

Проект ИРИНА: Лазерная (ядерная) спектроскопия на реакторе ПИК

IRINA: Yields

Yields were calculated with 5 g of ²³⁵U in target and 3×10¹³ n/cm²/s

IRINA: r-process

(RIKEN: ²³⁸U+Be, 345 MeV/n, 6×10¹⁰ 1/s — 10⁴ ⁷⁸Ni in 13 days)

T. Ohnishi et al., Phys. Soc. Jap. 79, 2010, 073201

IRINA: r-process

Neutron single particle energies for (a) 30 Si and (b) 24 O, relative to $1s_{1/2}$.

Shell evolution:

 ^{24}O — new magic number at N=16,

⁵⁴Ca — new magic number at *N*=34,

disappearance of the *N*=20 (³²Mg) and 28 (⁴²Si) shell gaps, etc.

It was explained by introducing *tensor forces* or/and *3N forces*

For O the drip line is strikingly close to the stability line (last bound is doubly magic ²⁴O; cf. last bound ³¹F, Z=8+1). This phenomenon was explained by introducing *3N forces*. (See EFT studies with naturally arisen 3N forces: E. Epelbaum et al., RMPh, 81 (2009) 1773)

Disappearance of N=40 sub-shell

The different behavior of excitation energies for these Cr and Fe isotopes point to a different intrinsic structure for the two N = 40 isotones. These observations represent a challenge for the most modern nuclear interactions.

 $E(2^+)$ and $R(E_{4+}/E_{2+})$ systematics for neutron-rich ₂₄Cr and ₂₆Fe isotopes in the range 26 $\leq N \leq$ 40.

IRINA: disappearance of N=40 shell

Calculations: ground states of all the Fe isotopes are predominantly of spherical character, whereas ground states of ^{62,64}Cr are dominated by a deformed configurations.

Striking similarity with Pb region: shape coexistence predicted.

 ${}^{67}Co^{40} \sim 4.5 \times 10^5 \text{ 1/s}$ ${}^{65}Mn^{40} \sim 10^4 \text{ 1/s}$ ${}^{69}Mn^{44} \sim 20 \text{ 1/s}$ ${}^{64}Cr^{40} \sim 10 \div 100 \text{ 1/s}$ ${}^{66}Fe^{40} \sim 8 \times 10^4 \text{ 1/s}$ ${}^{73}Fe^{47} \sim 10 \text{ 1/s}$

Previously meas	ured	Achievable at IRINA
⁵⁴⁻⁵⁸ Fe ²⁸⁻³²		> up to N=46
⁵⁰⁻⁵⁶ Mn ²⁵⁻³¹		> up to N=44
⁵⁰⁻⁵⁴ Cr ²⁶⁻³⁰		> up to N=40

Shell-effect in radii at N=126, Z=82

G. A. Lalazissis et al., ADNDT 71, 1 (1999)

P. M. Goddard et al., PRL, **110**, 032503, 2013.

IRINA: shell-effect in radii at N=82, Z=50

Shell-effect in radii at N=50

The same kink in Ga (very n-rich)

P. Campbell et al., Progress in Particle and Nuclear Physics (2015)

IRINA: shell-effect in radii at N=50, Z=28

G. A. Lalazissis et al., ADNDT 71, 1 (1999)

T. Otsuka Phys. Scr. (2013) 014007

K. T. Flanagan et al., PRL 103, 142501 (2009)

Lowering of p_{1/2} state was reproduced only after Z=28 shell quenching taking into account

K. Sieja and F. Nowacki, Phys. Rev. C 81, 061303 (2010)

K. T. Flanagan et al., PRL 103, 142501 (2009); U. Köster et al., PRC 84, 034320 (2011)

Unexplained lowering of $p_{1/2}$ state is responsible for the discrepancy between theory and experiment for $\mu(^{71,73}Cu)$

Disagreement for $\mu(^{77}Cu)$?

K. Sieja and F. Nowacki, Phys. Rev. C 81, 061303 (2010).

μ(⁷⁷Cu) may be reproduced only with Z=28 shell quenching by 0.7MeV

Previously measured Achievable at IRINA 57-78Cu²⁹⁻⁴⁹ \longrightarrow up to N=53 63-82Ga³²⁻⁵¹ \longrightarrow up to N=56

Note: rapid onset of deformation is expected beyond N=50; $T_{1/2}$ for ^{86,87}Ga are needed for r-process studies (shell quenching)

Whether the similar inversion occurs for Z=50 shell? Some indications of "tensor force induced" shell evolution was found in ¹²⁶Pd⁸⁰: small difference between the 10⁺ and 7⁻ isomers was ascribed to the tensor force shift of the $1h_{11/2}$ neutron orbit (H. Watanabe *et al*, PRL 113, 042502 (2014)). See also: J. Shergur et al., Eur. Phys. J. A 25, 121 (2005) (5/2⁺ state in ¹³⁵Sb)

Quenching of the N=82 shell gap?

I. Dillmann et al., PRL 91, 162503 (2003)

Quenching of N=82 shell describes big $Q_{\beta}(^{130}Cd)$, high energy of 1⁺ state in ¹³⁰In and corresponding log(ft). Cf. also improvement of solar rabundances at A=130 descriptions

 $[\pi g_{9/2}, vg_{7/2}]$ 2QP 1+ state

Comparison of the solar system *r*-process abundances in the *A*~130 peak region with model predictions

¹²⁹⁻¹³²Cd, ¹²⁸Pd, ¹²²Zr masses as well as the position and log(ft) values for 1⁺ GT states in daughter nuclei are needed. T_{1/2} for waiting point ¹²⁸Pd — 3 1/s at IRINA

IRINA: Reducing pairing after N=82?

Description of E(2⁺) and B(E2; 6⁺ \rightarrow 4⁺) for ^{136,138}Sn is better with 3N forces. Crucial will be the measurement of B(E2; 2⁺ \rightarrow 0⁺) for ¹³⁶Sn. Predictions: 184 fm⁴ without 3N forces, 73 fm⁴ with 3N forces

¹³⁶Sn at IRINA: 10⁶ 1/s — RIB is necessary (for B(E2))!

M. Saha Sarkar, and S. Sarkar, Pramana 85 (2015) 403-413

IRINA: Sb isotopic chain

At IRIS with 1-GeV protons $^{111-135}$ Sb can be measured. At IRINA this chain can be continued up to A=141.

IRINA: Sb isotopic chain

At A>136 neutrons from β n (? in ¹³⁷Sb β n=49%) should be used for photo-ion current monitoring or/and background suppression

MR-TOF at ISOLDE

R. N. Wolf et al., Nucl. Instr. and Meth. A 686, 82-90 (2012), S. Kreim et al., INTC-P-299, IS 518 (2011)

IRINA

1. Onset of deformation near N=60

2. Octupole deformation at A~150 (Ba, Cs...)

3. Indium: high-spin isomers (21/2⁻, 29/2⁺), anomalous behaviour of μ for 1/2⁻ isomer, shell-effect at N=82

Previously measured Achievable at IRINA ¹⁰⁴⁻¹²⁷In⁵⁵⁻⁷⁸ up to N=87

4.

IRINA: conclusions and outlook

Рекордные выходы n-избыточных ядер в диапазоне от ₂₅Mn до ₆₈Er

- 1. Новая информация о T_{1/2} и βn для моделирования r-процесса
- 2. Сосуществование форм в области 28<N<40, исчезновение подоболочки N=40
- Уменьшение спаривания при N<82, сжатие оболочечной щели при N=82 и Z=28 (?), влияние 3N сил (?)
- Исчезновение оболочечного эффекта в зарядовых радиусах при N=50 (Ni) и N=82 (Sn): насколько правильно описываются спинорбитальные силы в RMF? Влияние перераспределения одночастичных состояний?
- 5. Одночастичные состояния вблизи N=50, Z=28: влияние тензорных сил (?)
- 6. Одночастичные состояния вблизи N=82, Z=50: влияние тензорных сил (?)
- 7. Новое магическое число N=90 (?)
- 8. Использование MR-TOF и ПИТРАП для уменьшения фона
- Квадрупольная деформация при N>60, октупольная деформация вблизи A=150; классическая область деформации вблизи середины нейтронной оболочки (N=104); высокоспиновые изомеры в In

IRINA: In isotopes

IRINA: r-process

Schematic outline of the various nuclear reaction sequences in astrophysical environments on the chart of nuclides.