ISOLDE: laser ion source

Nuclear shape coexistence via α - and β -decay studies with the application of the laser ion source

> А. Е. Барзах, П. Л. Молканов, М. Д. Селиверстов, Д. В. Федоров

Windmill-ISOLTRAP-RILIS collaboration

- PNPI, Gatchina, Russian Federation
- **RILIS and ISOLDE, Geneva, Switzerland**
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
- **University of Manchester, UK**
- MR-TOF@ISOLTRAP team
- University of the West of Scotland, United Kingdom
- Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Leuven, Belgium
- Comenius University, Bratislava, Slovakia
- University of York, United Kingdom

...

IS 456, 466, 511, 534, 598, 608

α - and β -decay studies at Windmill

Isomer selective α and β **decays**

wavenumber, cm⁻¹

Isomer selective *α* and *β* **decays**

Hindered α decay ¹⁸¹Tl→¹⁷⁷Au

Why is α decay of 1/2⁺ gs of ¹⁸¹Tl hindered, HF>3? Different spins: ¹⁸¹Tl (1/2⁺) and ¹⁷⁷Au (3/2⁺)?

Spins of ^{177, 179}Au

Only 3 rather than usual 4 lines will be seen in the hfs spectra of isotopes with I=1/2

Spins of ^{177, 179}Au

 $I(^{177,179}Au) = 1/2$

Hindrance factors and µ

Nonaxiality in ^{177, 179}Au

Thus, the structures of 1/2⁺ states in parent ¹⁸¹TI and daughter ¹⁷⁷Au are different: spherical $s_{1/2}$ state in ¹⁸¹TI and nonaxially deformed mixture of $s_{1/2}$ and $d_{3/2}$ states in ¹⁷⁷Au \rightarrow hindrance of the α decay

Potential energy surface calculations

Unhindered α decay of ¹⁷⁹Tl

Large hindrance of α decay ¹⁸⁰Tl^g \rightarrow ¹⁷⁶Au^g

 $^{180}\text{TI}\ [\pi\text{s}_{1/2}\otimes\,\text{vh}_{9/2}]_{4}$.

- -

-2

	Ea Clatot la rel Oa							
	[keV] [keV] [%] [keV]							
695	5873 (6702) 0.10(2) 0.70(50)							
678	5887 (6699) 0.12(2) 0.46(36)							
4 4 5 4 4 0	5977 (6709) 0.16(2) 0.38(27)							
596	5995 (6702) 0.07(2) 0.15(11)							
570	6015 (6705) 0.05(1) 0.09(6)							
503								
3381 382 383 384 522	6049 (6713) 0.03(1) 0.04(3)							
4/3	6088 (6700) 0.03(1) 0.03(2)							
	6167 (6705) 0.09(2) 0.04(3)							
	6192 (6705) 0.9(1) 0.28(19)							
	6199 (6702) 17.3(12) 5.2(35)							
	6245 (6704) 24.9(17) 4.9(33)							
	6348 (6703) 3.6(3) 0.27(18)							
205	6354 (6704) 39.8(36) 2.9(19)							
205 E2 210 E2 338 473 553 553 553 553 556 556 556 678 695								
362	6553 (6702) 12.9(5) 0.16(11)							
176 Aut Fred Quiet 1								

Au [1103/2 @ VI7/2]4.5-

Large hindrance of α decay ¹⁸⁰Tl^g \rightarrow ¹⁷⁶Au^g

¹⁷⁸ TI		¹⁸⁰ TI		¹⁸² TI		¹⁸⁴ TI	
$m{E}_{lpha}$ (keV)	δ²(keV)	${m E}_{lpha}$ (keV)	δ² (keV)	${m E}_{lpha}$ (keV)	δ ² (keV)	${m E}_{lpha}$ (keV)	δ ²(keV)
6862(10)	0.30(15)	6553(7)	0.16(11)	6406	0.043(25)	6161	0.57(6)
6693(10)	13.0(17)	6354(7)	2.9(19)	6360(6)	0.048(28)	5988(12)	2.4(4)
6595(10)	10.2(24)	6348(7)	0.27(18)	6165(6)	1.13(66)	5964(12)	
		6245(7)	4.9(33)	6046(5)	5.8(34)	5810(12)	0.9(1)
		6199(7)	5.2(35)	5962(5)	6.0(35)	5748(12)	< 0.09

Strongly hindered gs \rightarrow gs decay ($\delta^2 \sim 0.1$ keV; HF ~ 500) at the same spin and deformation! Large hindrance is due to the change of both proton, $s_{1/2} \rightarrow d_{3/2}$, and neutron, $h_{9/2} \rightarrow f_{7/2}$, configurations (confirmed by μ measurements).

Why does neutron in ¹⁷⁶Au occupy $f_{7/2}$ instead of expected $h_{9/2}$ orbital?

Nuclear shells below N = 100

Nuclear shells below N = 100

$$\left\langle j^{n} | \hat{Q} | j^{n} \right\rangle = \frac{2j + 1 - 2n}{2j + 1 - 2\nu} \left\langle j^{\nu} | \hat{Q} | j^{\nu} \right\rangle = \frac{5}{3} Q_{s.p.}(\nu f_{7/2}) - \frac{1}{3} Q_{s.p.}(\nu f_{7/2}) \cdot n$$

Shell evolution

¹⁶⁰Re₈₅: Changing singleparticle structure beyond the proton drip line

The convergence of the $h_{9/2}$ and $f_{7/2}$ neutron levels could open up a γ -decay path from the high-spin isomer to the low-spin ground state of ¹⁶⁰Re, providing a natural explanation for the anomalous absence of charged-particle emission.

I.G. Darby et al. Phys. Lett. B 695 (2011) 78

One expects the proton–neutron tensor force component acting between protons filling the $1h_{11/2}$ orbital and a single neutron in the $1h_{9/2}$ or $2f_{7/2}$ orbitals to modify their relative single-particle energies

L. Bianco et al. / Physics Letters B 690 (2010) 15

Shell swap

Shell swap

 μ (¹⁷⁶Au₉₇) is explained only with $vf_{7/2}$ assumption for neutron configuration (additivity relation)

 μ (¹⁸⁰Tl₉₉) is explained only with $vh_{9/2}$ assumption for neutron configuration

 $^{181}Pb_{99} - vh_{9/2}$ configuration: *I* ($^{181}Pb_{99}$) = 9/2

Subshells return to the "normal" ordering at Z > 80

Shape Coexistence in the Pb region

Potential Energy Surface for ¹⁸⁶Pb *A.Andreyev et al.* Nature, 405, 430 (2000)

K. Heyde et al., Phys. Rep. 102 (1983) 291
J.L. Wood et al., Phys. Rep. 215 (1992) 101
A. Andreyev et al., Nature 405 (2000) 430
K. Heyde and J. Wood, Rev. Mod. Phys., 83, 1467 (2011)

•Pb (Z=82) g.s.: p(0p-0h) – spherical

Proton pair excitations across Z=82 shell gap (neutrons are spectators):

•1 pair excitation: p(2p-2h) -oblate

•2 pair excitation: p(4p-4h) -prolate

Mercury Chain (Z=80)

Intruder states

Intruder states

The different energy terms, contributing to the energy of the lowest proton 2p-2h 0⁺ intruder state for heavy nuclei. The unperturbed energy, the pairing energy, the monopole energy shift, and the quadrupole energy gain are presented,

K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

Intruder states

Schematic representation of a proton 1p2h intruder configuration (TI)

Mixing of configurations with different shapes

$$\alpha_{C}(2_{2}^{+} \rightarrow 2_{1}^{+}):$$

¹⁸⁰Hg 3.5(4)
¹⁸²Hg 7.2(13) [cf.
$$\alpha_{c}(M1) = 1.15; \alpha_{c}(E2) = 0.42$$
]
¹⁸⁴Hg 14.2(3.6)
 $\rho^{2}(E0) = \frac{Z^{2}}{R_{0}^{2}} a^{2} (1-a^{2}) \left[\delta \langle r^{2} \rangle\right]^{2}$

The large conversion coefficient for the 2_2^+ to 2_1^+ transition in ^{182,184}Hg is a strong fingerprint of shape coexistence as strong E0 transitions are the result of considerable mixing of two states with a large difference in deformation. Combining the measured conversion coefficients with the re-evaluated B(E2) values from the Coulomb excitation experiments will result in E0 transition strength $\rho^2(E0)$ values which can be compared with different theoretical models

Conclusions

Изомерно селективная фотоионизация в лазерном ионном источнике позволяет получить большой объем ядерноспектроскопической информации (T_{1/2}, E_α, b_α, b_β, α-γ, γ -γ coincidence, conversion coefficients, partial decay schemes и т. д.) без дополнительных затрат времени.

Из полученных результатов отметим:

- Сопоставление фактора задержки α распада ¹⁸¹TI→¹⁷⁷Au со спинами и магнитными моментами этих ядер позволяет сделать вывод о неаксиальной деформации ¹⁷⁷Au;
- Большой фактор задержки α распада ¹⁸⁰TI→¹⁷⁶Au, а также анализ спинов и моментов соседних изотопов Hg указывает на изменение оболочечной структуры (shell swap).
- 3. Обнаружен новый интрудер изомер в ¹⁸⁴TI, подтверждена параболическая зависимость энергии возбуждения этих изомеров от числа нейтронов.
- Аномально большие коэффициенты конверсии для 2₂⁺→2₁⁺ переходов в ^{180,182,184}Нg свидетельствуют о сильном смешивании состояний с разной деформацией.