Исследование структуры легких экзотических ядер методом упругого протонного рассеяния в инверсной кинематике

А.В. Добровольский, Лаборатория физики элементарных частиц ОФВЭ ПИЯФ

Семинар ОФВЭ 13 июня 2017

Исследование структуры легких экзотических ядер методом упругого рассеяния в инверсной кинематике

Упругое протонное рассеяние как метод изучения структуры ядра
 чувствительность к форме распределения ядерной материи

2. Экспериментальный метод и анализ результатов измерений

- идея эксперимента:
 - ионизационная камера ИКАР как активная мишень
- основные этапы обработки данных
- анализ сечений в рамках теории Глаубера-Ситенко
- 3. Результаты
 - радиусы ядер (размеры кора и гало)
 - распределение ядерной материи

Размеры и форма -

основные характеристики атомных ядер

Ядра вблизи долины стабильности

 $N/Z = 0.98 + 0.015 \cdot A^{2/3}$

$$\rho_m(r) = \frac{\rho_0}{1 + \operatorname{Exp}(\frac{r - R_0}{\delta})}$$

 $ho_0 \simeq 0.17$ нуклон/фм³ $R \approx 1.2 \cdot A^{1/3}$ фм $\delta \simeq 0.6$ фм для всех ядер

Ядра с гало – новый феномен в изучении структуры ядра

Ядра с большим избытком нейтронов:

нейтронное гало: *р*_n≫*р*_р

¹¹Li

Стабильные ядра:

нейтроны и протоны распределены примерно одинаково

Исследование структуры легких экзотических ядер методом упругого рассеяния протонов в инверсной кинематике

число нейтронов N

Исследование структуры легких экзотических ядер методом упругого рассеяния протонов в инверсной кинематике

В серии экспериментов, выполненных в GSI - S105, S247, S358 - измерены дифференциальные сечения упругого рассеяния протонов на ядрах:

⁴He, ⁶He, ⁸He

⁶Li, ⁸Li, ⁹Li, ¹¹Li

¹²Be, ¹⁴Be, ⁷Be, ⁸B

¹²C, ¹⁴C, ¹⁵C, ¹⁶C, ¹⁷C

и найдены параметры распределения ядерной материи для этих ядер

Упругое рассеяние протонов на ядрах при энергии 1 ГэВ

надежный метод изучения распределения ядерной материи (G.D. Alkhazov, S.L. Belostotski, A.A. Vorobyov, Phys. Rep. 42 (1978) 89)

пучки радиоактивных изотопов ⇒ изучение экзотических ядер

кривизна log(dσ/dt) → наличие гало

наклон dσ/dt → радиус материи R_m

Чувствительность дифференциального сечения к форме распределения ядерной материи

Пучок

Экспериментальная установка

Экспериментальная установка

Экспериментальная установка

Мишень + детектор протонов отдачи

давление H ₂ :	10 атм
толщина окон:	0.5 мм Ве
толщина мишени:	30 мг/см ² (6 модулей)
интенсивность пучка:	≤ 10⁴ сек ⁻¹

Упругое рассеяние в ИКАРе

Сигналы с анодов ИКАРа

Основные этапы обработки данных

$$\frac{d\sigma}{dt} = \varepsilon \cdot \frac{\Delta N}{\Delta t \cdot M \cdot n \cdot \Delta L}$$

- 1. Энергетическая и временная (объем)
 $\sigma_{A(B)} = 40-60$ кэВ

 калибровки ИКАРа
 ΔZ (FWHM) = 1 мм
- 2. Выстройка и калибровка трекового детектора, полученное разрешение для плоских углов
 ΔΘ_{x,y} = 0.4-1.0 мрад

 (определяется многократным кулоновским рассеянием)
 ΔΘ_{x,y} = 0.4-1.0 мрад
- 3. Калибровка дрейфовой камеры и сцинтилляционной стенки и разработка алгоритма идентификации частиц
- 4. Отбор событий упругого рассеяния

Калибровка объема

 $\Delta Z (FWHM) = 1 \text{ MM}$

Энергетическая калибровка ИКАРа

Чистота газа

Угловое разрешение трекового детектора

⁸B. Angular resolution

Идентификация рассеянной частицы

$$\mathbf{X}_{\text{extrap}} = \mathbf{X}_{4} + \Delta \mathbf{Z} \cdot \mathbf{\theta}_{\mathbf{X}}$$
$$\Delta \mathbf{Z} = \mathbf{Z}_{\text{DC}} - \mathbf{Z}_{\text{PC4}}$$

 $\mathbf{X} = \mathbf{X}_{\text{extrap}} - \mathbf{X}_{\text{DC}}$

Чистота пучка

«Фон» под пиком = 0.7 – 1.0%

Эффективность (потери при отборе событий)

Корреляция ИКАР - ПК

используемая для построения сечения

Анализ сечений в рамках модели Глаубера

На входе:

- амплитуды элементарных pp- и pn-взаимодействий
- распределение ядерной материи

pN-амплитуда «сворачивается» с плотностью распределения ядерной материи

амплитуда рассеяния

Феноменологические плотности для описания распределения ядерной материи:

- **SF**: Symmetrized Fermi distibution
- **GH**: "Gaussian with halo" $F(t) = (1+z^2) Exp(z), z = t R_m^2/6$
- **GG**: 2 Gaussians
- **GO:** Gaussian + 1p harmonic oscillator

Все модели – с двумя свободными параметрами; две последние позволяют различать "кор" и "гало"

Дифференциальные сечения упругого р-Не рассеяния

Nucl. Phys. A766, 1 (2006)

Дифференциальные сечения упругого p-⁷Be и p-⁸B рассеяния

Сравнение с предыдущими измерениями

кривизна log(dσ/dt) → наличие гало

наклон d σ /dt \rightarrow радиус материи R_m

Чувствительность дифференциального сечения к форме распределения ядерной материи

Чувствительность сечений к форме для ядер Не

Результаты для ⁶Не и ⁸Не

Чувствительность сечений к форме для изотопов Li

указание на кластерную структуру ⁶Li

> ясное свидетельство наличия гало в ¹¹Li

Распределение ядерной материи для ⁶Li

Радиус материи *R*_m для ⁶Li

ИЗОТОП	модель	χ² / ν	R _m , fm	другие эксперименты	Reference
⁶ Li	SF	45.3 / 41	2.45 (4)	2.42 (5) ^{a)}	Li et al. – e ⁶ Li-scattering
	GH	44.7 / 40	2.44 (6)	2.29 (7)	Bruge – p ⁶ Li at 600 MeV
	GG	44.6 / 40	2.44 (6)	2.32 (2)	Tanihata – from σ _{Int}
	GO	44.5 / 40	2.44 (6)		

^{а)} Протонный радиус. Значение получено из зарядового радиуса ⁶Li с учетом зарядовых радиусов протона и нейтрона.

Результат:

⁶Li:
$$R_{\rm m} = 2.44 \pm 0.07$$
 fm

Распределение материи в ядрах ⁸Li и ⁹Li

Результат для ¹¹Li

в предположении ¹¹Li = ⁹Li-core + 2 валентных нейтрона для моделей GG и GO получаем:

 $R_{\text{halo}} = 6.05 \pm 0.32 \text{ fm}$ $R_{\text{core}} = 2.53 \pm 0.04 \text{ fm}$

для сравнения: $R_{\text{Li}}^{9} = 2.43 \pm 0.06 \text{ fm}$

Сравнение распределения материи в ядрах ¹¹Li и ⁸He

r, fm

Nucl.Phys. A 875 (2012) 8

Результаты для ¹⁴Ве

Чувствительность сечений к форме ядер для изотопов С

Распределение материи для ⁷Ве

В предположении 7 Be = 4 He + 3 He для моделей GG и GO получаем:

 $R_{He} = 1.88 \pm 0.14 \text{ fm}$ $R_{He} = 2.94 \pm 0.11 \text{ fm}$ Радиус материи: $R_{\rm m} = 2.41 \pm 0.04 \; {\rm fm}$

Сравнение распределения материи в ядрах ⁷Ве и ⁸В

В предположении ⁸B = ⁷Be + р для моделей GG и GO имеем: $R_{core} = 2.25 \pm 0.03$ fm \implies сравн. для ⁷Be: $R_{halo} = 4.24 \pm 0.24$ fm $R_{m} = 2.41 \pm 0.04$ fm

Распределение материи в ядрах ⁸В и ⁸Li

Радиусы исследованных ядер

Изотоп	R _m , fm	R _m , fm R _c , fm	
⁶ He	2.45 (10)	1.88 (12)	3.31 (28)
⁸ He	2.53 (8)	1.55 (15)	3.22 (14)
⁶ Li	2.44 (7)	2.08 (18)	3.04 (45)
⁸ Li	2.50 (6)		
⁹ Li	2.44 (6)		
¹¹ Li	3.71 (20)	2.53 (3)	6.85 (58)
¹² Be	2.71 (6)	2.36 (6)	4.00 (28)
¹⁴ Be	3.25 (11)	2.54 (11)	4.48 (19)
⁷ Be	2.41 (4)	1.88 (14)	2.94 (11)
⁸ B	2.58 (6)	2.24 (2)	4.24 (25)
15 C *)	2.59 (5)	2.41 (2)	4.36 (38)
16 C *)	2.72 (6)	2.39 (6)	4.45 (26)
17 C *)	2.66 (4)	2.55 (2)	3.99 (48)

$$\mathbf{R}_{\mathrm{m}}^{2} = \frac{\mathbf{N}_{\mathrm{c}}\mathbf{R}_{\mathrm{c}}^{2} + \mathbf{N}_{\mathrm{h}}\mathbf{R}_{\mathrm{h}}^{2}}{\mathbf{A}}$$

*) Предварительные данные

IKAR Collaboration

Г.Д. Алхазов, М.Н. Андроненко, А.А. Воробьев, Г.Е. Гаврилов, А.В. Добровольский, А.А. Жданов, А.Г. Инглесси, Н.Б. Исаев, О.А. Киселев, Б.Г. Комков, Г.А. Королев, А.А. Лободенко, Ф.В. Мороз, В.А. Мыльников, Г.Е. Петров, Д.М. Селиверстов, Л.О. Сергеев, Н.А. Тимофеев, А.В. Ханзадеев, В.И. Яцюра

F. Aksouh, A. Bauchet, A. Bleile, T. Beha, K.-H. Behr, A. Brühnle, K.Burkhsrdt,
D. Cortina-Gil, P. Egelhof, C. Fischer, S. Fritz, H. Geissel, M. Gorska, C. Gross,
M. Hellström, S. Ilieva, H. Irnich, R. Kanungo, G. Kraus, M. Matoš, G. Münzenberg,
S.R. Neumaier, F. Nickel, C. Nociforo, Yu.A. Litvinov, T. Schäfer,
C. Scheidenberger, A. Shrivastava, W. Schwab, H. Simon, P. Singer,
K. Sümmerer, T. Suzuki, H. Weick, M. Winkler

M. Mutterer, J.P. Theobald

О.В. Бочкарев, В.А. Волков, В.Н. Прибора, Л.В. Чулков

Петербургский институт ядерной физики, Гатчина Gesellschaft für Schwerionenforschung, Darmstadt, Germany Institut für Kernphysik, TU Darmstadt, Darmstadt, Germany Курчатовский институт, Москва

