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Jet quenching 

RAA > 1 – enhancement 

RAA = 1 – no modification 

RAA < 1 – suppression 
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Elliptic flow (v2) 
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Flow 
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Geometry engineering and energy scan 

        

         geometry scan 

        energy scan (d+Au) 
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Geometry engineering – charged hadrons 

 v2 & v3 for charged hadrons in central p+Au, d+Au, 3He+Au at sNN = 200 GeV 

 v2 (
3He+Au) ~ v2 (d+Au) > v2 (p+Au) 

 v3  (
3He+Au) > v3 (d+Au) 

 Geometry engineering is a unique capability of the RHIC 
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Geometry engineering – v2 model comparison 

• SONIC:  
• MC Glauber initial conditions 

• 2+1d Hydro evolution, /s = 0.08 
• Cooper-Frye hadronization at T = 170 MeV 

• Hadronic rescattering (B3D package) 

• Super SONIC: SONIC + pre-equilibrium flow 

• AMPT (a-multiphase-transport model): 
• MC Glauber initial conditions 

• Strings melt to partons  

• Partonic transport (partonic cross section part = 1.5 mb) 
• Haronization - parton coalescence 

• Hadronic rescattering (ART package) 
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  v2 & v3 well described by hydrodynamics (as well as spectra) 

  System dependence described by hydro 

Geometry engineering – v2/v3 model comparison 

• iEBE-VISHNU: 
• MC Glauber initial conditions 

• 2+1d Hydro evolution starting at  = 0.6 fm/c, /s = 0.08 
• Hadronization at T = 155 MeV 

• Hadronic rescattering (UrQMD 3.4 package) 
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 Mass ordering for v2 is observed 

 Ordering is more prominent in d/3He+Au 

Geometry engineering – identified hadrons 
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Geometry engineering – v2 model comparison 

 Mass ordering at 

low pT is well 

described by hydro 

and AMPT models 

 AMPT is not 

adequate at higher 

pT (B/M) 

 

 Mass ordering at low pT is not sensitive to hadronic rescattering in hydro models 
and is totally driven by rescattering in AMPT model 

 Mass ordering at higher pT is driven by hadronic rescattering in hydro models and 
by partonic coalescence in AMPT 

Hadronic rescattering models 
iEBE-VISHNU:           UrQMD 
SONIC:                    B3D 
AMPT:                      ART 
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Geometry engineering – nq scaling 

 Measurements for identified hadrons follow the nq scaling within uncertainties 

 Better agreement in d/3He+Au collisions 
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1. Final State Anisotropy = Initial Geometry + Final State Interactions 

2. Mechanisms of transformation of initial geometry in final state momentum 

anisotropy is not unique 

3. The mass ordering, nq-scaling show similarity to A+A and indicate a 

collective behavior in small systems 

Geometry engineering - summary 
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  How does the flow depend on collision energy?  

  Significant v2 signal at all 4 energies (20, 62.4, 39, 19.6 GeV)! 

 Results are not corrected for non-flow contributions (neither included in 

systematic uncertainties) 

Energy scan – charged hadrons 
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 Hydro in good agreement at 200 & 62.4 GeV; under predicts data at 39 & 19.6 GeV 

Energy scan – v2 model comparison 

  Comparison to AMPT:  
 AMPT v2 {Parton Plane}: ← Flow 

  AMPT v2 {EP}: ← Flow ⊗ Non-flow   

        Strong v2 signal even at 19.6 GeV … interpretation is complicated by non-flow 
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Energy scan – v2 model comparison 

 AMPT well describes rapidity 

dependence at central and 

forward rapidity 

 Measured signal is inconsistent 

with non-flow only! (according 

to AMPT) 

 Non-flow is greatest near the 

region where the 
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Energy scan – summary 

1. Evidence of collectivity even at 19.6 GeV 

2. Interpretation of results is complicated by non-flow 
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Energy loss 
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Nuclear modification, RAA in p/d/3He+Au 

 Enhancement at pT ~ 5 GeV/c, system size dependence 

 Is there a hint of  suppression at high pT? 
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RAA in p/d/3He+Au, centrality dependence 
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RAA in p/d/3He+Au, centrality dependence 
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RAA in p/d/3He+Au, centrality dependence 
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Nuclear modification, RAA in p/d/3He+Au 

 RAA
h ~ RAA
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 Strong evidence for initial geometry translating to hadronic momentum  

     anisotropy through final state interactions 

 Both hydro and AMPT similarly describe v2 and mass splitting at low pT  

     but the origin of the effect is quite different 

 Energy loss is not yet conclusive 

Conclusions 
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BACKUP 
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Model Comparison 

28 

• SONIC:  
• MC Glauber initial conditions 

• 2+1d Hydro evolution, /s = 0.08 
• Cooper-Frye hadronization at T = 170 MeV 

• Hadronic rescattering (B3D package) 

• Super SONIC: SONIC + pre-equilibrium flow 

• iEBE-VISHNU: 
• MC Glauber initial conditions 

• 2+1d Hydro evolution starting at  = 0.6 fm/c, /s = 0.08 
• Hadronization at T = 155 MeV 

• Hadronic rescattering (UrQMD 3.4 package) 

• Bozek – Broniowski: 
• MC Glauber initial conditions 

• 3+1d Hydro evolution 

• AMPT 
• MC Glauber initial conditions 

• Strings melt to partons  

• Partonic transport (partonic cross section part = 1.5 mb) 
• Haronization - parton coalescence 

• Hadronic rescattering (ART package) 
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PHENIX setup 
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Relativistic Heavy-Ion Collided (RHIC) 

   :  

 p+p   ~ 1032 cm-2s-1 

 A+A ~ 1028 cm-2s-1 

      
     

    
 (NICA, FAIR) 
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Energy scan – v2 model comparison 

200 GeV 62 GeV 

39 GeV 
 v2(EP) in AMPT reproduces general shape 

of data 

 Non-flow contribution becomes significant 

in peripheral collisions and/or high pT 

 At lower collision energies v2(EP) in 

AMPT starts to underestimate v2, 

especially at high pT or peripheral 

collisions 


