
Статус установки JYFLTRAP и текущие эксперименты

Дмитрий Нестеренко

Циклотронная лаборатория Университа Ювяскюля, г. Ювяскюля, Финляндия

План доклада

- > Общее описание установки
- Методы очистки ионного пучка и измерений масс в ловушке Пеннинга на JYFLTRAP
- > Эксперименты на JYFLTRAP

От К130 циклотрона

МСС30/15 циклотрон легких ионов

Дипольный магнит $M/\Delta M \approx 350$

оптическая ловушка

Магнито-

IGISOL-4 мишенная зона

Спектроскопическая станция

30 қэВ

РЧК кулер/банчер

JYFLTRAP, Двойная ловушка Пеннинга

- Высокопрецизионные измерения масс
- Изобарная/Изомерная очистка ионного пучка
 - → Пост-ловушечная спектроскопия
 - → Получение очень чистых образцов

Коллинеарная лазерная спектроскопия

Пост-ловушечная спектроскопия

Циклотроны

K130

MCC30/15

Ускоряемые элементы: p - Xe Энергия: $E_{max} = 130 \ Q^2/A \ MeV$

Энергия р: 18-30 МэВ Энергия d: 9 – 15 МэВ Ток пучка: 200/62 µА

Использование:

- IGISOL
- Наработка радиоизотопов

Доступные пучки ионов

Офлайн

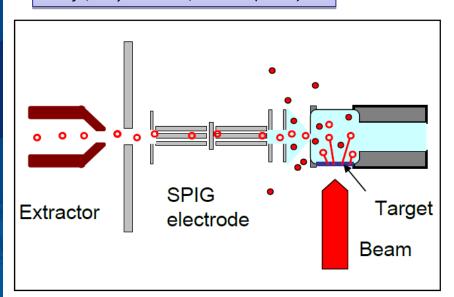
<u>Ионные источники перед банчером</u>:

- Поверхностно-ионизационный источник (ионы стабильных изотопов Cs, Rb, K)
- Лазерный источник (ионы от твердых мишеней металлы, оксиды, ...)

<u>Ионные источники на втором этаже (перед дипольным магнитом)</u>:

- Поверхностно-ионизационный источник (ионы стабильных изотопов Cs, Rb, K)
- Газоразрядный ионный источник (металлы, порошки, газы)

Онлайн


- Продукты деления U, Th с использованием протонных или дейтронных пучков
- Продукты реакций слияния-испарения (лёгкие и тяжёлые ионы)

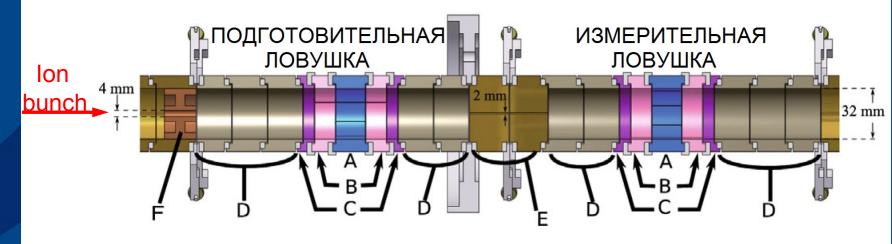
Получение продуктов реакций (Ion Guide technique)

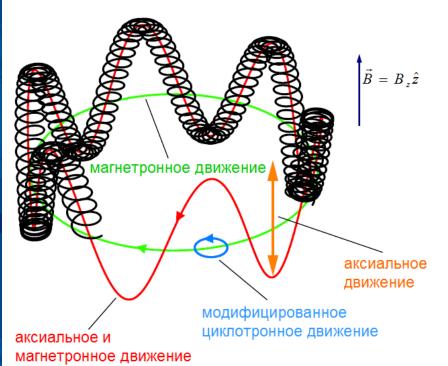
Разработан на JYFL в 1980-х:

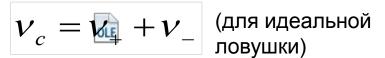
J. Ärje, J.Äystö et al., PRL 54 (1985) 99

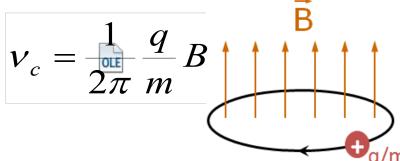
- Тонкая мишень
- Ядра отдачи останавливаются в гелии
- Зарядово-обменные реакции вНе
 - → хорошая фракция 1⁺ ионов
 - → присутствуют также 2⁺ ионы
- Нет необходимости использовать отдельные ионные источники

Быстрый и универсальный

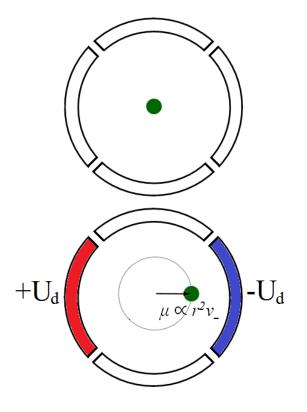

Методы получения нуклидов на IGISOL:

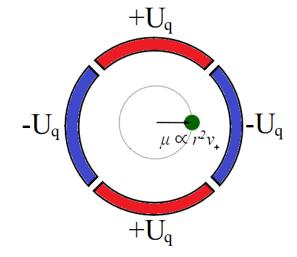

- Реакции слияния испарения с лёгкими ионами
- Реакции слияния испарения с тяжёлыми ионами
- ▶ Деление U/Th p- и d-пучками

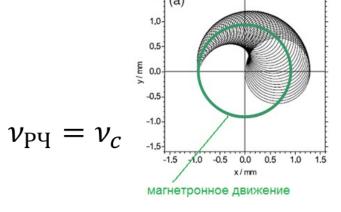


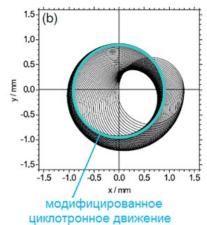


Ловушки Пеннинга JYFLTRAP



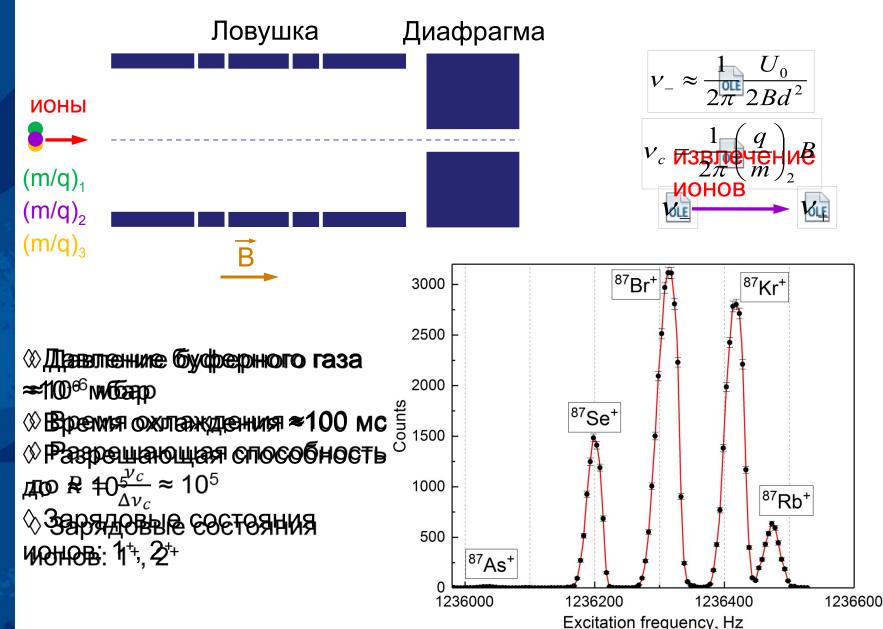

Радиочастотное возбуждение ионов в ловушке

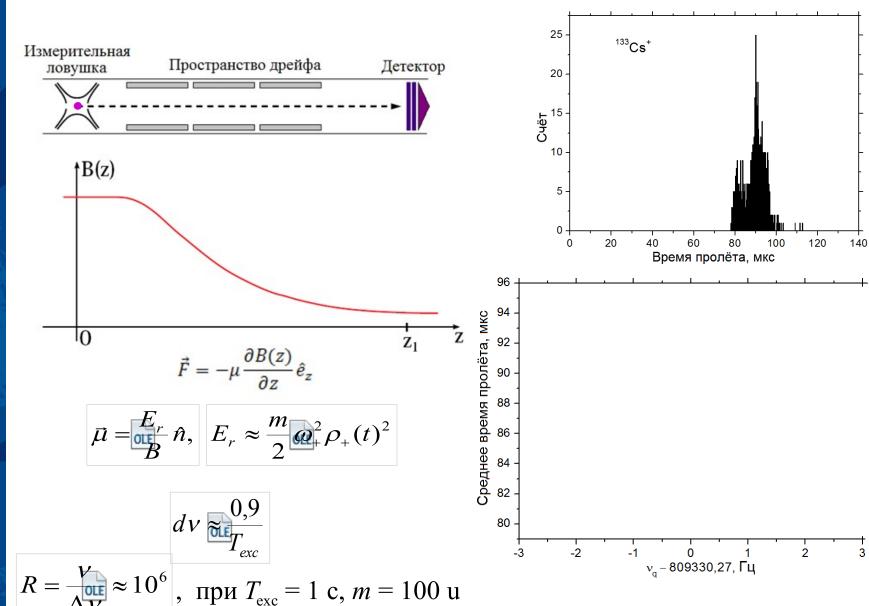



Ионы в центре ловушки

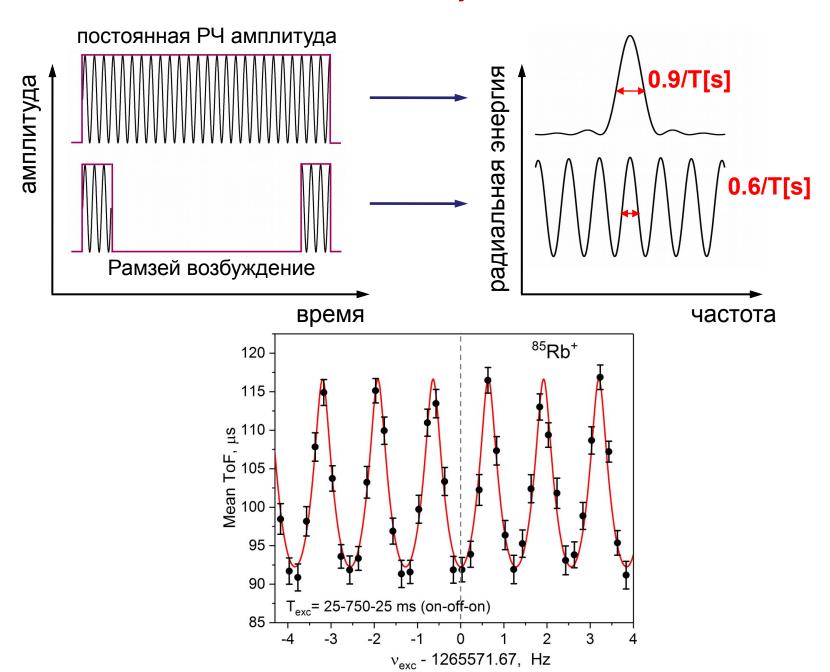
Дипольное РЧ-возбуждение на собственной частоте движения ионовувеличение радиуса движения

Квадрупольное РЧ-возбуждение на собственной циклотронной частоте ионовконвертация радиальных движений

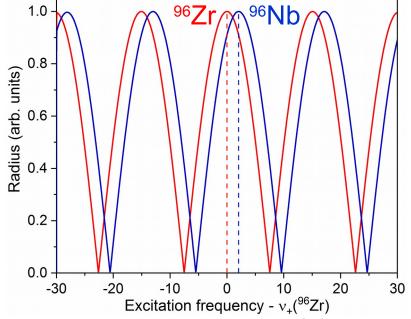




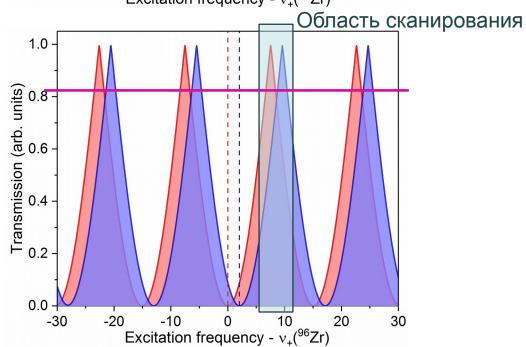
Подготовительная ловушка Пеннинга: масс-селективное охлаждение в буферном газе



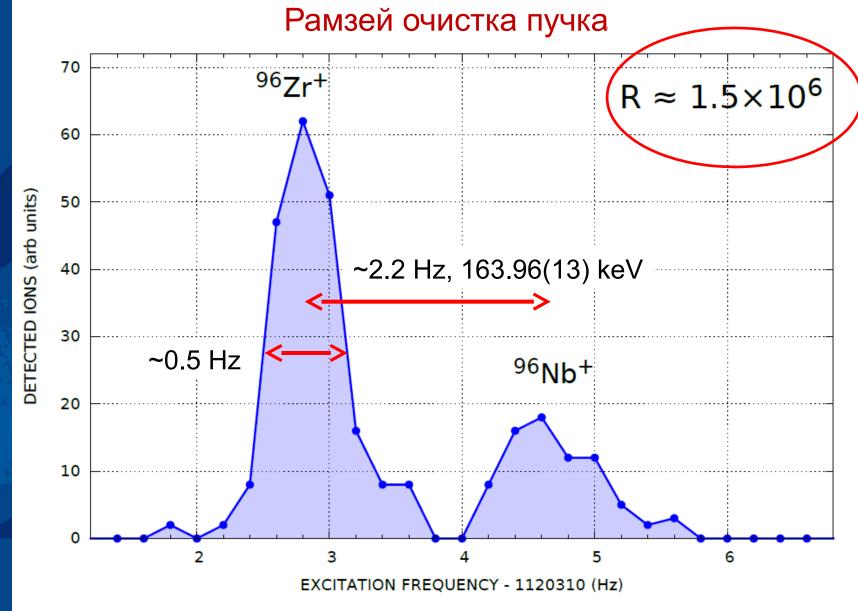
Измерительная ловушка: времяпролётный ионный циклотронный резонанс (ToF-ICR)

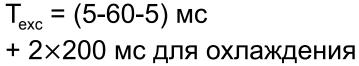


Рамзей возбуждение

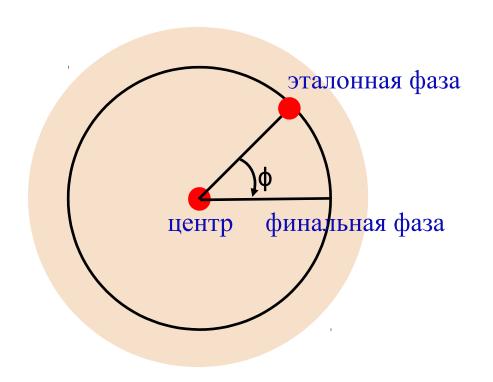


Рамзей очистка пучка




 $\Delta M_c = \Delta \nu_+ \approx 2.2 \text{ Hz}$

Ramsey pattern: 5-60-5 ms



Фазовый метод (Phase-Imaging Ion-Cyclotron resonance)

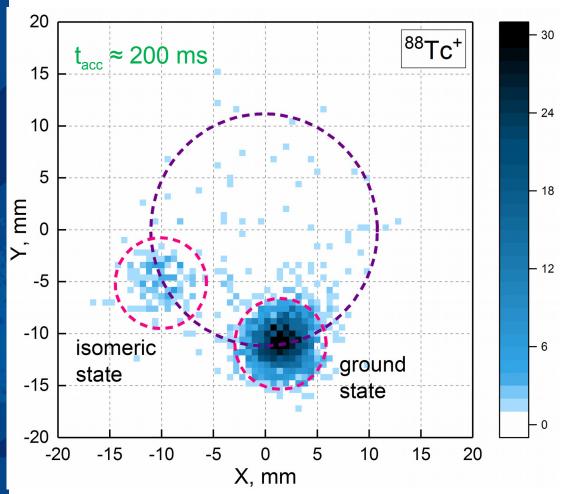
$$v_{-} = \frac{\varphi_{-} + 2\pi n_{-}}{2\pi t_{-}}, \quad v_{+} = \frac{\varphi_{-} + 2\pi n_{+}}{2\pi t_{+}}$$

$$v_c = v_+ + v_+$$

Фазовый метод (Phase-Imaging Ion-Cyclotron resonance) Позиционно-Измерительная ловушка чувствительный детектор Изображение радиального Радиальное движение движения ионов на детекторе ионов в ловушке Увеличенная проекция Center Reference

Сравнение фазового метода с времяпролётным

♦Более высокая точность определения циклотронной


```
частоты: \frac{(\delta v_c)_{ToF-ICR}}{(\delta v_c)_{PI-ICR}} \approx 1.6\pi \approx 5 \Diamond Более высокая разрешающая способность: \Diamond Более высокая разрешающая способность: (=1 \text{ mm}, =50 \text{ µm}) \frac{R_{PI-ICR}}{R_{POF-ICR}} \delta \approx 1.6\pi \approx 5 \delta \approx 1.6\pi \approx
```

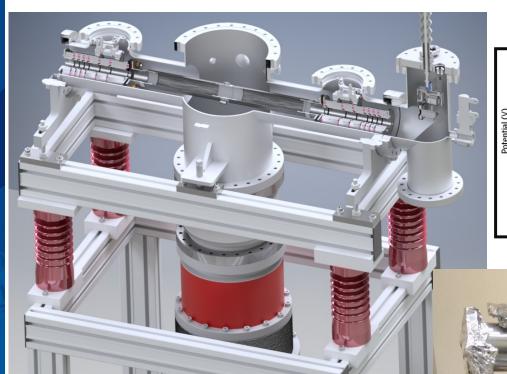
◊ Более высокая чувствительность

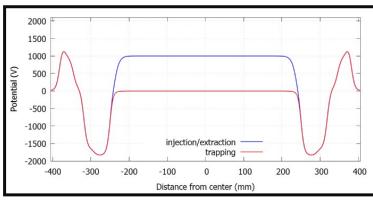
Фазовый метод на JYFLTRAP +30 kB Центр direct projection of number of magnetron motion and trap center detected ions ловушки (a) 15 2D MCP детектор Y, mm o ~12.3mm -20 -15 -10 -5 0 5 10 15 20 X, mm +30 kV Ring -500 V -110 V Measurement trap Drift electrodes Extraction electrodes Ground Detector electrode

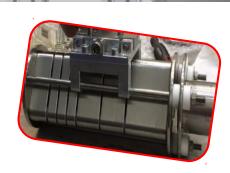
Использование фазового метода для определения изомерного состояния

$$J^{\pi} = (6^{+})$$
 $T_{1/2} = 5.8(2) s$ $E^{*} = 0\#(300\#) \text{ keV}$

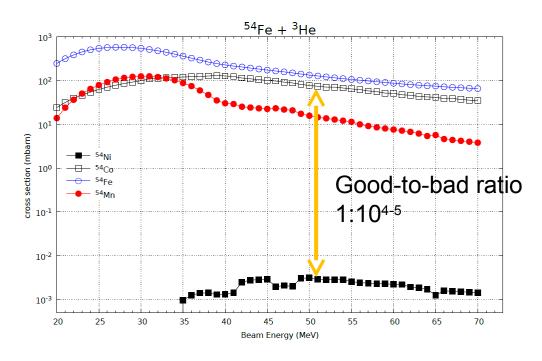
$$J^{\pi} = (6^{+})$$
 $T_{1/2} = 6.4(8) \text{ s}$


$$ME = 61680(150) \text{ keV}$$


88**Tc**


reaction: natNi + 36Ar ~5 ions/min after the traps

Мульти-времяпролётный (Multi-reflection time-of-flight) масс-анализатор на JYFLTRAP

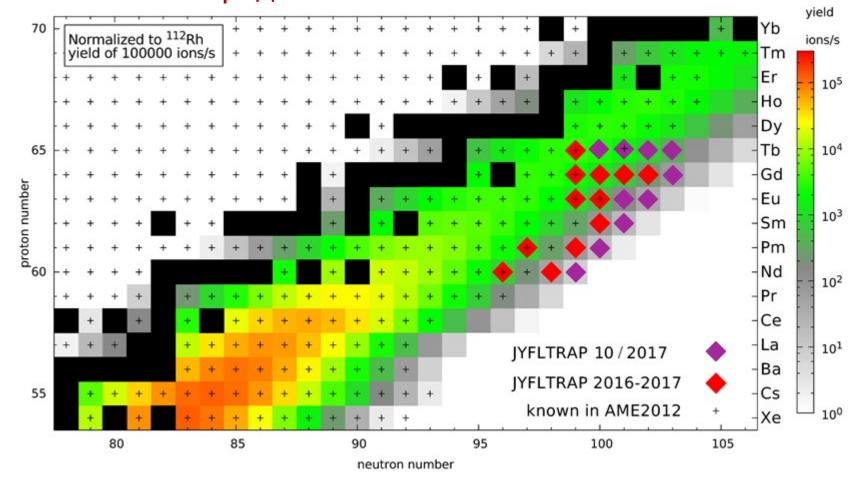


Мульти-времяпролётный (Multi-reflection time-of-flight) масс-анализатор на JYFLTRAP

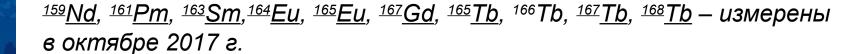
- Масс сепаратор/спектрометр
- Более быстрый временной цикл измерения, чем в ловушках Пеннинга
- Способность проводить измерения с более низкими отношениями хороших ионов к плохим
- Хорошая разрешающая способность (до R ≈ 10⁵) неплохая точность для измерений масс

Измерения масс на JYFLTRAP

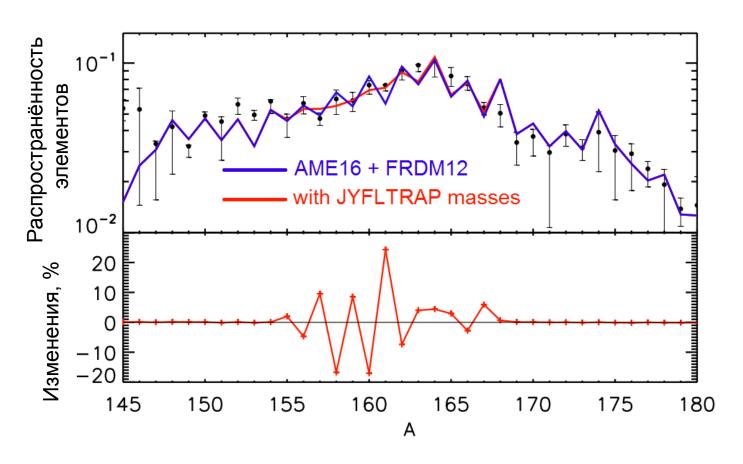
массы ядер


$$M(Z,N) = Z \cdot M_p + N \cdot M_n - B(Z,N)/c^2$$

энергии связи нуклонов


- **Д** жатрофивика (п- и пр-прощесс, точки ожидания)
- Ш Ней принная физика (Q-величины для - β и и β цеосов ϕ сов)
- Изучение структуры ядер (оболочки, деформации, парные энергии, массовые модели, энергии возбуждения...)

Измерение масс нейтроноизбыточных изотопов редкоземельных элементов



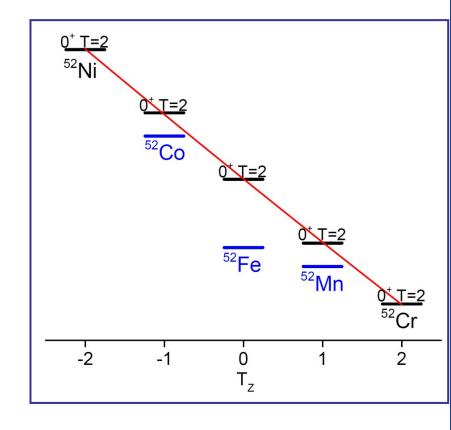
¹⁵⁶Nd, ¹⁵⁸Nd, ¹⁵⁸Pm, ¹⁶⁰Pm, ¹⁶²Sm, ¹⁶²Eu, ¹⁶³Eu, ¹⁶³Gd, ¹⁶⁴Gd, ¹⁶⁵Gd, ¹⁶⁶Gd, ¹⁶⁴Tb

Результаты измерений масс нейтроноизбыточных изотопов редкоземельных элементов

- Энергии отделения нейтрона меньше при N=98, 100 и 102, чем предсказывалось теоретическими моделями
- Существование нейтронной деформированной оболочки N=100 не подтвердилось

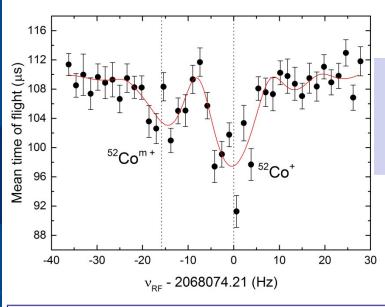
Массы для изобарического квинтета А=52, Т=2

Жравыение wæcc для изобарического мультиплета (IMME):


$$M(A, T, T_z) = a(A, T) + a(A, T)T_z + c(A, T)T_z^2$$

Ньобходимы:

- श्रीकार्यकारकारकारका असमिकानका निकास ।


Ha JYFLTRAР были измерены массы:

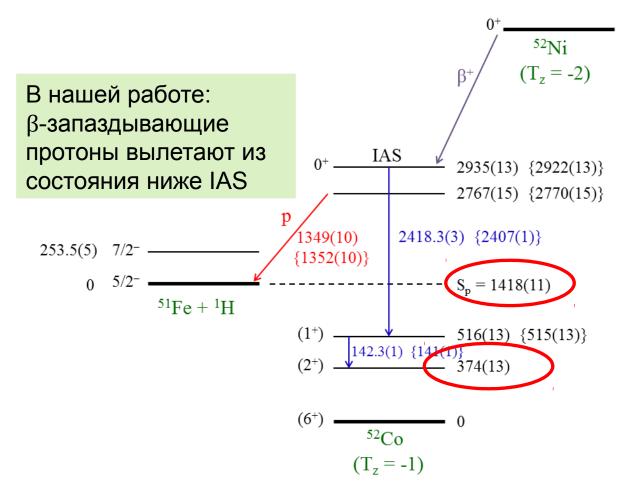
- ✓ 52Co, 52Co^m
- ✓ 52Fe, 52Fe^m
- ✓ 52Mn

Массы ⁵²Со и ⁵²Со^т: результаты

- ❖ Первое измерение ⁵²Со в ловушке Пеннинга
- $T_{1/2}(^{52}Co) = 104(7) \text{ MC}$
- 52Fe(p,3n)52Co @ 50 МэВ: σ ≈ 3 мкб (TALYS)

	МЕ(⁵² Co ^m), кэВ		МЕ(⁵² Со), кэВ	
JYFLTRAP (D.A. Nesterenko, et al., J. Phys. G, 44, (2017) 065103)	-34331.6(66)		-34958(11)	
CSRe (X. Xu, et al., PRL 117, 182503 (2016))	-34361(8)	3σ	-33974(10)	1σ
AME2012/NUBASE2012	-33990(200)#		-33610(220)#	-

 $Ex(^{52}Mn) = 377.749(5)$ кэВ

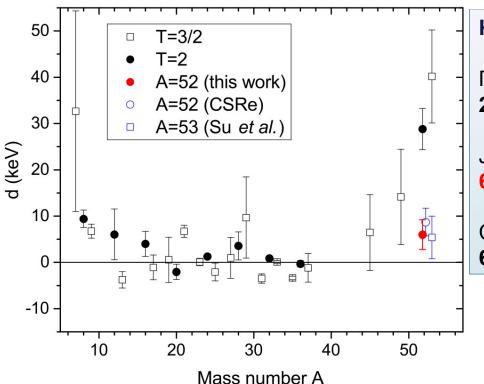

JYFLTRAP: $Ex(^{52}Co) = 374(13)$ кэВ

CSRe: $Ex(^{52}Co) = 387(13)$ кэВ

Результаты измерений с ⁵²Co: схема уровней β⁺-распада 52Ni

Ранее при изучении распада 52 Ni было предположено, что T=2, J^{π} =0 $^{+}$ IAS состояние распадается через βp и $\beta \gamma$

C. Dossat et al., Nucl. Phys. A 792 (2007) 18; S. Orrigo et al., PRC 93, 044336 (2016)



Проверка уравнения для изобарического мультиплета (ІММЕ) при А = 52

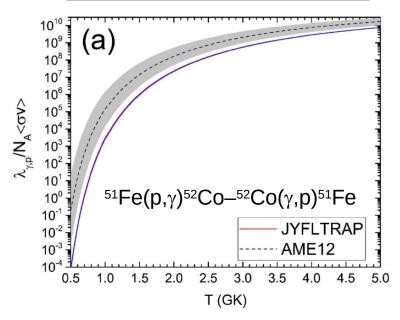
Используя измеренные на JYFLTRAP более точные значения масс ⁵²Co, ⁵²Fe, ⁵²Mn (+ табличные массы ⁵²Cr, ⁵²Ni и E*(⁵²Fe), E*(⁵²Mn)) нашли коэффициенты для IMME

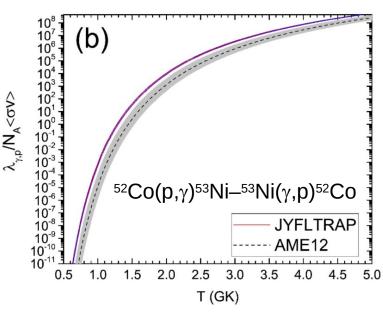
Квадратичный IMME JYFLTRAP фит: χ²/n=2.4.

Кубический коэффициент d

Предыдущее значение: **28.8(45)**

JYFLTRAP(⁵²Co, ⁵²Fe, ⁵²Mn): **6.0(32) кэВ**

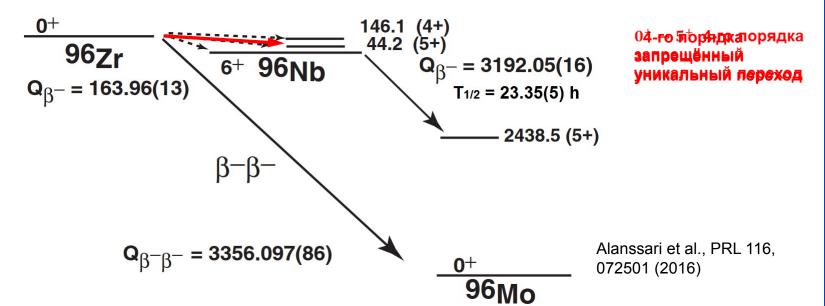

CSRe (⁵²Co): **6.5(45) кэВ**


(D.A. Nesterenko, et al., J. Phys. G, 44, (2017) 065103)

⁵²Со и гр-процесс

 $S_p(^{52}Co) = 1418(11) \text{ keV}$ AME12: 1077(196)# keV

 $S_p(^{53}Ni) = 2588(26) \text{ keV}$ AME12: 2930(197)# keV



Отношение скорости фоторасщепления к скорости захвата протона

В ⁵²Со протоны более связаны, в ⁵³Ni протоны менее связаны чем предсказывалось AME2012

Q-величины для β^{-} и $\beta^{-}\beta^{-}$ распадов 96 Zr

Два периода полураспада:

NEMO-3: $T_{1/2}^{2\nu\beta\beta} = (2.3 \pm 0.2) \times 10^{19}$ лет [1]

гео-хим.: $T_{1/2} = (0.94 \pm 0.32) \times 10^{19}$ лет [2]

Они могут согласоваться, если присутствует конкурирующий β-распад

$$(T_{1/2})^{-1} = (T_{1/2}^{2\nu\beta\beta})^{-1} + (T_{1/2}^{\beta})^{-1}$$

Ожидаемый

$$T_{1/2}^{\ \ \beta} = \ (1.6 \pm 0.2) \times 10^{19} \, \mathrm{лет}$$

Эксперимент

$$T_{1/2}^{\beta} > 2.6 \times 10^{19}$$
 лет [3]

Расчёты (QRPA)

$$T_{1/2}^{\beta} = 24 \times 10^{19}$$
 лет [4]

$$(T_{1/2}^{\ \beta})^{-1} \propto Q^{13}$$

[1] J. Argyriades et al., Nucl. Phys. A 847, 168 (2010); [2] M. E. Wieser and J. R. De Laeter, PRC 64, 024308 (2001); [3] A. S. Barabash et al, J. Phys. G 22, 487 (1996); [4] H. Heiskanen et al, J. Phys. G 34, 837 (2007).

Q-величины для β^- и $\beta^-\beta^-$ распадов ^{96}Zr

96
Zr + p \rightarrow 96 Nb($T_{1/2}$ =23.35h) + n

	JYFLTRAP (Alanssari et al., PRL 116, 072501 (2016))	AME(2012)	JYFLTRAP – AME2012	LEBIT (K. Gulyuz et al., PRC 91, 055501 (2015))
- Q _{вв} , кэВ	3356.097(86)	3349(2)	7.1(2)	3355.85(15)
$Q_{\beta\beta}$, NOD	163.96 (13)	162(4)	2(4)	

 O_{β} , кэВ Нібвные рассчелы ((обболочечная модель)) с учётом измеренной \mathbf{Q}_{β} величины: Те $f_2^{\beta}=11\times 10^{19}$ лет.

Пересчёт QPRA значения показал, что новая Q_{β} величина вносит только 6.5% изменения в период полуразпада.

Расхождение в периодах полураспада (NEMO-3 и гео-хим.) не было устранено

(Необходимо новое измерение $T_{1/2}^{\ \beta}$)

Измерение разницы масс ⁷¹Ge — ⁷¹Ga

GALLEX, SAGE детекторы: ⁷¹Ga(ν_e, e⁻)⁷¹Ge

⁷¹Ga-аномалия: калибровка детекторов с помощью ⁵¹Cr и ³⁷Ar источниками показала меньший поток нейтрино, по сравнению с расчётным

Шеобходимо точно знать Q-величину реакции, чтобы проверить сечение реакции ($ft \propto Q^2$)

- Q = 232.69(15) кэВ использовалась в расчётах (J. Bahcall, PRC 56, 3391 (1997))
- Q = 233.5 (12) кэВ измерено на TITAN (D. Frekers et al., Phys. Lett. В 722, 233 (2013))
- Q = 232.443 (93) КЭВ ИЗМЕРЕНО НА JYFLTRAP (M. Alanssari et al., Int. J. Mass Spec. 406, 1 (2016))

в **12 раз** более точное значение!

 $(^{71}Ga + p \rightarrow ^{71}Ge(T_{1/2}=11.43d) + n)$

Новое значение Q-величины не устранило аномалию

Благодарности

Группа IGISOL:

- L. Canete
- T. Eronen
- S. Geldhof
- A. Jokinen
- A. Kankainen
- I.D. Moore
- D.A. Nesterenko
- H. Penttilä
- I. Pohjolainen
- A. de Roubin
- M. Reponen
- S. Rinta-Antila
- A. Takkinen
- M. Vilen
- J. Äystö

