

Тестовый эксперимент по µр-рассеянию в ЦЕРНе

А. Инглесси

18.12.2018 • Семинар ОФВЭ ПИЯФ НИЦ КИ

Содержание

- Мотивация
 - Загадка радиуса протона
 - Эсперименты по ер- и µр-рассеянию
- Тестовый эксперимент в COMPASS
 - Общее описание
 - Экспериментальная установка
 - Электроника, DAQ
- Результаты
 - Загрузки
 - Генераторное разрешение (в т. ч. в пучке)
 - Калибровка, контроль чистоты газа
 - Отбор треков, энергетические спектры и корреляции
 - Кремниевый трекер
 - Совмещение событий
- Перспективы, заключение

Загадка радиуса протона

СОDATA: ер-рассеяние, Н- и D-спектросокопия

Эсперименты по упругому ер-и µр-рассеянию

- Пучок: е⁻ (МАМІ, Майнц)
- E = 720 МэВ
- H₂, p = 20 атм
- 0,5–20 МэВ $(-t = 0,001 - 0,04 \ \Gamma \Rightarrow B^2/c^2)$
- 40-260 мрад

- Пучок: µ (ЦЕРН)
- E = 100 ГэВ
- H₂, p = 20 атм

- 0,5-20 МэВ $(-t = 0,001 - 0,04 \Gamma 3B^2/c^2)$
- 0,3-2 мрад

Преимущества:

- активная мишень регистрация протонов отдачи малой энергии
- регистрация угла рассеяния пучковой частицы

COMPASS (NA58)

Распадный канал

Схема установки NA58

Транспортировка, наладка, эксперимент

21 марта 2018 г.

Работа на пучке: 9 апреля – 15 мая

16 мая 2018 г.

Экспериментальная установка

- Активная мишень D = 200 мм (TPC)
- Сцинтилляторы (BT) 64х48 мм ×3
- Кремниевый мультистриповый детектор (SI) 70х40 мм ×4

Экспериментальная установка

Кремниевый микростриповый трекер

- Триггер: совпадение сцинтилляторов в начале и конце установки
- Размер: 70×40 мм
- Толщина: 280 мкм (2 плоскости)
- 4 плоскости на станцию: U/V X/Y, плоскость UV повернута на +2.5°, плоскость XY — на -2.5°
- Шаг: ~50 мкм
- Временное разрешение: ~1.5-2.5 нс
- Пространственное разрешение: ~5-8.5 мкм
- Плоскость U/X: 1280 стрипов
- Плоскость V/Y: 1024 стрипов
- Чтение: чипы APV → ADC
- Предельная скорость записи: ~40 кГц

Активная мишень (ТРС)

Считывающая электроника

Struck SIS3316 VME FADC

- 14-бит @25 МГц, 5×16 каналов
- Диапазон: -2,5-2,5 В
- Режим: самозапуск
- Порог: 300/200 кэВ (скользящая средняя)
- Окно чтения: 108 мкс

Оффлайн-анализ сигналов

Электроника, DAQ

TPC• Frontend (усилители)

Крейт VME

- RIO4 (LynxOS, MBS)
- VULOM (ВМ, триггер)

• 5× FADC

х86 ПК

- LynxOS boot
- Slow control (HV, p, T)
- HDD \rightarrow CASTOR
- DIM, DCS (EPICS)

Загрузки

В пучке	TPC	S*	S _e	Si*
Средняя	16 Гц	64 кГц	640 кГц	22 кГц
Максимальная	46 Гц	370 кГц	3.7 МГц	43 кГц

Всего	событий: 4 600 000	
порог 300 кэВ: 1 100 000	3 500 000	
8 атм: 4 29	0 000	4 атм: 310 000

* площадь — 10% от полной площади анода ТРС

Временная структура пучка (генератор)

Зависимость $\sigma_{\rm E}$ от интенсивности пучка

- Аб6 центральный анод-кольцо
- Генератор подавался на все аноды одновременно

Пересчет площади

- А_{трс} ≈ 320 см²
- A_{scint} ≈ 30,7 см²
 (10% of A_{TPC})
- A₆₆ ≈ 12,8 cm²
 (42% of A_{scint})

Энергетическое разрешение в пучке

1 AU ≈ 28 кэВ

«Профиль» пучка

Effective count ("horizontal")

Effective count ("vertical")

Калибровка, контроль чистоты газа

- Газ: 99.9999%
- ²⁴¹Am
 - Е_а: 5.486 МэВ

Сигнал от альфа-частицы

Суммарный спектр энергии альфа-частицы

Alpha energy (2018-04-09 18:34:46)

- Измерялся регулярно на протяжении эксперимента
- Сдвиг α-линии ~1%/день $(~1 \text{ ppm } 0_2)$
- Переполнение раз в неделю •

Отбор треков: алгоритм

Порог: 5 AU (~150 кэВ) _90% Длина сигнала: 30–210 каналов (1.2–8.4 мкс) Предельная разница времен пары колец: 30 каналов (1.2 мкс) Предельныя разница времен последовательных колец: 200 каналов (8 мкс) Предельный разброс времен соседних анодов: 34 каналов (1.36 мкс)

Отбор треков: дополнительные условия

-18%

Отбор треков: пример сигналов

Энергетический спектр

28

Корреляции энергий по кольцам

Ring 1 & 2 energies (data + simulation) 1.8 ER2, MeV 64 1.6 60 3 1.4 59 1.2 56 58 55 0.8 54 57 0.6 53 52 51 50 49 0.4 65 45 0.2 46 66 0 1.6 1. ER1, MeV 0.2 0.8 1.2 0.4 0.6 1.8 1.4

Анализ данных кремниевого трекера

15.11.2018 PRM Status Report @COMPASS Collaboration Meeting – C. Dreisbach

Отборы точки взаимодействия по трекеру

- Радиальный: центральная часть камеры (ø 40 мм)
- По Z: центр камеры (24-46 см)

Синхронизация — временные метки

VULOM4B

- 32-битные «часы» @100 МГц
- синхронизация через временные метки (timestamps)
- Si: линейная экстраполяция между метками
- совмещение абсолютных времен событый Si и TPC

Совмещение событий ТРС и трекера

Совмещение событий ТРС и трекера

• Симуляция

- Данные ТРС
- Совмещенные события

Энергия: камера и трекер

Без отбора: 99 событий

Нет сигнала на кольце 3: 79 событий

Перспективы

- Размер пучка: σ ≈ 8 мм
- Энергия пучка: 100 ГэВ
- Углы рассеяния мюонов: 0.3-2 мрад (Q² = 0.001-0.04 ГэВ²/с²)
- База: 5 метров отклонение на 1.5–10 мм
- Кремниевые детекторы с разрешением Δx < 10 мкм (Δθ < 2 мкрад на 5 м)
- Новая быстрая электроника для чтения кремниевых детекторов
- Триггер от рассеянной частицы («kink trigger» SciFi?)
- Активная мишень: увеличенный диаметр 800 мм, 20 атм H₂
- Интенсивность пучка: 2·10⁶ µ/с 1 год (2022 г.)

Заключение

- Проведен эксперимент по рассеянию мюонов на водородной активной мишени
 - Автономная экспериментальная установка
 - Обеспечено соответствие требованиям безопасности
- Измерено энергетическое разрешение ТРС на пучке, получены первые энергетические распределения
- Успешно протестировано совмещение событий с помощью временной метки

Спасибо за внимание!

NA58 (COMPASS)

39

COMPASS

- Hadron Program
 - Pion and Kaon Polarizabilities
 - Exotic States and Spectroscopy
 - Charmed Baryons
- Muon Program
 - Gluon Polarization
 - Longitudinal Spin Structure Functions
 - Transverse Spin Distributions
 - Lambda Polarization
- Generalized Parton Distributions
- Drell-Yan

Сцинтилляторы

- BT1A/2A Monolithic counter 70x50 mm [BC408], XP2090 PMT readout
- BT1B Vertical segmented counter 7x 10 mm → 64x48 mm [BC408], R7400 PMT readout

Триггер кремниевого детектора: совпадение ВТ1В и ВТ2А

ФЭУ

39 mm (1 ^{1/2} ")) tubes	XP2072B	XP2090B
	Key features	good linearity, good PHR	fast
Dynode structur	e / number of stages	focused/10	focused/10
Cathode luminous sensitivity (µA/lm)	typ.	85	90
8Cathode blue sensitivity (μA/ImF)	min	9	10
	typ.	11	11.5
Cathode radiant sensitivity (mA/W)	typ. at (nm)	85 mA/W 290 420 650	90 mA/W 270 420 650
Gain	typ.	6.5x10 ⁵	6.5x10 ⁵
Supply voltage	typ.	1 100	850
	min. (V)	900	700
	max. (V)	1250	950
Anode dark current	typ. (nA)	2	2
	max. (nA)	10	10
Anode dark counts	typ. (cps)		
	max. (cps)		
Max. anode pulse current for linearity 2% (mA)		150	80
Time response	rise (ns)	2.8	2.9
	FWHM (ns)	7	4.5
PHR (%)		7.2	7.5
Maximum ratings	supply voltage (V)	1600	1 500
	gain	1x10 ⁷	1x10 ⁷
Accessories	Voltage divider	VD200K	VD200K
	Socket	FE1012	FE1012
	Mu-metal shields	MS170	MS170

Монолитный: Photonis XP2090B rise time 2.9 ns

> Сегментированный: Hamamatsu R7400U rise time 0.78 ns

PHR: for radiation source ¹³⁷Cs, Nal TI scintillator, Ø 32 mm, h25 mm; Transit time spread at 1250V for XP2090B: 2 ns. XP20C2 is the 8-stage variant of XP20A2. XP2090B transit time spread at 1250V is 2ns.

CHARACTERISTICS (at 25 °C)

		Spectral Response		Dhata		0				Catho	de Characteristics		
Type No. Remarks	Range (nm)	Peak Wave- length (nm)	cathode Window Material	Window Material	line No.	Anode to Cathode Voltage (V)	Average Anode Current(b) (mA)	Lumi Min. (µA/lm)	nous Typ. (μΑ/lm)	Blue Sensitivity Index (CS 5-58) Typ.	Red/White Ratio (R-68) Typ.	Radiant Typ. (mA/W)	
R7400U-09	Solar Blind	160 to 320	240	Cs-Te	Synthetic silica	2	1000	0.01	-	_	_	-	10(c)
R7400U	Visible	300 to 650	420	Bialkali	Borosilicate glass	1	1000	0.1	40	70	8	-	62
R7400U-03	UV to Visible	185 to 650	420	Bialkali	UV glass	1	1000	0.1	40	70	8	_	62
R7400U-06	UV to Visible	160 to 650	420	Bialkali	Synthetic silica	2	1000	0.1	40	70	8	-	62
R7400U-01	Visible to Near IR	300 to 850	400	Multialkali	Borosilicate glass	1	1000	0.1	80	150	-	0.20	60
R7400U-02	Visible to Near IR	300 to 880	500	Multialkali	Borosilicate glass	1	1000	0.1	200	250	_	0.25	58
R7400U-20	Visible to Near IR	300 to 920	630	Multialkali	Borosilicate glass	1	1000	0.1	350	500	-	0.45	78
R7400U-04	UV to Near IR	185 to 850	400	Multialkali	UV glass	1	1000	0.1	80	150	-	0.20	60
R7401	With Lens	300 to 650	420	Bialkal	Borosilicate glass	3	1000	0.1	40	70	8	-	62
R7402	With Lens	300 to 850	400	Multialkali	Borosilicate glass	3	1000	0.1	80	150	-	0.20	60
R7402-02	With Lens	300 to 880	500	Multialkali	Borosilicate glass	3	1000	0.1	200	250	-	0.25	58
R7402-20	With Lens	300 to 920	630	Multialkali	Borosilicate glass	(3)	1000	0.1	350	500	_	0.45	78

(a): See figure 11. (b): Averaged over any interval of 30 seconds maximum.
 (c): Measured at 254 nm.
 (d): Measured at 410 nm, at -800 V, with an input pulse width less than 30 ps.
 (f): Measured at a gain of 10⁶.

Отбор треков: алгоритм

Отбор треков: алгоритм

Кремниевый трекер

Энергия на кольцах (пучок е-, Не)

Пробег протона в водороде

