<u>CHARM 2018:</u> The 9th International Workshop on Charm Physics

https://indico.inp.nsk.su/event/10/timetable/#20180521

Алексей Дзюба \ ЛМФКС ОФВЭ ПИЯФ НИЦ КИ

Семинар ОФВЭ \ 29 мая 2018

CPV at charm sector & New Physics in loops

 $+ O(\lambda^7)$

- CKM matrix provides clear prediction of very small CPV in charm sector (*D*-mesons are the only up-type quark system, where mixing and CPV can occur)
- New Physics in loop-diagrams driven processes, which are very suppressed in the SM (Keeping in mind: long-distance contributions, for which precise theoretical predictions are difficult, but can play important role)
- Need a lot of $c\bar{c}$ for discoveries

Better understanding of QCD

- QCD is a natural part of the SM
- Chiral perturbation theory valid between
 0.1 and 1 GeV
- Perturbative QCD calculations >> 1 GeV
- Although charm hadrons are in between of these two regimes, due to high *c* mass double and triple charm systems, as well as exotica are kind of natural bridges for QCD development
- Need intensive charm source to produce such bound systems

Machines for charm studies (Luminosity / $N_{c\bar{c}}$)

At threshold

Higher energies

- Belle (1 ab⁻¹ / 13*10⁸) / BaBar (550 fb⁻¹ / 8*10⁸) **CLEO-c** $(0.8 \text{ fb}^{-1} / 5^* 10^6) / \text{BESIII} (3 \text{ fb}^{-1} / 2^* 10^7)$ In future Super-tau-charm Factories In future **Belle2** (50 ab⁻¹) • at $\psi(3770)$ resonance Quantum coherence, which allows to measure Neutrals / neutrino studies Clean environment strong phase Almost no background Lifetime studies possible No boost – no lifetime measurements Small sample size ٠ In future **PANDA CDF** $(10 \text{ fb}^{-1} / 23^* 10^{10}) / LHCb (5 \text{ fb}^{-1} / 8^* 10^{12})$ In future LHCb Upgraded (\rightarrow 50 fb⁻¹ \rightarrow 300 fb⁻¹) Selective to hadron production thresholds **Huge rates** ٠ Production cross sections measurements **Excellent lifetime resolution due to the boost** ٠ Polarization studies possible ٠
 - no lifetime measurements / not large sample

- Large backgrounds
- Difficult to work with neutral

e+e- colliders

nadron machines

Обзор новых результатов представленных на Конференции CHARM'18 + Перспективы

- Спектроскопия
- Смешивание, CPV, Редкие распады
- Рождение чарма
- Интересные результаты

- Экзотика
- In Medium
- Теория

https://indico.inp.nsk.su/event/10/timetable/#20180521

Спектроскопия

Время жизни дважды очаровательного бариона

- Обнаружение новых мод распадов

Ξ_{cc}^{++} - Lifetime

Reference	Ξ₀₀++ (ps)	Ξ₀₀⁺ (ps)	Ω₀₀+ (ps)
Karliner, Rosner, 2014	0.185	0.053	
Kiselev, Likhoded, Onishchenko, 1998	0.430 +/- 0.100	0.110 +/- 0.010	
Kiselev, Likhoded, 2002	0.460 +/- 0.050	0.160 +/- 0.050	0.270 +/- 0.060
Guberina, Melic, Stefancic, 1998	1.050	0.200	0.300
Chang, Li, Li, Wang, 2007	0.670	0.250	0.210

Lifetime measurement

- □ We perform a lifetime measurement, using the $\Xi_{cc}^{++} \rightarrow \Lambda_c^{+}K^{-}\pi^{+}\pi^{+}$ decay, relative to the control channel of same topology, $\Lambda_{b}^{0} \rightarrow \Lambda_c^{+}\pi^{-}\pi^{+}\pi^{-}$
- □ Unbinned maximum likelihood fit of the background subtracted Ξ_{cc}^{++} decay time distribution (sFit)

$$f_{\Xi_{cc}^{++}}(t) = h_{\Lambda_b^0}(t) \times \frac{\epsilon_{\Xi_{cc}^{++}}(t)}{\epsilon_{\Lambda_b^0}(t)} \times e^{-\left(\frac{1}{\tau_{\Xi_{cc}^{++}}} - \frac{1}{\tau_{\Lambda_b^0}}\right)}$$

 \Box Λ_{b^0} data and acceptances incorporated to PDF as histograms

- \square PDG Λ_{b^0} lifetime (1.470 +/- 0.010 ps) used as input
- \Box Measurement performed with Λ_{b^0} and result consistent with PDG value

- Mostly same selection criteria of observation
- □ Specific hardware trigger:

t

- > Large hadronic ET deposit from decay products;
- Or large ET deposit in calorimeters or muon stations from tracks other than the decay products
- Decay time range: 0.10-2.00 ps

Decay time

Results

$$\tau_{\Xi_{cc}^{++}} = 0.256_{-0.022}^{+0.024} \text{ ps (stat. only)}$$

 $N_{rec}(t$

 N_{qen}

 $\sigma_{MC} = 0.007 \text{ ps}$ Statistical errors from MC and Λ_{b^0} samples $\sigma_{\Lambda_b^0} = 0.006 \text{ ps}$ obtained from pseudoexperiments **nce** Systematic uncertainties

$\mathbf{\Xi}_{\mathbf{cc}}^{++}$ - Lifetime			
Reference	Ξ₀₀⁺⁺ (ps)	Ξ₀₀⁺ (ps)	Ω₀₀⁺ (ps)
Karliner, Rosner, 2014	0.185	0.053	
Kiselev, Likhoded, Onishchenko, 1998	0.430 +/- 0.100	0.110 +/- 0.010	
Kiselev, Likhoded, 2002	0.460 +/- 0.050	0.160 +/- 0.050	0.270 +/- 0.060
Guberina, Melic, Stefancic, 1998	1.050	0.200	0.300
Chang, Li, Li, Wang, 2007	0.670	0.250	0.210

Source	Uncertainty (ps)
Signal and background mass models	0.005
Correlation of mass and decay-time	0.004
Binning	0.001
Data-simulation differences	0.004
Resonant structure of decays	0.011
Hardware trigger threshold	0.002
Simulated Ecc++ lifetime	0.002
$\Lambda_{0^{b}}$ lifetime uncertainty	0.001
Sum in quadrature	0.014
Total systematic uncertainties signif	icantly

lower than statistical uncertainties

□ MC samples reweighted to match PT distributions in data

Предсказания КХД на решетках

Hadronic decays of Ω_c

 Among 4 ground state charmed baryons, Ω_c(css) is not studied well as cross section is small.

State	Λ_c^+	\equiv_c^0	Ξ_c^+	Ω_c
$\tau(ps)$	200 ± 6	112^{+13}_{-10}	442 ± 26	69 ± 1
$\Delta au / au$ (%)	3	1	6	<u>17</u> പ്പ

- Only Ω_c has the same flavor light quarks (ss). Constructive interference is thought to be the origin of its short life time.
- Precise measurements will shed light on the dynamics of baryon weak decays.
- Belle performed measurements of 8 decay modes relative to the bench mark mode: $\Omega^{-}\pi^{+}$.
 - Most precisements: $\Omega^{-}\pi^{+}\pi^{0}$, $\Omega^{-}\pi^{+}\pi^{-}\pi^{+}$, $\Xi^{-}K^{-}\pi^{+}\pi^{+}$, and $\Xi^{0}K^{-}\pi^{+}$.
 - First measurements: $\Xi^- \bar{K}^0 \pi^+$, $\Xi^0 \bar{K}^0$ and $\Lambda \bar{K}^0 \bar{K}^0$.

J. Yelton et al., Phys. Rev. D 97, 032001(2018)

Mode	Branching ratio with respect to $\Omega^-\pi^+$	Substructure	Previous measurement
$\Omega^-\pi^+$	1		
$\Omega^{-}\pi^{+}\pi^{0}$	$2.00 \pm 0.17 \pm 0.11$		$1.27 \pm 0.3 \pm 0.11$ [4]
$\Omega^- \rho^+$		>71%	
$\Omega^-\pi^+\pi^-\pi^+$	$0.32 \pm 0.05 \pm 0.02$		$0.28 \pm 0.09 \pm 0.01$ [4]
$\Xi^- K^- \pi^+ \pi^+$	$0.68 \pm 0.07 \pm 0.03$		$0.46 \pm 0.13 \pm 0.03$ [4]
$\Xi^{0}(1530)K^{-}\pi^{+}$		$(33 \pm 9)\%$	
$\Xi^{-}\bar{K}^{*0}\pi^{+}$		$(55 \pm 16)\%$	
$\Xi^{0}K^{-}\pi^{+}$	$1.20 \pm 0.16 \pm 0.08$		$4.0 \pm 2.5 \pm 0.4$ [2]
${\Xi}^{0} \bar{K}^{*0}$		$(57 \pm 10)\%$	
$\Xi^- \bar{K^0} \pi^+$	$2.12 \pm 0.24 \pm 0.14$ NEW		
$\Xi^0 \overline{K^0}$	$1.64 \pm 0.26 \pm 0.12$ NEW		
$\Lambda \bar{K}^0 \bar{K}^0$	$1.72 \pm 0.32 \pm 0.14$ NEW		
$\Sigma^+ K^- K^- \pi^+$	<0.32 (90% CL)		

Key variables and ST modes

- $E_{\text{miss}} = E_{\text{beam}} E_{\text{h}}; \vec{p}_{\text{miss}} = \vec{p}_{\Lambda \text{c}} \vec{p}_{\text{h}}$
- $\vec{p}_{\Lambda c} = -\vec{p}_{tag} \cdot \sqrt{E_{beam}^2 m_{\Lambda c}^2}$
- $U_{\text{miss}} = E_{\text{miss}} |\vec{p}_{\text{miss}}|$
- $M_{\rm miss}^2 = E_{\rm miss}^2 |\vec{p}_{\rm miss}|^2$
- \hat{p}_{tag} is the direction of the momentum of the singly tagged Λ_{c} .
- E_h(p_h) are the energy(momentum) of h which are measured in e⁺e⁻ system.
- $m_{\Lambda_c^+}$ is the mass of the Λ_c^+ quoted from the PDG.

ST modes

Beam-Constrained-Mass;

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\vec{p}_{\rm Ac}|^2}$$

$$\sigma \sim 2 \text{MeV}/c^2$$

Charmed leptonic decays

Search for $D^+ \to \tau^+ \nu_{\tau}, \ \tau^+ \to \pi^+ \bar{\nu}_{\tau}$

Смешивание, СР-нарушение, редкие распады

- Параметры смешивания и CPV (WSанализ)
- ΔA_{CP} в распадах нейтральных мезонов
- CPV в редких распадах

D^0 mixing

Considering negligible CP violation and in the limit of x,y<<1, to second order in t/τ , the time-dependence of the phase-space integrated decay rate ratio R(t) is approximated by:

$$R(t) pprox R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

 $\mathcal{A}(D^0 \to K^+\pi^-)/\mathcal{A}(\overline{D}{}^0 \to K^+\pi^-) = -\sqrt{R_D}e^{-i\delta}$

$$x' \equiv x \cos \delta + y \sin \delta$$
$$y' \equiv y \cos \delta - x \sin \delta$$

• The D^0 flavor at the production is tagged by $D^{*+} \rightarrow D^0 \pi^+$.

LHCb results with $D^0 \rightarrow K^+ \pi^-$

- Use tagged $(\pi) D^0 \to K^+ \pi^-$ decay from $D^{*+} \to D^0 \pi^+$ decay
- Data sample of 5 fb⁻¹ of integrated luminosity (2011-2016)
- Constrain $D^0\pi_s^+$ vertex to measured position of primary vertex \Rightarrow 0.3 MeV/c² invariant-mass resolution
- Fix WS signal shape parameters from RS fits in each decay time bin
- Run 2 signal yields (2015-2016) ~ 2 times larger than Run 1 (2011-2012)

Result on search for CP violation in mixing

PRD 97 (2018) 031101

Two-dimensional confidence regions in the y' and x'^2

PRD 97 (2018) 031101

• Assuming CP conservation

	$R_D (10^{-3})$	y' (10 ⁻³)	$x^{\prime 2} (10^{-3})$
CDF ¹	3.51 ± 0.35	4.3 ± 4.3	0.08 ± 0.18
Belle ²	3.53 ± 0.13	4.6 ± 3.4	0.09 ± 0.22
BaBar ³	3.03 ± 0.19	9.7 ± 5.4	-0.22 ± 0.37
LHCb Run 1+2 ⁴	3.454 ± 0.031	5.28 ± 0.52	0.039 ± 0.027

• LHCb completely dominating the scene

1.00 < |q/p| < 1.35 @ 68.3% C.L. 0.82 < |q/p| < 1.45 @ 95.5% C.L.

- Dataset : 2.0 fb⁻¹, 2015-2016
- Production mode : $D^{*+} \rightarrow D^0 \pi^+$
- Raw asymmetry :

$$A_{raw}(K_{s}^{0}K_{s}^{0}) = A_{CP}(K_{s}^{0}K_{s}^{0}) + A_{P}(D^{*+}) + A_{tag}(\pi^{+})$$

- No detection asymmetries from the daughters of the D⁰ since they are symmetric
- Removing production and tagging asymmetries by using a control channel D⁰ → K⁺K⁻:

$$\Delta A_{CP} = A_{raw}(K_s^0 K_s^0) - A_{raw}(K^+ K^-)$$
$$= A_{CP}(K_s^0 K_s^0) - A_{CP}(K^+ K^-)$$

For this analysis:

- LL: the two $K_{\rm s}^0$ decay in the VELO and have long tracks
- LD: one K_s⁰ has a long track and one decays downstream of the VELO (downstream track)

- $A_{CP} = (4.2 \pm 3.4 \pm 1.0)\%$
- Compatible with Run 1 result: $A_{CP} = (-2.9 \pm 5.2 \pm 2.2)\%$
- Average : $A_{CP} = (2.0 \pm 2.9 \pm 1.0)\%$
- ightarrow Catching up with the Belle result

Impact for rare decays (what can be done?)

$D^{0} \rightarrow \mu^{+}e^{-}$ $D^{0} \rightarrow pe^{-}$ $D^{+}_{(s)} \rightarrow h^{+}\mu^{+}e^{-}$					1	$D^+_{(s)} \rightarrow D^0_{(s)} \rightarrow K^- \pi D^0 \rightarrow K^- \pi D^0 \rightarrow K^- \pi K^- \pi D^0 \rightarrow K^- \pi K^- $	π ⁺ l ⁺ l ⁻ K ⁺ l ⁺ l ⁻ τ ⁺ l ⁺ l ⁻ ζ ^{*0} l ⁺ l ⁻		$D^{0} \rightarrow p$ $D^{0} \rightarrow p$ $D^{0} \rightarrow p$ $D^{0} \rightarrow q$	τ [−] π ⁺ V(ρ V(− K ⁺ K [−] V ∮ V(→	(→ II) → II) Y(→ II) → II)	$D^0 \rightarrow (\phi, \phi)$ $D_s^+ \rightarrow \pi^+ \phi$	→ K ^{*0} γ ο,ω) γ ∀(→ ll)
LFV, LNV,	BNV			FC	NC				VMD		Radi	ative	
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10-4	
$D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$ $D^0 \to X^{} l^+ l^+$			D^0	$D^0 \rightarrow ee$	→ µµ	$D^{0} \to \pi$ $D^{0} \to \rho$ $D^{0} \to K$ $D^{0} \to \phi$	π ⁺ l ⁺ l 	$D^{0} \rightarrow D^{0} \rightarrow D^{0$	$\frac{K^{+}\pi^{-}V(x)}{K^{*0}}V(x)$	→) I) I I	$D^+ o \pi^+$ $D^0 o K^-$ $D^0 o K^*$	$f\phi(\rightarrow ll)$ $\pi^+V(\rightarrow ll)$ $\sqrt[9]{}^0V(\rightarrow ll)$)

[PRD 66 (2002) 014009]

LHCb will keep pushing down the limits as there is still some room for New Physics:

- BR($D^{0} \rightarrow \mu^{+}\mu^{-}$) < 7.6 x 10⁻⁹ (90% CL) with 1 fb⁻¹ PLB 725 (2013) 15 (working on update)
- SM predictions ~ 10⁻¹² [long distance yy recombination,[™] ⁰⁰ based on Belle limits on BR(D⁰→ yy), PRD 93 (2016) 051102]

Intermediate vector resonances in the dimuon spectrum can hide short distance (SM) contribution

Impact for rare decays (what can be done?)

- CP- and T-asymmetries for rare decays
- Lepton Flavor Violation (LFV) to be examined
- Lepton Universality (LU) in charm sector
- Angular and amplitude analyses

Phys. Rev. Lett. 119,

Asymmetries in $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$ [LHCb-PAPER-2018-020]

- for the first time, measurements of angular and CP asymmetries in these decays
 - conceptual new and complementary to BF measurements
- asymmetries are sensitive to SD in full range due to SD-LD interference
 - observables are SM null tests
 - O(few%) predictions for some NP models JHEP 1304 135 (2013) PRD 87 054026 (2013) D 93, 074001 (2016) [arXiv:1805.08516]

angular asymmetries ٠

CP asymmetry ٠ 16 $A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$

Asymmetries in $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$

Measurement strategy

- measure $A_{FB},\,A_{\Phi}$ and A_{CP} binned and integrated in dimuon mass
- quote results where significant signal was observed in BF measurement
- split bins at resonance peak positions (for $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$)

	$m(\mu^{+}\mu^{-})$ [MeV/ c^{2}]						
Decay mode	low mass	η	$\rho/$	ω		ϕ	high mass
$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$	< 525	NS	> 5	65	N	IA	NA
$D^0 \to \pi^+\pi^-\mu^+\mu^-$	< 525	NS	565 - 780	780 - 950	950-1020	1020 - 1100	NS

Experimental details

- select D⁰ from flavour sepecific D^{*+}→ D⁰π⁺ decays
- increased data statistics: 5/fb recorded 2011-2016

- total yields
 - D⁰→π+π-μ+μ-: 1.1k
 - D⁰→K+K-µ+µ-: 110
- sensitivity on asymmetries of a few % already now!

Asymmetries in $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$

Determination of the asymmetries AΦ AFB ACP $\cos(\theta_{\mu}) > 0$ sin(20)>0 $Q(\pi^{+}) < 0$ split data set according to tag $\cos(\theta_u) < 0$ sin(20)<0 $Q(\pi^{+}) > 0$ 160FLHCb > 140 LHC perform simultaneous fit to preliminary ≥ 120EO(π.) < 0 $Q(\pi_s) > 0$ efficiency corrected m(D⁰) with $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu$ $D^0 \rightarrow \pi^+\pi^-\mu^+\mu$ $D^0 \rightarrow \pi^+\pi^-\pi^+\pi$ asymmetry as shared parameter 80 Candidates - Comb. backg. 60 ₩₩ 1850 1900 1850 1900 $m(\pi^{+}\pi^{-}\mu^{+}\mu^{-})$ [MeV/c²] $m(\pi^{+}\pi^{-}\mu^{+}\mu^{-})$ [MeV/c²]

 use control samples of D^{+*}→D⁰(→K⁺K⁻)π_s⁺ decays to correct for production and charge dependent detection asymmetries

- **Total asymmetries**
 - $A_{\rm FB}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (3.3 \pm 3.7 \pm 0.6)\%,$ $A_{\phi}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (-0.6 \pm 3.7 \pm 0.6)\%,$ $A_{CP}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (4.9 \pm 3.8 \pm 0.7)\%,$ $A_{\rm FB}(D^0 \to K^+ K^- \mu^+ \mu^-) = (0 \pm 11 \pm 2)\%,$ $A_{\phi}(D^0 \to K^+ K^- \mu^+ \mu^-) = (9 \pm 11 \pm 1)\%,$ $A_{CP}(D^0 \to K^+ K^- \mu^+ \mu^-) = (0 \pm 11 \pm 2)\%.$
 - uncertainties are statistical and systematic

compatible with SM

predictions [JHEP 04 135 (2013)]

- all asymmetries consistent with zero
- no dependency on dimuon mass observed

Измерение сечение рождения очаровательных частиц

- Рождение барион-антибарионных пар
- Свойства чармония
- Рождение пар (*R*)

€SII The cross-section of baryon pair

The Born cross section of the reaction $e^+e^- \rightarrow \gamma^* \rightarrow B\bar{B}$ can be parameterized in terms of electromagnetic form factors:

$$\sigma_{B\bar{B}}(q) = \frac{4\pi\alpha^2 C\beta}{3q^2} [|G_M(q)|^2 + \frac{1}{2\tau} |G_E(q)|^2]$$

- Baryon velocity $\beta = \sqrt{1 4m_B^2 c^4/q^2}, \tau = q^2/(4m_B^2 c^4)$
- For charged *B*, the Coulomb factor C will results in a non-zero cross section at threshold
- *e*⁺*e*[−]→*pp*̄: an enhancement and wide-range plateau in the line-shape
- $e^+e^- \rightarrow \Lambda \bar{\Lambda}$: non-zero cross section near threshold
- It can be anticipate that Λ⁺_c has a similar behaviour with proton
- Belle collaboration has measured the cross section of e⁺e⁻ → Λ_c⁺Λ_c⁻ using ISR technique PRL 101, 172001 (2008)

Study of $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$ near threshold

• The cross sections are measured with unprecedented precision

€SII

- Enhanced cross section of reaction
 e⁺e⁻ → Λ⁺_c Λ⁻_c near threshold is
 discerned for the first time
- The Coulomb enhanced factor?

- One of the most basic observables that intimately related to the internal structure of the nucleon.
- One of the most challenging questions in contemporary physics is why and how quarks are confined into hadrons.
- The electromagnetic form factors (EMFFs) have been a powerful tool in understanding the structure of nucleons.
- First measurements of the EMFFs of the Λ⁺_c

R measurement

Precise R measurement at low energies is important in calculation of fundamental values: • $\alpha_s(s)$

- $(g_{\mu}-2)/2$
- $\alpha(M_Z^2)$
- Heavy quark masses

```
3.12 – 3.72 GeV, data 2011, L = 1.4 pb-1
Phys. Lett. B 753 (2016) 533
1.84 – 3.05 GeV, data 2010, L = 0.65 pb-1
Phys. Lett. B 770 (2017) 174 New m
```

At first approximation:

 $R(s) \simeq 3 \sum e_q^2$

New measurement: 3.08 - 3.72 GeV, data 2014-15 (after detector repair), 8 points, L = 1.3 pb⁻¹ Submitted to Phys. Lett. B [arXiv:1805.06235]

Detector KEDR

J. High Energ. Phys. (2018) 2018: 119

VEPP-3

Determination of $\Gamma(J/\psi)$

KEDR

VEPP-4M

Taking into account $\mathcal{B}_{ee}(J/\psi) = (5.971 \pm 0.032)\%$ from PDG : $\Gamma = 92.94 \pm 1.83 \,\mathrm{keV}$

Phys. Lett. B V. 781, 10 June 2018, pp. 174-181

«Интересные измерения с чармом»

- Регистрация смешивания *a₀/f₀(980)*

- Новый прелестный барион

a₀(980) and f₀(980) mixing

• a₀(980)-f₀(980) mixing was first proposed theoretically in 1979 N.N. Achasov, PLB88,367(1979)

- searched in various different reactions
- a search was performed by BESIII in 2011

J.Wu, Q.Zhao, B.Zou PRD75,114012(2007) J.Wu, Q.Zhao, B.Zou PRD78,074017(2008)

1.3 bliion J/ψ events in 2009+2012

Observation of $a_0(980)$ and $f_0(980)$ mixing

Channel	$f_0(980)$ -	$\rightarrow a_0^0(980)$	$a^{0}(980) \rightarrow f_{0}(980)$
Onamiei	Solution I	Solution II	$u_0(360) \rightarrow f_0(360)$
$\mathcal{B}(\text{mixing})$ (10 ⁻⁶)	$3.18 \pm 0.51 \pm 0.38 \pm 0.28$	$1.31 \pm 0.41 \pm 0.39 \pm 0.43$	$0.35 \pm 0.06 \pm 0.03 \pm 0.06$
$\mathcal{B}(EM)$ (10 ⁻⁶)	$3.25 \pm 1.08 \pm 1.08 \pm 1.12$	$2.62 \pm 1.02 \pm 1.13 \pm 0.48$	_
$B(total) (10^{-6})$	$4.93 \pm 1.01 \pm 0.96 \pm 1.09$	$4.37 \pm 0.97 \pm 0.94 \pm 0.06$	
ξ (%)	$0.99 \pm 0.16 \pm 0.30 \pm 0.09$	$0.41 \pm 0.13 \pm 0.17 \pm 0.13$	$0.40 \pm 0.07 \pm 0.14 \pm 0.07$

EVEN NEWER Ξ_b^- RESONANCE

LHCb-PAPER-2018-013, all material preliminary

New $\Xi_b(6227)^-$ state observed decaying to both $\Xi_b^0 \pi^-$ and $\Lambda_b^0 K^-$.

Three independent reconstructed decay chains,

- $\Xi_b(6227)^- \rightarrow \Xi_b^0(\Xi_c^+\mu^-X)\pi^-$,
- $\Xi_b(6227)^- \to \Lambda_b^0(\Lambda_c^+\mu^-X)K^-,$
- $\Xi_b(6227)^- \rightarrow \Lambda_b^0(\Lambda_c^+\pi^-)K^-$.

MASS, WIDTH, AND PRODUCTION LHCb-PAPER-2018-013, all material preliminary

Mass and width measured with fully reconstructed $\Xi_b(6227)^- \to \Lambda_b^0(\Lambda_c^+\pi^-)K^-$ mode: $m(\Xi_b(6227)^-) - m(\Lambda_b^0) = 607.3 \pm 2.0 \pm 0.3 \text{ MeV}$ $\Gamma(\Xi_b(6227)^-) = 18.1 \pm 4.5 \pm 1.8$ $m(\Xi_b(6227)^-) = 6226.9 \pm 2.0 \pm 0.3 \pm 0.2 \text{ MeV}$

Relative production rates measured with semileptonic Λ_b^0 and Ξ_b^0 modes for pp at 13 TeV and at a combination of 7 and 8 TeV

$$R(\Lambda_b^0 K^-) \equiv \frac{f_{\Xi_b(6227)^-}}{f_{\Lambda_b^0}} \mathcal{B}(\Xi_b(6227)^- \to \Lambda_b^0 K^-)$$

= (3.0 ± 0.3 ± 0.4) × 10⁻³ at 7, 8 TeV
= (3.4 ± 0.3 ± 0.4) × 10⁻³ at 13 TeV
$$R(\Xi_b^0 \pi^-) \equiv \frac{f_{\Xi_b(6227)^-}}{f_{\Xi_b^0}} \mathcal{B}(\Xi_b(6227)^- \to \Xi_b^0 \pi^-)$$

= (47 ± 10 ± 7) × 10⁻³ at 7, 8 TeV
= (22 ± 6 ± 3) × 10⁻³ at 13 TeV

Перспективы физики очаровательных адронов

Timeline

LHCb is currently in last year of operation (Run-II)

LHCb Particle Identification

LHCb Trigger and Online

• 11 = 1111 1111

LS 3 🖌

LHCb

LS 4

Run IV

UPGRADE

Runs V+

Thacker R

Run III

PGRADE

Run II LS 2

• The statistics in Run-II can be increased roughly factor of ten

Phys. Rev. Lett. 116, 191601 (2016)

• Another factor of 10 for Runs III & IV (50 fb⁻¹)

Projected statistical uncertainty (LHCb-PUB-2014-040):

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade
CP violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.1

* we expect that systematical uncertainly also will scale down, as data driven methods are used

A.Dzyuba @ CHARM-2018

*

2.2

0.4

LHCb CPV studies see talks of Maxime Schubiger and **Angelo Carbone**

21.05.2018

 (10^{-4})

A.Dzyuba @ CHARM-2018 LHCb-PUB-2014-040

3.4

44

Spectroscopy with high luminosity

LHCb will continue to study charmed heavy baryons

Possible to have ~9k sample of Ξ_{cc}^{++} at 50 fb⁻¹ (under assumption that data scales with luminosity ~300 candidates \ $\sqrt{s} = 13$ TeV \ 1.7 fb⁻¹)

Search for other decays channels

Precise investigations of decay properties

Search for partners: Ξ_{cc}^{+} , Ω_{cc}^{+}

Wide program for exotica (will be discussed by Tomasz Skwarnicki and Anton Poluektov)

Very high precision can be achieved with 300 fb⁻¹

- We expect that systematical uncertainty will scale down together with statistical one.
- All chances to find CPV in charm sector

Topics and observables	Experimental reach	Remarks
Charm		
CP -violation studies with $D^0 \to h^+ h^-$,	e.g. $4 \times 10^9 D^0 \to K^+ K^-;$	Access CP violation at SM values.
$D^0 \to K^0_{\rm s} \pi^+ \pi^-$ and $D^0 \to K^\mp \pi^\pm \pi^+ \pi^-$	Uncertainty on $A_{\Gamma} \sim 10^{-5}$	

The Belle II Detector

KL & U Detector **Resistive Plate Counter** (barrel outer layers), EM calorimeter 7.4 m Scintillator + WLSF + MPPC CsI(TI), waveform sampling (end-caps, inner 2 barrel layers) electronics (barrel) Pure Csl + waveform sampling (end-caps) later electrons (7 GeV) Vertex Detector PXD: 2 layers Si pixels (DEPFET), 5.0 m SVD: 4 layers double sided Si positrons (4 GeV) strips (DSSD) Particle Identification Time-of-Propagation counter (barrel), Central Drift Chamber Proximity focusing Aerogel Cherenkov He(50%):C2H6(50%), Ring Imaging detector (forward) smaller cell size, longer lever arm, fast electronics L1 trigger rate = 30kHz HLT trigger rate = 10kHz Giulia Casarosa Belle II

8

We got Charm :)

- Evidence of D^{*} and D⁰ in the collected data sample of 5/pb
- First preliminary plots, calibrations at a very early stage, no PID cuts applied

Prospects for CP Asymmetries

M. Staric @ KEK FF 2014

	$\sigma_{Bellell} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$
(%)	Belle II at 50 ab-1

mode	\mathcal{L} (fb ⁻¹)	A _{CP} (%)	Belle II at 50 ab^{-1}
$D^0 \rightarrow K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.03
$D^0 \rightarrow \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
$D^0 ightarrow \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	±0.09
$D^0 ightarrow K^0_s \pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	±0.03
$D^0 ightarrow { m K}^0_s \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	±0.07
$D^0 ightarrow K^0_s \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	±0.09
$D^+ \rightarrow \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	±0.04
$D^+ \rightarrow \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	±0.14
$D^+ ightarrow \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^+ ightarrow K_s^0 \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	±0.03
$D^+ \rightarrow K^0_s K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05
$D_s^+ \rightarrow K_s^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29
$D_s^+ \rightarrow K_s^0 K^+$	673	$+0.12\pm 0.36\pm 0.22$	±0.05

- → A_{CP} precision will reach o(10⁻⁴), also in channels with neutrals in the final state
- ➡ Bellell is favoured on measurements with neutrals in the final state
- → Other interesting channels not included in this table: $D^+ \rightarrow \pi^+\pi^0$, $D^0 \rightarrow K_S K_S$, 3-body final states (DP analysis), radiative decays (in the next slide)

Leptonic Decays: $D_{(s)}^- \rightarrow \mu^- \nu$

- → $D_s^+ \rightarrow \mu^+ \nu$ Belle Analysis: $e^+e^- \rightarrow D_{tag}X_{frag}KD_s^{*+}$ $D_s^{*+} \rightarrow D_s^+ \gamma$
 - require one charged track passing muon-ID pointing the IP
 - fit the missing mass distribution.
- ➡ Same analysis method for the D⁺ channel
 - Belle simulation with 5.5 ab⁻¹, scaled to 50 ab⁻¹, yields:

Accelerator complex with colliding electron-positron beams (Super Charm-Tau Factory, SCT)

1998 - C. 1998

ATT.

https://indico.inp.nsk.su/event/13/other-view?view=standard

SCT physics case: challenges for Particle Physics

D-Dbar mixing CP violation searches in charm decays Rare and forbidden charm decays Standard Model tests in τ leptons decays Searches for lepton flavor violation τ→μγ CP/T violation searches in τ leptons decays ...

SCT technology case: accelerator S&T

- ➤ Two rings, 800 m each
- Crab waist
- Collision energy from 2 GeV to 5 (6) GeV
- Luminosity: 5.10³⁴ cm⁻²s⁻¹ at 2 GeV and 10³⁵ cm⁻² s⁻¹ at 4 GeV
- Longitudinally polarized electron beam at IP
- Extensive use of SC wigglers to control damping parameters and tune optimal luminosity in the whole energy range

The concept of the new collider is based on a new method to increase the luminosity, which was proposed by physicists from INFN (Italy) and developed by INFN and BINP experts

Similar accelerator approaches are used at SCT, Super KEK-B and FCCe

Accelerator technologies developed for SCT are very demand for other Russian mega science projects: NICA, SSRS-4

SCT current status: R&D and design

Artistic view of future facility

Classical detector concept for colliding beam experiments is suitable for SCTF

- 1. For realization of physics potential of the SCTF we have to built the detector with excellent performance- it is very interesting and difficult task
- 1. Most of subdetectors can be constructed on the base of existing detector technologies but we have to choice the optimal ones among many options (extensive R@D is needed)
- 1. But FARICH for PID is very challenging and probably we need to have more simple option for PID at the beginning

SCT road map of construction

	Year 1			Year 2			Year 3			Year 4				Year 5				Year 6						
Formation of management																								
Accelerator complex																								
Research																								
R&D																								
Prototyping & testing																								
Manufacturing																								
Assembling																								
Commissioning																								
Reaching the design																								
parameters																				1				
Detector																								
R&D																								
Manufacturing,																								
assembling, and testing									1															
Mounting and																								
commissioning																								
Software development																								
Building infrastructure																								
Design and research																								
Construction																								

SCT is expected to have a life span of at least 15 years, it may be expanded to more than 25 years

SCT management structure at the construction stage

