

A Lamb-Shift Polarimeter for the BOB Experiment

27.11.2018

by Ralf Engels

JCHP / Institut für Kernphysik, FZ Jülich

Part 1: The Lamb-shift polarimeter and his components

Part 2: How to identify the single hyperfine-substates with a Lamb-shift Polarimeter

COSY (Cooler Synchrotron)

 p, \vec{p}, d, \vec{d}

with momenta up to 3.7 GeV/c

- internal experiments with the circulating beam
- external experiments with the extracted beam

The Rabi Apparatus

The Tools: Atomic Beam Source (ABS)

- 1. Dissoziator: $H_2 \rightarrow 2 H$
- 2. Nozzle Cooling: ~ 70 K
- 3. Stern-Gerlach Magnets (up to 1.7 T)
- 4. Transition unit
- 5. Stern-Gerlach Magnets
- 6. Transition Unit
- 7. Storage Cell

PIT @ ANKE/COSY

Main parts of a PIT:

- Atomic Beam Source
 - Target gas

hydrogen or deuterium

- H beam intensity (2 hyperfine states)
 8.2 · 10¹⁶ atoms / s
- Beam size at the interaction point

 $\sigma = 2.85 \pm 0.42 \text{ mm}$

- Polarization for hydrogen atoms $P_Z = 0.89 \pm 0.01$ (HFS 1) $P_Z = -0.96 \pm 0.01$ (HFS 3)
- Lamb-Shift Polarimeter
- Storage Cell

ABS and Lamb-shift polarimeter

The experimental Setup

The Lamb-shift Polarimeter

The Breit-Rabi Diagram: 1S_{1/2}

Breit and Rabi

10

$$\chi = 1 \longrightarrow B_{c} \sim \frac{\Delta E_{HFS}}{2\mu_{B}} = 50.7 \text{ mT}$$

Zeeman region
|F, m_F> B ->0 < B c < B -> ∞ Paschen-Back region
|m_J, m_I>
1 |1, +1> ↔ |m_J = +1/2, m_I = +1/2 > ↔ |+ 1/2, +1/2 >
2 |1, 0> ↔ $\frac{1}{\sqrt{2}} [\sqrt{1+a} |+1/2, -1/2 > +\sqrt{1-a} |-1/2, +1/2>] ↔ |+ 1/2, -1/2 >$
3 |1, -1> ↔ |m_J = -1/2, m_I = -1/2 > ↔ |- 1/2, -1/2 >
4 |0, 0> ↔ $\frac{1}{\sqrt{2}} [\sqrt{1-a} |+1/2, -1/2 > -\sqrt{1+a} |-1/2, +1/2>] ↔ |- 1/2, +1/2 >$
a (B) = $\frac{B/B_{c}}{\sqrt{1+(B/B_{c})^{2}}}$
P(HFS 4) = a(B) P(HFS 2) = - a(B)

The Ionizer

The Ionizer

The Wienfilter

ABS and Lamb-shift polarimeter

The Wienfilter

Wienfilter function of the protons in the LSP

The Wien filter

The Cesium Cell

The Cesium Cell

The Preservation of the Polarization in the Cesium Cell

The Cesium Cell

Calibration of the mag. Field in the Center of the Cesium Cell

The Spinfilter

1.614

The Quenching Chamber

Photomultiplier

The Lyman-α Spectra

Lamb-Shift Polarimeter

The Lamb-shift polarimeter can measure:

- 1.) The nuclear polarization of protons/deuterons (E ~ keV)
- 2.) The occupation numbers of the HFS of H/D atoms
- 3.) The nuclear polarization of H_2^+ , D_2^+ and HD^+ molecular ions
- 4.) The nuclear polarization of H_2 , D_2 and HD molecules
- 5.) The nuclear polarization of H_3^+ ions (D_3^+ not tested up to now)
- 6.) The nuclear polarization of H⁻, D⁻ ???

(Surface: Gold / T = 80 K / B = 0.528 T / E = 2 keV)

35

The Lamb-shift polarimeter can measure:

- 1.) The nuclear polarization of protons/deuterons (E ~ keV)
- 2.) The occupation numbers of the HFS of H/D atoms
- 3.) The nuclear polarization of H_2^+ , D_2^+ and HD^+ molecular ions
- 4.) The nuclear polarization of H_2 , D_2 and HD molecules
- 5.) The nuclear polarization of H⁻, D⁻ ???

6.) The nuclear polarization of H_3^+ ions (D_3^+ not tested up to now)

Summary

Lamb-shift polarimeter are used in different projects

- 1.) Polarized Target at ANKE/COSY (in collaboration with PNPI)
- 2.) Polarized Proton/Deuteron Source at COSY
- 3.) Production of hyperpolarized Molecules (in collaboration with PNPI)
- 4.) Measurement of the Helicity of the \overline{v}_{e} (BOB/Tech. Uni. Munich)
- 5.) Polarized Molecular Beam Source (BINP/Novosibirsk)
- 6.) Spin Dependence of the d-d Fusion reactions (PNPI)
- 7.) New Type of Laser-pumped Polarized p/d Source (starting)
- 8.) Measurement of the weak coupling constants (design studies)

The Bound Beta Decay (BOB)

Sov. J. Nucl. Phys. 31 (1980)

Helicity of the Antineutrino: right-handedness

ט	n	р	e⁻	W _i (%)	F	mF	HFS
-	←	←	\rightarrow	44.14	0,1	0	α ₂ , β ₄
-	←	\rightarrow	←	55.24	0,1	0	β_4, α_2
←	\rightarrow	\rightarrow	\rightarrow	0.62	1	1	α ₁
\rightarrow	←	←	←	0	1	-1	β ₃
\rightarrow	\rightarrow	\rightarrow	←	0	0,1	0	β_4, α_2
\rightarrow	\rightarrow	\leftarrow	\rightarrow	0	0,1	0	α_2, β_4

- \rightarrow left handed admixtures ?
- \rightarrow scalar or tensor contributions to the weak force ?

The Hyperfine Substates

$$\begin{aligned} \mathbf{\alpha} \ 1: & |F = 1, m_F = +1\rangle = |m_J = 1/2, m_I = 1/2\rangle \\ \mathbf{\alpha} \ 2: & |1,0\rangle = \frac{1}{\sqrt{2}} \left[\sqrt{1+a} \, |+1/2, -1/2\rangle + \sqrt{1-a} \, |-1/2, +1/2\rangle \right] \\ \mathbf{\beta} \ 3: & |1,-1\rangle = |-1/2, -1/2\rangle \\ \mathbf{\beta} \ 4: & |0,0\rangle = \frac{1}{\sqrt{2}} \left[\sqrt{1-a} \, |+1/2, -1/2\rangle - \sqrt{1+a} \, |-1/2, +1/2\rangle \right] \end{aligned}$$

$$a_{(B)} = \frac{\frac{B}{B_c}}{\sqrt{1 + (\frac{B}{B_c})^2}} \qquad B_c = 6.34 \text{ mT}$$

 $\mathbf{B} \rightarrow \mathbf{0}$: $\mathbf{a} \rightarrow \mathbf{0}$

B → ∞: a → 1

The Hyperfine Substates

$$|m_{J}=+1/2, m_{I}-1/2> : \left(\frac{1+a}{2}\right) \alpha 2 \qquad V \quad \left(\frac{1-a}{2}\right) \beta 4$$
$$|m_{J}=-1/2, m_{I}=+1/2> : \left(\frac{1-a}{2}\right) \alpha 2 \qquad V \quad \left(\frac{1+a}{2}\right) \beta 4$$

<u>B ~ 0: (a = 0)</u>

 $|+1/2, -1/2> : 44,14 \% / 2 \alpha 2 44,14 \% / 2 \beta 4$ $|-1/2, +1/2> : 55,24 \% / 2 \alpha 2 55,24 \% / 2 \beta 4$ $49,69 \% \alpha 2 49,69 \% \beta 4$

B → ∞: (a = 1)

|+1/2, -1/2> : 44,14 % α2

|-1/2, +1/2> : 55,24 % β4₄₃

The Bound Beta Decay (BOB)

Reactor: FRM II

The Principle of a Sona Transition Unit

The ideal case:

The Magnetic Field of opposite Coils

Principle of a Sona Transition

Ideal Case: On Axis are no radial component of B

<u>Real Case</u>: $B_{rad.}(r) = (dB_{long.}/dr) \cdot r/2 \rightarrow induced$ Lamor-Precession

P. Sona, "A new method proposed to increase polarization in polarized ion sources of H⁻ and D⁻", Energia Nucleare, **14**(5), May 1967.

The Experimental Setup

The longitudinal Magnetic Field

Bachelor Thesis: Yuchen Gan, FH Aachen, University of Applied Science, Jülich Campus 5

µ-metall shieldings

The Magnetic Field at the Zero Crossing

Beam direction [cm]

Current in the Sona-Coils: 0.3 A

Gradient: 135 µT/cm

1. SF: α 1 -> Sona Transition -> 2. SF: α 1

Outline of the BOB Experiments

3 Steps are needed for the full experiment

1.) Verifying the rare neutron decay into a hydrogen atom

- $H_{1/2S} \rightarrow$ Argon cell to get $H^- \rightarrow$ velocity separation via:
 - counter field method
 - BN gates
 - mag. Spectrometer

2.) Measurement of the HFS ratio of $\alpha 1 \leftrightarrow \alpha 2$ and $\alpha 2 \leftrightarrow \beta 4$

 $H_{2S}(+ B \text{ Field}) \rightarrow \text{Spinfilter} \rightarrow \text{Identification of the meta. Atoms:}$ - Argon cell (+ acceleration) - Lyman- α photons - ?

3.) Measurement of the forbidden state β3

Measurement of the ratios $\alpha 2 \leftrightarrow \beta 3$ with SONA transition