 3aBUCHUMOCTH OT
ryOuHbL. [l TO3UIMOHUPOBAaHUS ONTHYECKUX MOJIyJIeil BO BpeMs H3Mepe-
HUI UCIOJIB3YETCS THIPOAKYCTUUECKasi CHCTEMa, KOTopas IpeJIcTaBisgeT co0oi
HabOp aKyCTUYIECKUX MOJIEMOB, YCTAaHOBJIEHHBIX BJIOJIb THPJIsHII. B Teuenue
KPaTKOBPEMEHHOI'O TIEPUO/Ia OU€Hb BBICOKOI I'MJIPOIMHAMUYECKON aKTUBHOCTH
TOYHOCTD Io3urmonupoBanus magaer 10 2010 em [25]. Hekoropsie mpobremsr
BO3HUKAIOT TaK:Ke M3-3a XO3SIMCTBEHHON JledTelbHOCTH Ha o3epe. Hasmtane
JIEJIOBOTO TIOKPBITUS B TEUYEHUE JBYX MECSIEB B T'OJLy MO3BOJSIET IPOBOIUTD
MOHTaXK U OOCJIy’>KUBAHUE TUPJISAH]T C ONTUYECKUMU MOJIYJISIMH C TIOBEPXHOCTH
JIBJIA.

Jlokanus mefirpuaHOTrO JteTekTOopa BHyTpH Jiegnuka (IceCube) cBazana c
HEOOXOIMMOCTBIO OypeHust GOJIBIITOTO KOJMYIECTBA TUIYOOKUX CKBAaXKUH JIJIS pa3-
MEIIEHUS TUPJISH/I ¢ ONTUIECKUMU MOJIY/IsIME. JIaHHbIE O MECTOIIOJIOXKEHUN B
rporiecce OypeHus MOKa3bIBAIOT, YTO TUPJIAHJIA He SIBJIAeTCH UJIeabHO BEPTH-
KaJIbHOM, XOTs OTKJIOHEHUs OT BEPTUKAJIU cocTaB/isieT Menee 1 M. Pacriosoxkenue
TUPJISTHJL B JIEJTHUKE HE MO3BOJIAET MEHATDH MPOCTPAHCTBEHHYIO PENIETKY JIeTEK-
TOpa, MPOBOJUTH PEMOHT U 3aMeHy ONTHIeCKUX Moy eil. OnruaecKuii Moy b
3aKJII0UeH B MPO3PavHyIo cepy, KoTopas paccunTana Ha jasierne 690 arm [26].
B BepxHEUX CJI0X JIeJ COIEPKUT IY3bIPbKH BO3/yXa, KOTOPhIE B HUKHUX CJIOSIX
[IPEBPAIAIOTCA B KABEPHBI, UYTO MPUBOJIUT K CHUXKEHUIO ITPO3PATHOCTH JIbIA.
SamepaInit B CKBayKUHE JieJ| COCTOUT M3 BHEIIHETO CJIOsi M IEHTPAJIBLHOTO s/Ipa
JIMAMETPOM OKOJIO 16 cM, KOTOpOe MMeeT ropa3/i0 MEHBIIYIO JIJIMHY pacces-
HUS CBETa, YeM Y CILIOIIHOTO JIbJIa OKPYZKAIOIIEro CKBaxKuny. BHyTpu Jibaa
OBLJIO BBISIBJICHO ITPEUMYIIECTBEHHOE pacIpOCTPaHeHne cBeTa B HallpaBJICHUN
JIBUKEHUs JieJHuKa [27).

PaccmoTrpum mpemmytiiecTBa JIOKAIUMK JIeTEKTOPA B TIOJIJIE THUKOBOM O3€PE,
HO JIJI Hadasa HeMHoro obmieit nadopmanmu 06 o3epe Bocrok [28H30]. Tlox-
JIETHUKOBOE 03epo BocToK mMmeer cjerka m30orunyTyio (hopMy, U ero pa3Mepbl
IPEBBIMNAIOT 275 KM B JyiuHy n 50 KM B mmpuHy. MakcuMmaabHOe 3Ha4YeHne TOJI-
IIUHBI JIEJIHUKA HaJL 03epoM cocTaniiseT 4350 M, a MaKCHMaJIbHAs 3aperucTpu-
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poBaHHas TOJIUHA BOJHOTO cjiog jpocturaet 1200 M. [lo yTouYHEHHBIM OIeHKaM
JIEJTHUK JIBUZKETCs C 3alla/ia Ha BOCTOK MPAKTUIECKU IEPIEeHINKYIIPHO ITPO-
JOJIBHOM ocu 03epa co ckopocThio 2.0+0.01 m/rox [31]. B mecre pacnonoxenns
AHTAPKTUIECKOI cTaHInu BOCTOK JieJIHUK nMeeT ToJuHy 3758 M. V3ydenue
JIEJITHBIX KEPHOB, U3BJIC€YEHHBIX U3 CKBayKUHBI, ITOKA3aJ10, YTO CJIOM aKKPEIHOH-
HOrO Jibjia umeer rTosrmuHy 230 M [32]. B paiione noisgpHoii craHImm BOJIHBIH
cJioii paser 680 M, a cjoit ocanounbx opos gocturaet 330 m [33]. Lupkysisiums
BOJIBI B 03epe 00yCJIOB/IEHA Me0TEPMAJILHBIM IIOTOKOM, KOTOPbIH OIEHMBAETCA B
46 MBT/M?, maB/ieHneM HUKHel MOBEPXHOCTH JIbJla B CeBEpHOil yacTu o3epa 1
[pUPAIEHIeM JIbJIa B €ro I0XKHO 9acTi o CKOpocThio 4.5 Mm/ros [34].

YesoBus o3epa BocTOK MO3BOJIMIOT MPUMEHUTH OJHOBPEMEHHO HECKOJIbKUX
METOJIOB JIeETEKTUPOBAHUA HeUTpuHO. 19 meTeKTupoBaHnd HEUTPUHO B IIPO-
3pavyHOil BOJIe 03epa MOXKET UCIIOJIb30BATHCA OINTUYECKUN METOJ PErUCTPaIlnI
YEPEHKOBCKOI'0 M3JIyYeHUs OT KacKaJla 3aps?KeHHBIX YacTHIl, KaK Pe3y/IbTaTa
B3aUMOJICHCTBUA HERTPUHO CO cpejioii. B kKadecTBe onTUYECKUX JIETEKTOPOB
JIUTT HERTPUHHOT'O TEJIECKOIIAa MOXKHO PACCMATPUBATH MCIIOJIb3YEMbIil JIJIsT 9TOTO
it PIY wim KpemaneBbie PIY. BarKHbBIM MOMEHTOM B BBIOOpPE THIIA, JTETEK-
TOPOB, TIOMHMO XapaKTEPUCTHUK, OYJIET SIBIATHCSI T€OMETPUIECKUN pa3Mep JIjis
HOTPY2KEHUs B 03€PO U€Pe3 CKBAXKUHY U CIIOCOOHOCTD BBIJIEPXKUBATH JIABJICHIE
Ha Gosibmnoit rryoume (~450 aTn).

i ieTeKTUPOBAHUS PEJIKUX KOCMUYECKUX BBICOKOIHEPIeTUIECKUX HETi-
TPUHO B 03€pe MOXKET OBITh MCIOJIL30BAH aKyCTUIECKUN JIETEKTOP CBEPX0O0/Ib-
oro oobeMa. AKyCTUYECKHIT METOJI ITO3BOJISIeT U3YUIaTh CIIEKTP KOCMUIECKUX
unetitpuno ot I'3K B3aumoieiicTBUsA, KOTOPBIN MOXKET PAaCIOJIaraTbCs BBIIIIe
1001IsB [35,136]. AxponHble Kackajbl, 0Opa30BaHHbIE B PE3yJbTaTe B3aWMO-
JeficTBUA BBICOKOHEPIeTUYECKUX HEUTPUHO CO CPEAOM, BbLICIAIOT B HEll Tell-
JIOBYIO 9HEPI'UIO, YTO IMPUBOJIUT K ITIOYTH MI'HOBEHHOMY PaCHIUPEHUIo obbeMa,
KOTOPOE COIPOBOXKIAETC TeHepalieil OUIOIAPHOTO aKyCTUIECKOrO UMITYJIb-
ca [37,38|. Teoperuvyecku u SKCIEPUMEHTAIBHO YCTAHOBJIEHO, UTO aMILIUTY/IA
AKyCTUYIECKOTO JIABJICHUS MPSIMO ITPOMOPIIMOHAIBLHA MOITHOCTH KacKa/a JacTHUIL.
BazKHbIM TPENMYIIIECTBOM UCIIOJIL30BAHUS aKYCTUIECKUX JATIYNKOB B 03€PHOI
BOJIE ABJISIETCS TO, YTO JIMHA 3aTyXaHWd 3BYKOBOTO CUTHAJIA MOXKET JIOCTUTATDH
100 kM [39]. DTO 1MO3BOIUT UCIIOTB30BATH OIPOMHBIE OOBEMBI BOJIBI C aKyCTH-
YEeCKUMHU JAaTINKAMU, PACIOJIOXKEHHBIMU Ha OOJIBIIIOM PACCTOSHUHU JIPYT OT
JIpyTa, YTO YBEJMYIUT KOJUIECTBO PETUCTPUPYEMBIX dacTull. [pyroii mosiesnoit
0COOEHHOCTBIO AKYCTUYECKOTO CUT'HAJIA SABJIAETCS TO, YTO €0 SHEPrusl CKOHIICH-
TPUPOBaHA B HEOOJIBITIOM YIJIOBOM CEKTOPE MEPIIEeHINKYIIPHO K HAIPABIEHUIO
pacipocTpanennsa Kackaja. I[IpocTpancTBenHasa penreTka aKyCTHIECKUX J1aT-
YUKOB MOXKET PETrMCTPUPOBATH CUTHAJIBI CO BCEX CTOPOH JIJIA TTOCJIETYIOIIETO
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PEKOHCTPYHPOBAHHS PACIIOJIOKEHHs KACKa/[a U ero HarpasieHns. [Ipuvepamn
HCIIOJIB30BAHISA aKyCTUIECKOTO METO/a JIJIsl JIETEKTHPOBAHIS BBICOKOIHEpIe-
TUYIECKUX HEHTPUHO MOryT cayKuTh npoektsl DUMAND [40], SADCO [41],
SAUND [42|, AMADEUS [43|, SPATS [44},45].

OrpuraresbHBIM MOMEHTOM JIJTsT TPUMEHEHUS aKyCTUIEeCKOIO METO/Ia B IIPec-
HOIt Bojie Oy/leT CpaBHUTEIHHO HEOOJIbINAS aAMIUINTY/Ia aKyCTHIECKOTO CHIHAJIA,
YTO OTYACTH KOMIIEHCHDPYETC OU€Hb HU3KUM 3aTyXaHHeM CHI'HAJIA I OTCYTCTBH-
eM aKyCTHIeCKHX IOMeX B o3epe. B KadecTBe aKyCTHIECKUX JIATIHUKOB MOI'YT
[IPUMEHATHCS [TbE303JIEKTPUIECKIE M'HIPOMOHBI UIIN OIITOBOJOKOHHBIE j1ehop-
MAIHOHHBIE JIETEKTOPBI, UCIOJIBb3YIOIIEe METO/I KOTePEHTHO! pedIeKTOMETPHUH.
Bonpoc Beibopa Tuira aKyCTHIeCKNX JATIHKOB /i HEITPUHHOIO JIETEKTOPA B
ozepe Bocrok noieskut 6ostee 1eTaNIbHOMY N3y YIEHHUIO.

JomomanrebHO K HEHTPUHHOMY JIETEKTOPY, PACIIONIOKEHHOMY B 03€pe, B
HOBEPXHOCTHOM (bUPHE MOTI'YT OBITH YCTAHOBJIEHBI AHTEHHBI JJIsI PA/THOBOJIHO-
BOTIO JIETEKTUPOBAHUs HEHTPUHO, YTO PACIIMPUT SHEPreTHICCKUil THaa30H
PEruCTPUPYEMbIX HEUTPUHO J10 JecATKoB [15B.

[TepetunciiuM OCHOBHBIE TIPENMYIIECTBA PA3MeNeHIs HEITPHHHOTO JIeTEeKTO-
pa B 03epe BocTOK B cpaBHEHNH ¢ IPYTUMH JIOKAIMSIME HEATPUHHBIX TEJIECKOIIOB
CO CBEPXOOJIBITIME 06beMaMi JeTEKTOPOB. K 9THM IIPEnMyIIecTBaM OTHOCSTCS:

® BO3MOXKHOCTBH ITPUMEHEHUs OJTHOBPEMEHHO HECKOJBKUX METOJ/IOB PErncTpa-
MW HEHTPUHO: ONMTHUIECKOTO, aKyCTUIECKOTO M C TIOMOIIHIO PaIMOCUTHA-
JIOB, 9TO paclIupseT KCIIePUMeHTAJIbHbIE BO3MOYKHOCTH;

e OOJIbITIas TOJIINUHA JIETHUKA ITO3BOJUAT 3PHEKTUBHO SKPAHUPOBATL HEll-
TPUHHBIN JIETEKTOP OT MOTOKOB COJTHEYHOT'O U aTMOC(EPHOI0 U3JIYICHUA;

® OTCYTCTBUE T€YEHUIl, CIIOCOOHBIX CMEIATh JATYNKH, OOECIIEYUT UX YCTOM-
9HUBOE IIOJIOZKCHUE B IETECKTOPE;

® BBLICOKAs IPO3PAYHOCTD BOJIBI B 03€pe OYIeT CIIocOOCTBOBATH PETUCTPAIUN
YEPEHKOBCKOI'O N3JIyYCHU;

® B IIPECHO BOJE 03€pa OTCYTCTBYET CBETOBOI (hOH OT paciiajia H30TOIa
4OK, KOTOPBIA COACPKUTCA B MOPCKOH BOJIE;

® OXKHJIaeMO€e CPABHUTEIBHO HEOOJIBINOE COepPKaHNe MUKPOOPTaHU3MOB B
BOJIe 03epa 00ecrednT HU3KUiT ¢BeTOBOIl (hOH (BILIOTH JI0 IIOJHOTO €ro
OTCYTCTBHsI) OT BO3MOKHOf GHOTIOMIUHECIIEHITIN, ITO BAYKHO JJIs pabOThI
OIITUYECKUX MOJIYJICH;
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B TIOJIJIETHUKOBOM 03€p€e OTCYTCTBYET KaKasi-JTHOO0 JeATeTbHOCTD, KOTOpas
MOXKET BJIUATH Ha PabOTy HEHTPUHHOIO JIETEKTOPA;

KpaiiHe HU3KUI aKyCTUIECKUii (pOH B yIaJI€HHOM II0JIJICTHUKOBOM 03€Pe
MO3BOJIUT UCIIOJb30BATh aKyYCTUYECKUAIT METOJ, PEruCTPAIllni HEHTPUHO;

JIJIHA 3aTyXaHus 3ByKOBOTO CUT'HAJIA B IPECHOMN BOJIE B JICCATKH Pa3 060/1b-
e, 9eM JIJTMHA 3aTyXaHus B MOPCKOI BOJIe, UTO OY/IeT CIIOCOOCTBOBATD
CO3JIAHUIO HEHTPUHHOIO JIETEKTOPa CBEPXOOJIBIIIOr0 00beMa;

pa3MelreHne HEeHTPUHHOIO JIETEKTOpa B BOJIE TOJI0 JIbJIOM IOTpedyeT
OypeHusI B JIeJIHUKE TOJBKO ABYX cKBaknH. OJiHa CKBaXKuHaA OyJ1eT HMC-
[IOJIb30BAThCs JIJI MOHTaXKa, M OOCJIyKUBAHUS TUPJIAHJ C JTJaTIUKAMU C
IIOMOIIbI0 aBTOHOMHOT'O TIOJIBOJIHOT'O JIPOHA, & BTOpasd JIJIs BbIBOJA W3-
MEpUTEJIbHBIX W IUTaNMX Kabeneit. HeobxomumocTh OypeHuUs: Bcero
JIBYyX CKBa)XUH 3HAYUTEIbHO COKPATUT PACXO/bl U BPEeMs Ha CO3JaHue
JIETEKTOPa CBEPXOOJIBIIOro 00beMa. 3aKperieHne THPJISTH C TaTINKAME
BO3MOKHO JINOO Ha HUXKHEH MOBEPXHOCTH JibJa, JUOO Ha JHE 03epa C
NIPUMEHEHUEM TTOILIaBKOB;

HCIIOJIb30BaHue CKOPOCTHOI'O MeTO/1a 6ypeHI/IH JIeIHNKa IIO3BOJIUT Hp06y—
PUTH CKBazKHUHBbI K O3€PYy B T€ICHUE OJHOI'O ITOJIAAPHOI'O CE€30HAa;

OIIPEJIETISTIONTAM MOMEHTOM CO3/IaHUSI HEHTPUHHOI'O JIETEKTOPA B O3€pe
Boctok gBisiercss ckopoe 3aBepllienne CTPOUTEHCTBA HOBOI'O TOJISTPHOTO
KOMILJIEKCA, B KOTOPOM MOXKET OBbITh Pa3MeIlneHo 00OpyoBaHue JIjisd Heil-
TPUHHOT'O TEJIECKOTa, YTO B 3HAUYUTEJILHON CTENEHN MOTHUMET HayIHYIO
3HAYNMOCTb BHYTPUKOHTHUHEHTAJLHON MOJISIPHON cTaHIun BocTok;

OTpa6OTaHHaH IIpHU CTPOUTEJILCTBE ITOJIAPHOI'O KOMIIJIEKCA JIOTUCTHUYIECKasd
cxeMa MMO3BOJIUT OPraHM30BaTh JOCTABKY OypPOBOro 0OOPYIOBAHMSA U IPHU-
O6opHOit 6a3bl HEUTPUHHOT'O TEJIECKONA Ha IMOJISAPHYIO CTaHIIUIO.

K orpunarebHbIM MOMEHTaM, OTHOCAIIUMCH K Pa3MeNIeHnI0 HERTPUHHOTO
TeJIECKOIIa B TOJIJIEIHIKOBOM 03epe, MOYKHO OTHECTH HEeOOXOIUMOCTH OypeHus
[JIyOOKUX CKBaXKWH B JIEJIHUKE, BBICOKUE IKOJIOrmIeckue TpeboBanust K padbore
B 03EpHOIl cpejie, UCIOIL30BAHNE aBTOHOMHOI'O IJIYOOKOBOJIHOT'O JIPOHA JIJIs
MOHTaKa TUPJIAHJ, ¢ JATIMKAMU TIOJI0 JIbJIOM, TeorpaduiecKyio yIaJeHHOCTh 1
CYpPOBbIE€ KJINMATUYIECKUE YCJIOBUS.

it co3tannd HERTPUHHOTO JIeTeKTOpa B 03epe BocTOK BO3MOXKEH Tak:Ke
BapUaHT CKBO3HOI'O pa3MellleHus TMPJIgH/l ¢ JaTYUKaMU B CJIOE JIbJla U B
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03epHOI BOJie. DTO TMO3BOJUT CO3JaTh HEHTPUHHBINA JIETEKTODP BBICOTOM 0
YeTBhIPEX KUJIOMETPOB (3 KM Jibjia + 1 KM BOJIbI) CO CJIOEM SKPAHUPYIONIETO JIbJa
OKOJIO OJIHOIO KHJIOMETPa, 9TO YBEJIUIUT IKCIIEPUMEHTAIbHBIE BO3MOXKHOCTH
TEJIECKOIA U PACIHIUPUT SHEPTETUUECKUI IMaa30H PETUCTPUPYEMbBIX HEHTPUHO.
DToT BapraHT moTpedyer OypeHnst OOIBIIOr0 YNC/Ia CKBayKIUH, HO OJHOBPEMEHHO
3HAYUTETHHO YIPOCTUT YCTAHOBKY TUPJISAHJ C JIATYMKAMUA B CKBaXKHHAX.

[IpuHnunmaIbHBIM BOIIPOCOM IIPU CO3JIAHUH HEHTPUHHOIO JIETEKTOPA B 03€pe
BocTok siBiisiercst mpuMeHeHne TaKoro crocoba OypeHust U BCKPBITUSI ITO1/1€IHI-
KOBOI'O 03€pa, KOTOPBIil COOTBETCTBYET KOJEKCY MOBEJIEHUS HAYYHOTO KOMUTETA
[0 AHTAPKTHUYECKUM UCCJICTOBAHUAM JIJI Pa3BEJIKN W UCCIEOBAHUS TIOJIICTHY-
KOBOI BostHO# cpejibl [46]. [Tns cobmomenust 9KOJIOrMIecKuX HOPM CKBayKUHA K
[IO/IJIEITHUKOBOMY O3€py JIOJIZKHA OBbIThH 3aIl0JTHEHA BOJION M3 PaCILIaBJIEHHOIO
HaJI HUM JIbJa UJIN JUCTOM He3aMep3arolieil ruapodoOHONl 3aJIMBOTHON X KIITKO-
cThio. s perienust 3Toit 3a1a4u pazpaboTaH IKOJIOTUIEeCKN YUCThIN CIIOCOD
CKOPOCTHOT'O OypeHHs CKBaXKUHBI U BCKPLITU IOJJIETHUKOBOTO 03€pa, KOTO-
PbIil 3aKJII0YAETCH B TOM, 94TO OypeHUe JibJa U BCKPBITHE 03ePa MPOU3BOIATCA
TEIJIOBBIM OyPOBBIM CHAPSAIOM, KOTOPBIN COCTOUT U3 FePMETUIHOTO THOKOT'O TPY-
6orpoBoia THIa TPyOa-B-Tpyde U TeIIoBoit OYPOBOl KOPOHKH, 3aKPEILIeHHOM
Ha ero KoHie. BuyTpu TpybompoBoa MUPKY/IUPYET HATPEThIN TEIJIOHOCUTE b
C TIeJIBIO TIO/JIep2KaHusT 0Opa30BaBIIeiicss Tajaoil BOJIbI B CKBaXKUHE B YKUJIKOM
COCTOSHUU B YCJIOBUAX OKPYZKAIOIIEro Jib/ia ¢ HU3KOM TeMiepaTypoii. Takum
0Opa3oM, B OTJIMYME OT JIPYTHX CIIOCOOOB OypeHus Jibjia, OypoBas KUJIKOCTH
TedeT B FepMEeTUIHOM TPYOOIIPOBO/Ie U HE KOHTAKTUPYET C BOJOW U CTEHKaMU
CKBasKMHBI. PoJIb 3a/IMBOYHOM »KUIKOCTH, YACPKUBAIOIIEH CTEHKN CKBaYKUHbI
OT CMBIKAHUS I10J] BO3JIECTBUEM TOPHOTO JIABJIEHUS B YCJIOBUAX IJTyOOKOTO
OypeHnus, BBIIOJTHIET BOJa, 00pa30BaBIIasicsd B Pe3y/IbTaTe IIABJICHUS JIbJIA
TeIJI0BOi OypPOBOIT KOPOHKOI ¢ YCTaHOBJIEHHBIM B Heil 3JIEKTPOHArDEBATEIIEM.
Tanass Boga BBITECHSIETCA TEIJIOBBIM OypPOBBIM CHAPSIOM U3 CKBaXKUHBI Ha
IIOBEPXHOCTH B IIOJINOTOBJIEHHOE B CHery yriyosenue. Ilepesn morpy:kennem B
CKBaXXWHY HapyzKHag MOBEPXHOCTD TEILIOBOTO OyPOBOro CHApSAIa MTPOXOIUT Me-
XaHUIECKYIO U OAKTEPUOJIOTNYIECKYI0 O9rCcTKY. [Ipoxo/ika TeroBbIM Oy POBBIM
CHAPSAJIOM CKBaXKUHBI ITyOMHON 4 KUJIOMeTpa 3aifiMeT HeCKOJIBKO CYyTOK.

B MoMeHT BCKpBITHS 03€pa 4acTh BOJbI, 00pa30BaBINascs U3 paciljIaBJIeHHO-
o HaJl 03€POM aKKPEIMOHHOTO JIbJa, YIIIeT B 03eP0O U YPOBEHD BOJIBI B CKBAYKITHE
YCTAHOBUTCS B TIOJIOKEHUU, KOTJIa TUIPOCTATHIECKOE JIaB/I€HUE CTOJI0a BOJIBI B
CKBasKMHEe PaBHO JIABJICHUIO B O3€pe Ha I'PaHuIle co JibJoM. [locyie BCcKpbiThs
03€epa TeIJIOBOi OYpOBO# CHaPsIT M3BJICKACTCA U3 CKBAYKUHDI, U B HEE ITOCTYIaeT
BoJjIa 13 o3epa. [lo okoHyanum nporecca OypeHus U BCKPBITUS 03epa CKBasKUHA
OCTaeTCs 3AI0JIHEHHOW 03ePHOI BOJIOH 10 BBICOTHI T'HIPOJIOTHIECKOTO YPOBHSI.

203



Cpasy mociie 3TOro depes CKBayKUHY JI0 JIHA 03ePa MOXKET OBITh OIMyIIeHa TUp-
JISTHJIA € JIATYUKAaMU, HI2KHeAS 9acTh KOTOPOi OyJIeT HAXOAUThCA B 03€PHOI BOJIE,
a BEPXHsis OKAYKeTCsl BHYTPH JIbJIa [IOC/Ie TOTO, KAK BOJIa B CKBAXKUHE 3aMEP3HET.
Kak Ob1710 0OTMeU€eHO BBIIIIe, TIOCTPOEHHDBIM TAKUM 00pPa30M HEHTPUHHBINA JIeTEK-
TOp OyJIeT 001a/1aTh OOJIBLITUM OOHEMOM U ITUPOKUMU SKCIIEPUMEHTATbHBIMU
BO3MOKHOCTSIMU, HO TTOTpedyeT OypeHusi OOIBIIOrO KOJIMYeCTBa CKBAYKUH.

[Ipu Heo6xoMMOCTH JITTUTETHHOTO UCIOIBL30BAHNSA CKBAXKIHBI OHA 3AII0JI-
HsI€TCs CBEPXY He3aMmepaarorieil ruJipooOHOl CHINKOHOBON YKUIKOCTBIO C
JINMETHJITIOTUCIIOKCAHOBOM CTPYKTYPOil TaKuM 00pa3oM, 9ToObI TpaHUIa Pa3-
JieJia, KUJIKOCTe HAaXO/WIach B HUYKHEH YaCTU CKBAXKWHBI. JTO ITO3BOJIAT
MHOTOKPATHO OIYCKAaTh B 03€pO Pa3InIHOe 000PY/I0BaHNe, IPOIIIe/IITee TIPe/IBa-
PUTETBHYIO OYUCTKY. JKOJOTUYECKH YHCTasl 3aJIMBOYHAS CUJIMKOHOBAS YKUJI-
KOCTb IIPEJIOTBPATUT CMBIKAHIE CTEHOK CKBAYKUHBI [10J] BO3/IEHICTBUEM JaBJIEHUST
OKPY2KAIOIIEro Jib/ia U 00ECIIeUUT JIJINTETHHYIO IKCILIyaTAIUI0 CKBAYKIHBI.

Cozmannio HeHTPUHHOIO JIETEKTOpa B 03e€pe JIOJIZKHBI MIPEIIeCTBOBATD Ie0-
dusnaeckune n OnoslormIeckne uccaeoBanus. [[poekT co3manmst HeHTPUHHOTO
TeJIECKOIIa COpATaeTcsd ¢ (PyHIaMeHTATbHBIM HAYIHBIM IIPOEKTOM, 3a/1a9a KO-
TOPOT'O COCTOUT B IOJIyIE€HUN HOBBIX 3HAHUN O YKU3HU U IPOIECCE SBOIONNUN
B 9KCTPEMaJIbHBIX YCI0BUsAX. JlaboparopHblie ncc/ieI0BaHns aKKPEITMOHHOTO
JIbJAa YKa3bIBAIOT HA IPUCYTCTBUE TEPMOMUIBHBIX XEMOABTOTPOMPHBIX MUK-
POOPTraHU3MOB, UTO IMPEIIIoIaraeT HAJIMIue B 03epe MUKPOOHOI MOy IsSIIH,
M30JIIPOBAHHOI 0T GHOTHI 3eM/IN Ha MPOTSKEHNH MUUIHOHOB JieT [47H52|. Buo-
JIOTMYECKUE UCCJIEJIOBAHUS M30JIMPOBAHHOIO TI0JIJIEIHIKOBOIO 03epa BocTok
MOT'YT JaTh WH(POPMAIUIO O CYIIECTBOBAHUY »KU3HU Ha CIIyTHUKaX EBporia u
DHIle/Ia]] U HA JIPYTUX [MOI0OHBIX KOCMUYIECKUX 00BEKTaX, KOTOPBIE COJIEPKAT
BOJIY TI0JT MHOTOKHJIOMETPOBBIM CJIOEM JIbJIA.

Hcnonb3oBanne yHUKAJIBHBIX YCJIOBUI JIOKAIIMA HEHTPUHHOTO JETEKTOPA
B IIOJJIEJTHUKOBOM 03epe BocToK mo3BomT cO371aTh JIETEKTOP 00HEMOM B Je-
CATKU KyOMYECKNX KUJIOMETPOB B YCJIOBUSAX HU3KUX honon. s peanuzanun
KOHIICTIITUU TIPEJJIAraeTCs 9KOJOTUIEeCKHA IUCTBIH CII0COO CKOPOCTHOTO Oype-
HUsT CKBaYKUH W BCKPBITHUS TOJIJIETHUKOBOIO 03epa C MOMOIIBIO CIIEIHAIBHO
pa3pabOTAHHOIO TEIJIOBOI0 OYPOBOI'O CHAPSIA I TUIYOMHHOTO OypEeHUS JIbJIA.
[Ipenmoykennas JoKalyst IMeeT yYCJIOBUS JIJIsi OJTHOBPEMEHHOT'O MCIIOTH30BAHUS
PaMOYaCTOTHOIO, ONITUYIECKOTO U aKyCTUIECKOI'O METOJIOB JIETEKTUPOBAHUS.
[Ipumenenne aKkyCcTUIeCKOrO METO/IA C JIATIYUKAME HEOOJIBIIOTO pa3Mepa, pac-
I0JIO’KEHHBIMU B O3€PHOIT BOJIe U BHYTPH JIEJIHUKA, [TO3BOJIUT CO3/IATh JIE€TEKTOP
CBepXOOJIBITOTO 00beMa, OPUEHTUPOBAHHBIN HA N3YUeHNe UCTOIHUKOB BBICOKO-
SHEPTEeTUYECKUX HEHTPUHO.
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