и изотопов углерода ^{15,16,17}С методом упругого рассеяния протонов в инверсной кинематике

Изучение гало структуры ядра ⁸В

Г.А. Королев

Семинар ОФВЭ 15 мая 2018г.

ИКАР-Коллаборация. Experiment S 358

- Экзотические ядра, гало и скин.
- Чем интересна структура изотопов углерода.
- Существует ли протонное гало в ядре ⁸В.
- Результаты измерений с детектором ИКАР.
- Сравнение результатов исследования структуры зеркальных ядер ⁸В и ⁸Li.
- Определение зарядового радиуса ⁸В.
- Возможно ли нейтронное гало в ¹⁶С.

The first proposal. I. Tanihata, "Nuclear Radii" 1983.

Lawrence Berkeley Laboratory

Фрагментация и пучки радиоактивных ионов, 1979.

Танихата, измерение σ_{l} .

Трансмиссионный метод (поглощения)

 $N_{out} = N_{in} \exp(-\sigma_{l}t)$ $\sigma_{l} = -(1/t) \ln(N_{out}/N_{in})$

 $\sigma_{\rm I} = \sigma_{\rm R} - \sigma_{\rm inelastic}$

К 2001 г. определены около 100 значений R_m для экзотических ядер вплоть до изотопов Mg.

Определение ядра с гало по увеличенному радиусу распределения материи R_m

Радиусы распределения материи R_m изотопов Li определенные из измерений сечений взаимодействия с углеродной мишенью при энергии 790 МэВ/нуклон Tanihata et al. (1988)

Новые свойства ядер: гало и скин (« шуба»)

В стабильных ядрах

- 1. Распределение плотности протонов и нейтронов одинаково
- 2. Диффузность ядерной поверхности одинакова для всех ядер
- Радиусы ядер пропорциональны А^{1/3}
 Гало ядра ⁶Не, ¹¹Li, ¹¹Be, ¹⁴Be, ¹⁷B, ¹⁹C

Измерение скина

$\Delta R_{np} = R_n - R_p$

R_p определяется из зарядового радиуса R_{ch}, величина R_n – из радиуса материи R_m.

$$AR_m^2 = ZR_p^2 + NR_n^2$$

Измерение **ס**_{int} для изотопов Ar A.Ozawa et al., Nucl. Phys. A 727 (2002) 465

Кривая – расчет RMF

Измерение протонного скина

Определение радиусов протонных распределений из измерений **О_{СС}**

Радиусы протонных R_p и материи R_m распределений изотопов углерода

R_p получено: из измерений σ_{CC} (черные точки), из данных по рассеянию электронов (синие точки)

R_m – анализ старых данных по σ_I с учетом полученных значений

R_p (белые точки) R.Kanungo et al. 2016

Признаки существования гало в ядре

- 1. Небольшая (менее 2 МэВ) энергия отделения нуклона S_n
- Орбитальное квантовое число *l* = 0, 1

s – и р-состояния валентного нуклона

- Увеличенное сечение реакции О_R при взаимодействии с мишенью, большой радиус R_m
- 4. Узкое импульсное распределение (около 50 МэВ/с) фрагментов при развале ядра
- 5. Большое сечение реакции отделения нуклона σ_{-n}
- Отношение радиуса гало к радиусу кора R_h/R_c ≥ 2. Критерий предложен теоретиками. Измерения проведены в основном (IKAR Collaboration) в GSI

 $AR_{m}^{2} = A_{c}R_{c}^{2} + A_{h}R_{h}^{2}$

Ширина импульсного распределения фрагментов при выбивании одного нейтрона

E.Sauvan et al. (2004)

Изотопы углерода ^{15,16,17}С

Противоречие результатов Энергия отделения одного нейтрона Sn, для

- 14C 8.18 MeV
- 15C 1.22 MeV
- 16C 4.25 MeV
- 17C 0.73 MeV
- 18C 4,18 MeV
- 19C 0.58 MeV

Анализ изотопов ¹⁴⁻¹⁹С. Сечение выбивания одного нейтрона и ширина импульсного распределения остающегося фрагмента. Rodriguez-Tajes et al. (2010)

Распределение плотности материи для ^{15,16,17,19} С, полученное из σ_R

C. Wu et al. / Nuclear Physics A 739 (2004) 3–14

Гало структура ¹⁷С получена из σ_R при E = 79 A MэB, Wu (2004). ¹⁶С при E = 83 A MэB, Zheng (2002). ^{15,17,19}С при E = 950 A MэB, в ¹⁷С гало нет, Ozawa (2001). Радиусы протонных R_р и материи R_m распределений изотопов углерода

R_p получено: из измерений
 σ_{CC} (черные точки), из данных
 по рассеянию электронов
 (синие точки)

R_m – анализ старых данных по σ_I с учетом полученных значений R_p (белые точки)

R.Kanungo et al. 2016

Распределение плотности материи в ядре ¹⁶С

Существование гало в ядре впервые было определено по увеличенному значению радиуса материи Rm.

Измерение о₁ при низких энергиях T.Zheng et al. (2002)

Результаты работы японской группы (H.Du et al. 2017)

σ_R при энергии 40 – 140 МэВ/нуклон

Совместный анализ имеющихся данных

Гало ядра

I. Tanihata et al. / Progress in Particle and Nuclear Physics 68 (2013) 215-313

														_					
							²⁰ Na	²¹ Na	²² Na	²³ Na	²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² N
					¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	24 Ne	²⁵ Ne	²⁶ Ne	27 Ne	28Ne	²⁹ Ne	³⁰ Ne	³¹ N
						¹⁷ F	¹⁶ F	¹⁹ F	²⁰ F	²¹ F	²² F	23F	²⁴ F	²⁵ F	²⁶ F	²⁷ F		²⁹ F	
		-	¹³ 0	¹⁴ 0	¹⁵ 0	160	170	180	¹⁹ 0	200	²¹ 0	220	²³ O	240					
	Ĩ		¹² N	¹³ N	14M	15N	¹⁶ N	¹⁷ N	¹⁸ N	¹⁹ N	²⁰ N	²¹ N	²² N	²³ N					
	°C	10 C	11C	11 C	13C	14C	⁻¹⁵ C	¹⁶ C	¹⁷ C	¹⁸ C	¹⁹ C	20C		²² C				I	1
	₿B		10B	11B	¹² B	13B	¹⁴ B	¹⁵ B		¹⁷ B		¹⁹ B			1				
	⁷ Be		°Be	¹ [®] Be	¹¹ Be	¹² Be		¹⁴ Be											
	۴Li	"Li	*Li	9Li		¹¹ Li													
He		6He		°He															

Ядро ⁸В

Астрофизика.

- ⁸В источник нейтрино высоких энергий
- ⁷Be(p,γ)⁸B ⁸B \rightarrow ⁸Be^{*} + e^+ + v_e ⁸Be^{*} \rightarrow 2 α

Ядерная физика.

- Протонное гало ⁸В, ¹²N, ¹⁷Ne
- Энергия отделения нейтрона S_n = 0.138 МэВ

Узкое импульсное распределение фрагментов ⁷Ве (91МэВ/с)

Кластерная трехчастичная модель Григоренко и др. $(\alpha + {}^{3}\text{He} + p)$ дает отношение $R_{h}/R_{c} = 1.75$

Радиус распределения плотности материи для изотопов бора

The cross – Experiment S 358, the triangle – Fan (2015), the circles – Ozawa (2001), the squares – Liatard (1990), the diamonds – Estrade (2014)

Схема экспериментальной установки

Измеряется дифференциальное сечение do/dt упругого pA рассеяния в инверсной кинематике

$$d\sigma/dt = dN/(dt M n \Delta L)$$

 $-t = 2mT_R$, или $-t = p^2 \theta^2$

Экспериментальная установка с детектором ядер отдачи ИКАР

Абсолютные дифференциальные сечения упругого р⁸В и р⁷Ве рассеяния

Распределение плотности материи в ⁷Ве и ⁸В

⁸B → ⁷Be + p ⁷Be → ⁴He + (p + p + n) Радиус кора ядра ⁸B меньше радиуса распределения плотности материи свободного ядра ⁷Be

Сравнение результатов исследования R_m для ядра ⁷Ве

Сравнение распределения плотности материи в зеркальных ядрах ⁸В и ⁸Li

Радиус материи R_m ядер ⁸В и ⁸Li (в фм)

	Experim	ent	Theory				
⁸ B		⁸ Li	⁸ B	⁸ Li			
2.38(4)	[10]	2.37(2)[10]	2.740	2.531	[27]		
2.43(3)	[12]	× /	2.57	2.45	[28]		
2.50(4)	[11]		2.73	2.64	[29]		
2.55(8)	[13]		2.56	2.44	[30]		
2.45(10)	[14]		2.59	2.38	[31]		
2.61(8)	[15]	2.39(5) [15]	2.627	2.515	[32]		
2.58(6)	this work	2.50(6) [22]	2.57	2.54	[33]		

Определение величины зарядового радиуса R_{ch} в ядре ⁸В

В предположении, что в ядре ⁸В R_n = R_c = 2.25(3) фм, и учитывая $AR_m^2 = ZR_p^2 + NR_n^2$ R_m = 2.58(6) фм R_p = 2.76(9) фм, R_{ch} = 2.89(9) фм

В нейтроноизбыточных ядрах ¹²Ве,¹⁵С, ¹⁶С можно считать, что R_p = R_c. Получены значения R_p (фм)

	ИКАР	другі		
¹² Be	2.36(6)	2.386(16)	лазерная	спектроскопия
¹⁵ C	2.41(2)	2.37(3)	σ_{cc}	
¹⁶ C	2.39(6)	2.40(4)	σ_{cc}	

Величина радиуса распределения плотности протонов R_р в изотопах бора

Результаты, полученные для ⁸В

	$R_{\rm m}, ({\rm fm})$	$R_{\rm p},({\rm fm})$	$R_{\rm n},~({\rm fm})$	Reference
	2.58(6)	2.76(9)	2.25(3)	this work ^a
	2.38(4)	2.45(5)	2.27(4)	Tanihata 1988
	2.43(3)	2.49(3)	2.33(3)	Obuti 1996
$Experiment^{\S}$	2.50(4)	_	_	Al-Khalili 1996
	2.55(8)	2.76(8)	2.16(3)	Negoita 1996
	2.45(10)	2.53(13)	2.31(5)	Fukuda 1999
	2.61(8)	_	_	Fan 2015
	2.71	2.98	2.20	Minamisoto 1992
	2.57	2.74	2.25	Csótó 1993
	2.73	2.88	2.46	Baye 1994
	2.56	2.73	2.24	Varga 1995
	2.507	2.68	2.19	Fayans 1995
	2.68	2.92	2.21	Brown 1996
	2.59	2.75	2.30	Grigorenko 1998
	2.494	2.654	2.202	Patra 1998
Theory	2.627	2.861	2.181	Kitagawa 1999
	2.57	2.73	2.27	Dhiman 2005
	2.50	2.64	2.24	Furutachi 2009
	2.367	2.537	2.052	Wang 2009
	2.35	2.48	2.11	Pastore 2013
	2.262	2.373	2.062	Henninger 2015

Публикация в Physics Letters B. Experiment S 358

Physics Letters B 780 (2018) 200-204

Halo structure of ⁸B determined from intermediate energy proton elastic scattering in inverse kinematics

G.A. Korolev^{a,*}, A.V. Dobrovolsky^a, A.G. Inglessi^a, G.D. Alkhazov^a, P. Egelhof^b, A. Estradé^b, I. Dillmann^b, F. Farinon^b, H. Geissel^b, S. Ilieva^b, Y. Ke^b, A.V. Khanzadeev^a, O.A. Kiselev^b, J. Kurcewicz^b, X.C. Le^b, Yu.A. Litvinov^b, G.E. Petrov^a, A. Prochazka^b, C. Scheidenberger^b, L.O. Sergeev^a, H. Simon^b, M. Takechi^b, S. Tang^b, V. Volkov^b, A.A. Vorobyov^a, H. Weick^b, V.I. Yatsoura^a

^a Petersburg Nuclear Physics Institute, National Research Centre Kurchatov Institute, Gatchina 188300, Russia ^b GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

ARTICLE INFO

ABSTRACT

Article history: Received 9 January 2018 The absolute differential cross section for small-angle proton elastic scattering on the proton-rich ⁸B nucleus has been measured in inverse kinematics for the first time. The experiment was performed

Experiment S 358. Дифференциальные сечения упругого рассеяния протонов на ядрах углерода

Распределение плотности материи для изотопов углерода (Experiment S 358)

Summary of preliminary results obtained in the present experiment. The values R_m , R_c and R_v denote the rms radii of the matter, core and valence nucleon(s) distributions, κ is the ratio R_v/R_c

Isotope	Composition	$R_{\rm m}$, fm	$R_{\rm c}$, fm	$R_{\rm v}$, fm	$\kappa = R_{\rm v}/R_{\rm c}$
¹² C	_	2.37(4)	_	_	_
¹⁵ C	$^{14}C + n$	2.59(5)	2.41(2)	4.36(38)	1.81
¹⁶ C	$^{14}C + 2n$	2.72(6)	2.39(6)	4.45(26)	1.86
¹⁷ C	$^{16}C + n$	2.66(4)	2.55(2)	3.99(48)	1.56
⁷ Be	⁴ He + ³ He	2.42(4)	1.85(14)	3.00(11)	1.62
⁸ B	7 Be + <i>p</i>	2.58(6)	2.25(3)	4.24(25)	1.88

Результаты измерения изотопов 15,16,17С

R_p получено: из измерений σ_{cc} (черные точки), из данных по рассеянию электронов (синие точки).

Данная работа – <mark>оранжевые точки</mark>

R_m – анализ старых данных по
 σ_I с учетом полученных
 значений R_p (белые точки).
 Данная работа – красные квадраты

R.Kanungo et al. 2016

Сравнение результатов измерения распределения плотности в ¹⁶С

Структура ядра ¹⁶С

Возможна различная форма деформации для протонов и для нейтронов.

Y. Kanada- En'yo 2005

FIG. 4. Schematic figures for intrinsic deformations of the proton and neutron densities. (a) The oblate proton and prolate neutron shapes in ¹⁶C, and (b) the oblate proton and oblate neutron densities

Результаты эксперимента

- 1. Измерены дифференциальные сечения упругого рассеяния протонов на ядрах ⁸В, ⁷Ве, ^{15,16,17}С.
- Определена количественная характеристика гало в ядре ⁸В R_h/R_c = 1.88.
- 3. Показано, что размер ⁷Ве кора в ядре ⁸В меньше размера свободного ядра ⁷Ве.
- 4. Найдены зарядовые радиусы ⁸В, ¹⁵С и ¹⁶С.
- 5. Определен размер гало в ядре ¹⁵С.
- 6. Получен большой скин в ядре ¹⁶С (ΔR = 0.51(11) фм).
- 7. Подтверждено отсутствие гало в ядре ¹⁷С.