Исследования рождения К-мезонов в нуклоннуклонных и нуклон-ядерных столкновениях на спектрометре ANKE (FZ-Juelich, Германия)

С.Г.Барсов

- 1. Ускоритель COSY (до 2015 г.)
- 2. Спектрометр ANKE. Выделение *К* + -мезонов.
- 3. Флагманский эксперимент: $p A \rightarrow K + X$
- 4. Спектрометр ANKE. Выделение $K + K^{-}$ пар.
- 5. Процессы $p A \rightarrow K + K X$
- 6. Процессы $p N \rightarrow K + K X$
- 7. Заключение

Review

The legacy of the experimental hadron physics programme at
COSYContents7.6 $pp \rightarrow K^0 p \Sigma^+$

C. Wilkin^a

1	Inte	advetion	1
2	Facilities		
	7 aci	The COSV machine	2
	2.1		2
	2.2	Principal installations	3
	2.3	Targets and equipment	10
0	2.4	Technical experiments	13
3	Nucleon-nucleon elastic scattering		
	3.1	Proton-proton elastic scattering	16
	3.2	Neutron-proton elastic scattering	22
4	Single non-strange meson production in nucleon-		
	nucl	eon collisions	26
	4.1	Phenomenological description	26
	4.2	Hard bremsstrahlung in proton-proton scattering	27
	4.3	Single pion production in nucleon-nucleon colli-	
		sions	29
	4.4	η production in proton-proton collisions $\ . \ . \ .$	34
	4.5	η production in proton-neutron collisions	36
	4.6	ω production in proton-proton scattering	37
	4.7	η' production in proton-proton scattering	38
5	Two-pion production in nucleon-nucleon collisions .		39
	5.1	Two-pion production in proton-proton collisions	39
	5.2	Two-pion production in neutron-proton collisions	41
6	Inclusive strangeness production		43
	6.1	The $pp \to K^+ X^+$ reaction	43
	6.2	Hypernuclei lifetime measurements	43
	6.3	Inclusive K^+ production on nuclei	44
7	Hyperon production		
·	7.1	The $pp \to K^+ pA$ and $pp \to K^+ p\Sigma^0$ reactions	45
	7.2	Differential distributions	47
	7.3	Polarization and the <i>An</i> scattering length	48
	7.4	The $A: \Sigma$ cusp effect	50
	7.5	$nn \rightarrow K^+ n \Sigma^+$	51
	1.0	$pp \rightarrow n n \Delta$	01

	7.6 $pp \to K^0 p \Sigma^+$	52	
	7.7 The production of heavy hyperons	52	
	7.8 Pentaquarks	53	
	7.9 Hyperon production in proton-neutron collisions	54	
8	Kaon pair production		
	8.1 Kaon pair production in nucleon-nucleon collisions	55	
	8.2 $pp \rightarrow pp \phi$ and $pn \rightarrow d\phi$ reactions	59	
	8.3 $pA \to K^+K^-X$ and $pA \to \phi X$	59	
9	The $pd \rightarrow {}^{3}\text{He} X^{0}({}^{3}\text{H} X^{+})$ family of reactions	61	
	9.1 $pd \rightarrow {}^{3}\text{He}\pi^{0}$ and $pd \rightarrow {}^{3}\text{H}\pi^{+}$	61	
	9.2 $pd \rightarrow {}^{3}\mathrm{He}\eta$	62	
	9.3 The $pd \rightarrow {}^{3}\text{He}\pi^{+}\pi^{-}$ reaction	67	
	9.4 The $pd \to {}^{3}\text{He}K^{+}K^{-}(\phi)$ reactions	69	
10	The $dd \rightarrow {}^{4}\text{He} X^{0}$ family of reactions	70	
	10.1 The $dd \rightarrow {}^{4}\text{He}\eta$ reaction	71	
	10.2 The $dd \rightarrow {}^{4}\text{He}\pi^{0}$ reaction and charge symmetry	72	
11	Rare decays of η and π^0 mesons	73	
	11.1 η decays	73	
	11.2 Dark photons	74	
12	Future prospects	75	
13	Conclusions	77	
1000	and provide a statement with the set of the set	0.000	

1 Introduction

At the end of 2014 the experimental priorities of the Institut für Kernphysik (IKP) Jülich switched from the study of hadronic reactions to precision measurements that are more in keeping with current particle physics. Since many interesting results had been found in the field of hadronic physics over the twenty years of operation of the laboratory's COoler SYnchrotron COSY, it is clearly appropriate to true to describe some of these phenomeno in the form

Ускоритель COSY (FZ-Juelich, Германия)

COoler SYnchrotron

•Поляризованный/неполяризованный пучок p/d

с импульсом 0.27 – 3.70 GeV/c

• Электронное (<0.6GeV/c) и стохастическое

(1.5-3.7GeV/c) охлаждение: Δр/р ~ 10⁻⁵

• Использование внутреннего (I ~ 6·10¹⁰) или

выведенного (I ~ 6·10⁹) пучка

Спектрометр ANKE

Спектрометр АNKE: Выделение К⁺-мезонов (Концепция В.П.Коптева)

рА → К⁺ Х : массовая зависимость сечений в подпороговом рождении

рА → K⁺ X : потенциал K⁺ в ядерной среде

M.Nekipelov et.al, Phys.Lett. B 540, 207(2002)

U_C (кулоновский потенциал)

 $U_{C} + V_{K} = +20 MeV$

 $U_{C} + V_{K} = +40 MeV$

CBUU transport model : отношение сечений рождения Кмезонов с малыми импульсами позволяет уточнить величину потециала в ядерной среде.

Сравнение с данными ANKE

 $V_{\rm K}$ = +(20 +/- 2.5)MeV

рА → K⁺ K⁻ X : выделение пары

Надежное выделение К⁺ в PD позволяет идентифицировать К⁻ в ND по разнице времени пролета ∆t(PD-ND).

рА → K⁺ K⁻ X : потенциал K⁻ в ядерной среде

Yu.Kiselev et.al, Phys.Rev. C 92, 065201(2002)

E.Ya.Paryev et al. J.Phys.G:Nucl.Part..Phys 42, 075107(2015)

рА→ фХ→ К⁺ К⁻ Х : модификация массы ф-мезона

A.Polyanskyi et.al, Phys.Lett.B 695, 74 (2011)

При <P $_{\phi}$ > = 1.1GeV/c Γ_{ϕ} = (73 +/- 14) MeV/c²

$pA \rightarrow \phi X \rightarrow K^+ K^- X$:зависимость от импульса ϕ -мезона

M.Hartmann et.al, Phys.Rev.C 85, 035206 (2012)

рN→ K⁺ K⁻ X : идентификация реакций

$pN \rightarrow \phi X$: полные сечения и проверка OZI-rule

M.Hartmann et.al, **Phys.Rev.Lett. 96**, 242301 (2006) Y.Maeda et.al, **Phys.Rev.Lett. 97**, 142301 (2006)

Модельный расчет для pp канала (L.P.Kaptari, B.Kampfer, EPJ A23, 291(2005)) содержит нарушение OZI-rule в вершине $\pi\rho \rightarrow \omega(\phi)$

рр \rightarrow K⁺ K⁻ X : исследования FSI

Enhancement Factor

0.5

0.0

Q.J.Ye et al., Phys.Rev.C 85, 035206(2012) Дифф. сечения искажены влиянием FSI фоновой реакции $pp \rightarrow pp \{K^+K^-\}_{non-\phi}$

Q.J.Ye et al., Phys.Rev.C 87, 065203(2013) Описание реакции $pp \rightarrow pp \{K^+ K^-\}_{non-\phi}$ Фазовый объем (ФО) + KppFSI + KKFSI

KppFSI:
$$F_{K^-pp} = F_{pp}(q_{pp}) \times F_{K^-p}(q_{K^-p_1}) \times F_{K^-p}(q_{K^-p_2})$$

Заключение

- 1 Измерены сечения рождения К⁺ мезонов на ядрах С, Сu, Ag и Au при энергиях протонного пучка 1.0, 1.5, 1.75 и 2.3 ГзВ. Показано доминирование 2-х ступенчатых процессов в подпороговом рождении. Уточнена величина потенциала К⁺ в ядерной среде.
- Измерены сечения рождения пары К+К- на тех же ядрах. Анализ данных проведен в рамках различных транспортных моделей. Полученные результаты показывают наличие существенной импульсной зависимости ширины ф – мезона в ядерной среде.
- Впервые измерены полные и дифференциальные сечения рождения φ мезона около порога в протон-протонных и протон-нейтронных столкновениях. Отношения полных сечений рождения Φ и ω мезонов при одинаковых Q в 6 раз превышает величину R_{OZI}. Интерпретация результата зависит от детального теоретического анализа механизмов рождения.
- Впервые проведены высокостатистические измерения процесса pp → ppK+K- около порога. Детально исследованы эффекты каон-протонного и каон-антикаонного взаимодействий при малых относительных импульсах. Измерен модуль эффективной длины К-р рассеяния.