Reissner-Nordström solution in tetrad representation as model for classical electron with finite action and total mass

S. I. Manaenkov
 Gatchina, April 10, 2018

- Gravitation and particle physics
- Reissner-Nordström solution
- Uniform coordinates
- Tetrad representation for gravitational field
- Action for gravitational and electromagnetic fields
- Equivalence principle for Reissner-Nordström solution
- Conclusions

Gravitation and Particle Physics

- Ratio of electrostatic and gravitational forces for two electrons
$\frac{\mathcal{F}_{\mathrm{el}}}{\mathcal{F}_{\mathrm{gr}}}=\frac{\mathrm{e}^{2}}{\mathrm{R}^{2}} / \frac{\mathrm{km}^{2}}{\mathbf{R}^{2}}=\frac{\mathrm{e}^{2}}{\mathrm{~km}^{2}}=4.2 \cdot 10^{42}, ; \frac{e}{\sqrt{k} m}=2.05 \cdot 10^{21}$
where $\mathrm{e}=4.8 \cdot 10^{-10}$ CGSE, $\mathrm{m}=9.11 \cdot 10^{-28} \mathrm{~g}, \mathrm{k}=6.67 \cdot 10^{-8} \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{c}^{-2}$.
- The gravitation field does not play any role in the elementary particle structure!

Nevertheless this statement could be wrong.

- Infinite electromagnetic mass of the electron
$m_{e m}=\frac{1}{c^{2}} \int \frac{\vec{E}^{2}}{8 \pi} d V=\frac{1}{c^{2}} \int \frac{e^{2}}{8 \pi R^{4}} 4 \pi R^{2} d R$,
$m_{e m} c^{2}=\int_{r_{c l}}^{\infty} \frac{e^{2} d R}{2 R^{2}}=e^{2} /\left(2 r_{c l}\right)=m c^{2}$.
where $r_{c l}=1.4 \cdot 10^{-13} \mathrm{~cm}$ is the classical electron radius.
- Gravitational interaction in Newtonian physics
$d U_{g r}=-\frac{k d m_{1} d m_{2}}{R_{12}}=-\frac{e^{4} k}{(8 \pi)^{2} c^{4} R_{12}} \frac{d V_{1}}{R_{1}^{4}} \frac{d V_{2}}{R_{2}^{4}}<0$.
$U_{g r} / \mathcal{E}_{e m} \sim-r_{e}^{2} / R_{c}^{2}, \quad$ where $r_{e}^{2}=k e^{2} / c^{4}, r_{e}=1.4 \cdot 10^{-34} \mathrm{~cm}$.
Gravitation can play important role in classic physics at $r \sim r_{e}$.
- Electromagnetic and gravitational field equations $F_{; k}^{i k}=\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{k}}\left\{\sqrt{-g} F^{i k}\right\}=0$ where $g=\operatorname{det}\left[g_{i k}\right]$. $R_{k}^{i}-\frac{1}{2} \delta_{k}^{i} R=\frac{8 \pi k}{c^{4}} T_{k}^{i}, \quad T_{k}^{i}=\frac{1}{4 \pi}\left\{-F^{i l} F_{k l}+\frac{1}{4} \delta_{k}^{i} F_{l m} F^{l m}\right\}$.
- Reissner-Nordström solution

Spherical coordinates: $x^{0}=c t, x^{1}=r, x^{2}=\theta, x^{3}=\varphi$. $F^{10}=-F^{01}=F_{10}=-F_{01}=E_{r}=\frac{e}{r^{2}}$, $T_{(e m) 0}^{0}=T_{(e m) 1}^{1}=-T_{(e m) 2}^{2}=-T_{(e m) 3}^{3}=\frac{e^{2}}{8 \pi r^{4}}, \quad T_{(e m) j}^{j}=0$. $g_{00}=1 / g^{00}=\Lambda \equiv 1-\frac{2 k m}{c^{2} r}+\frac{k e^{2}}{c^{4} r^{2}}=1-\frac{r_{g}}{r}+\frac{\left(r_{e}\right)^{2}}{r^{2}}$, $r_{g}=\frac{2 k m}{c^{2}}=1.35 \cdot 10^{-55} \mathrm{~cm}, R_{P l}=1.6 \cdot 10^{-33} \mathrm{~cm}$, $r_{e}^{2}=\frac{k e^{2}}{c^{4}}, \quad r_{e}=1.38 \cdot 10^{-34} \mathrm{~cm}, r_{e} \gg r_{g}$.

$$
g_{r r} \equiv g_{11}=1 / g^{11}=-1 / \Lambda=-\left[1-\frac{2 k m}{c^{2} r}+\frac{k e^{2}}{c^{4} r^{2}}\right]^{-1}
$$

$$
g_{\theta \theta} \equiv g_{22}=1 / g^{22}=-r^{2}, \quad g_{\varphi \varphi}=g_{33}=1 / g^{33}=-r^{2} \sin ^{2} \theta
$$

Uniform coordinates

- Relation between radii r and $\rho\left(r \geq 0, \rho \geq \rho_{\text {min }}\right)$ $r=\rho \mathcal{D}(\rho)$,
$\mathcal{D}(\rho)=1+\frac{r_{g}}{2 \rho}-\frac{r_{0}^{2}}{4 \rho^{2}} \equiv\left[1+\frac{r_{g}}{4 \rho}\right]^{2}-\frac{r_{e}^{2}}{4 \rho^{2}}$,
$\mathcal{N}(\rho) \equiv \frac{d r}{d \rho}=1+\frac{r_{0}^{2}}{4 \rho^{2}}>0, \quad r_{0}^{2}=r_{e}^{2}-r_{g}^{2} / 4$.
- Uniform coordinates $\rho^{0}=x^{0}, \rho^{1}=\rho_{x}, \rho^{2}=\rho_{y}, \rho^{3}=\rho_{z}$ $\rho_{x}=\rho \sin \theta \cos \varphi, \quad \rho_{y}=\rho \sin \theta \sin \varphi, \quad \rho_{z}=\rho \cos \theta$.
- Spacetime interval for Reissner-Nordström (RN) solution $d s^{2}=g_{i k} d \rho^{i} d \rho^{k} g_{00}=\frac{\mathcal{N}^{2}}{\mathcal{D}^{2}}, g_{\mu \mu}=-\mathcal{D}^{2}, \mu=x, y, z$. $=\frac{\mathcal{N}^{2}}{\mathcal{D}^{2}}\left(d \rho^{0}\right)^{2}-\mathcal{D}^{2}\left(d \rho_{x}^{2}+d \rho_{y}^{2}+d \rho_{z}^{2}\right)$. $\mathcal{D}(\rho)=0, \quad \rho=\rho_{\text {min }}=r_{e} / 2-r_{g} / 4$.

Tetrad representation for gravitational field

- Definition of tetrads and their properties

Basis of four unit mutually orthogonal four-vectors $h_{(a)}^{i}$ defined in every point of spacetime;
$a=0,1,2,3$ is the vector number,
$i=0,1,2,3$ denotes its contravariant spacetime component:
$h_{(a)}^{0}=h_{(a) t}, h_{(a)}^{1}=h_{(a) x}, h_{(a)}^{2}=h_{(a) y}, h_{(a)}^{3}=h_{(a) z}$.
$h_{(a) i}=g_{i k} h_{(a)}^{k}, \quad h_{(a)}^{i}=g^{i k} h_{(a) k}, \quad h_{(a) i} h_{(b)}^{i}=\eta_{a b}$.
$\mathrm{h}^{(a) i}=\eta^{a b} h_{(b)}^{i}, h_{(a)}^{i}=\eta_{a b} h^{(b) i}$,
$\eta^{a b}=\eta_{a b}=\operatorname{diag}(1,-1,-1,-1)$.

- Main properties

$$
\begin{aligned}
& h_{(a) i} h_{k}^{(a)}=g_{i k}, \quad h_{(a)}^{i} h^{(a) k}=g^{i k} \\
& g \equiv \operatorname{det}\left[\mathrm{~g}_{\mathrm{ik}}\right]=-|\mathrm{h}|^{2}, \quad|\mathrm{~h}|=\operatorname{det}\left[\mathrm{h}_{(\mathrm{a}) \mathrm{i}}\right] .
\end{aligned}
$$

Tetrad representation for gravitational field

- Tetrads for Reissner-Nordström solution

Nonzero components of tetrad four-vectors $h_{i}^{(a)}$ are:

$$
h_{(0) 0}=\frac{\mathcal{N}}{\mathcal{D}}, h_{(1) x}=h_{(2) y}=h_{(3) z}=\mathcal{D},
$$

$$
h_{0}^{(0)}=\frac{\mathcal{N}}{\mathcal{D}}, h_{x}^{(1)}=h_{y}^{(2)}=h_{z}^{(3)}=-\mathcal{D} .
$$

$$
g_{00}=h_{(a) 0} h_{0}^{(a)}=h_{(0) 0} h_{0}^{(0)}=h_{(0) 0} h_{(0) 0}=\frac{\mathcal{N}^{2}}{\mathcal{D}^{2}},
$$

$$
g_{x x}=h_{(a) x} h_{x}^{(a)}=h_{(1) x} h_{x}^{(1)}=-h_{(1) x} h_{(1) x}=-\mathcal{D}^{2},
$$

$$
g_{y y}=h_{(a) y} h_{y}^{(a)}=h_{(2) y} h_{y}^{(2)}=-h_{(2) y} h_{(2) y}=-\mathcal{D}^{2},
$$

$$
g_{33}=h_{(a) 3} h_{3}^{(a)}=h_{(3) 3} h_{3}^{(3)}=-h_{(3) z} h_{(3) z}=-\mathcal{D}^{2}
$$

$$
g_{i k}=0 \text { if } i \neq k,|h| \equiv \operatorname{det}\left[\mathrm{h}_{(\mathrm{a}) \mathrm{i}}\right]=\mathcal{N} D^{2} .
$$

- RN tetrads obey Euler-Lagrange equation
$\frac{\delta \mathcal{L}_{\text {tot }}}{\delta h_{p}^{(c)}}=\frac{\partial}{\partial \rho^{q}}\left\{\frac{\delta \mathcal{L}_{\text {tot }}}{\delta h_{p, q}^{(c)}}\right\}$, where $h_{p, q}^{(c)}=\frac{\partial h_{p}^{(c)}}{\partial \rho^{q}}$.

Action for gravitational and electromagnetic fields

- Lagrangian density for gravitation field

Einstein's theory: $\mathcal{L}_{g}=-\frac{R \sqrt{-g}}{2 \kappa}, \quad \kappa=\frac{8 \pi k}{c^{4}}$.
Since $R=-\kappa T_{(e m) s}^{s}=0$ the Hilbert-Einstein action $S_{g}=\frac{1}{c} \int \mathcal{L}_{g} d^{4} x=0$ if there are gravitational and electromagnetic fields only.

- Lagrangian density of electromagnetic field

Electromagnetic field action
$S_{e m}=\frac{1}{c} \int \mathcal{L}_{e m} d^{4} x=-\frac{1}{16 \pi c} \int F_{i k} F^{i k} \sqrt{-g} d^{4} x$.
For Reissner-Nordström solution,
$S_{e m}=\frac{1}{8 \pi} \int \vec{E}^{2} d V d t=\infty$.
The total action $S_{\text {tot }}=S_{g}+S_{e m}$ is meaningless
for RN solution in Einstein's theory.
For RN solution $\mathcal{L}_{g}^{\prime}=\frac{\sqrt{-g} g^{i k}}{2 k}\left[\Gamma_{i r}^{s} \Gamma_{k s}^{r}-\Gamma_{i k}^{r} \Gamma_{r s}^{s}\right]=0$ also.

Action for gravitational and electromagnetic fields

- Lagrangian density \mathcal{L}_{g} in tetrad representation

Moller's formula: $\mathcal{L}_{g}=\frac{|h|}{2 k}\left(h_{(a) ; l}^{k} h_{; k}^{(a) l}-h_{(a) ; k}^{k} h_{; l}^{(a) l}\right)$.

- Total Lagrangian density $\mathcal{L}_{t o t}=\mathcal{L}_{g}+\mathcal{L}_{e m}$ for RN solution $\mathcal{L}_{\text {tot }}=\frac{r_{0}^{2}}{\kappa \rho^{4}}, \quad r_{0}^{2}=r_{e}^{2}-r_{g}^{2} / 4, \quad r_{e}^{2}=\frac{k e^{2}}{c^{4}}, \quad r_{g}=\frac{2 k m}{c^{2}}, \quad \kappa=\frac{8 \pi k}{c^{4}}$.
- Total Lagrangian and action for RN solution
$\mathrm{L}_{t o t}=\int_{\rho \geq \rho_{\text {min }}} \mathcal{L}_{t o t} d^{3} \rho=4 \pi \frac{r_{0}^{2}}{\kappa \rho_{\min }}, \quad \rho_{\text {min }}=r_{e} / 2-r_{g} / 4$.
$L_{t o t}=\frac{e c^{2}}{\sqrt{k}}+m c^{2}, \quad S_{t o t}=\left(\frac{e c^{2}}{\sqrt{k}}+m c^{2}\right) t$.
Total Lagrangian and action are finite for RN solution in tetrad representation in spite of singularities of electromagnetic and gravitational fields at $\rho=\rho_{\text {min }}(r=0)$.

Equivalence principle for Reissner-Nordström solution

- Asymptotic behaviour of g_{00} at $\rho \rightarrow \infty(r \rightarrow \infty)$ $g_{00} \approx 1+2 \frac{\phi(\rho)}{c^{2}}=1-\frac{2 k m_{g r}}{c^{2} \rho}$, where $\phi(\rho)$ is Newtonian potential.
For RN solution $g_{00}=\frac{\mathcal{N}^{2}}{\mathcal{D}^{2}} \approx 1-\frac{r_{g}}{\rho}=1-\frac{2 k m}{c^{2} \rho}, m=m_{g r}$.
- Total energy-momentum pseudo-tensor and superpotential $T_{i}^{k}=\frac{\partial U_{i}{ }^{k l}}{\partial \rho^{l}}, P_{i}=\frac{1}{c} \int_{V} T_{i}^{0} d^{3} \rho=\frac{1}{c} \int_{\Sigma} U_{i}{ }^{0 \lambda} k_{\lambda} d \sigma$. $U_{i}{ }^{k l}=\frac{|h|}{\kappa}\left\{h_{(a)}^{k} h_{; i}^{(a) l}+\left(\delta_{i}^{k} h^{(a) l}-\delta_{i}^{l} h^{(a) k}\right) h_{(a) ; s}^{s}\right\}$.
For Reissner-Nordström solution $U_{0}{ }^{0 \lambda}=-2\left(\frac{\rho^{\lambda}}{\kappa \rho}\right) \frac{\mathcal{N}(\rho) \mathcal{D}^{\prime}(\rho)}{\mathcal{D}(\rho)}$.
Superpotential $U_{0}{ }^{0 \lambda}$ is infinite at $\rho=\rho_{\text {min }}$ since $\mathcal{D}(\rho)=0$, therefore expression for energy becomes meaningless.
- Superpotential $W_{i}{ }^{k l}(\rho)$ $W_{i}{ }^{k l}=|h|^{n} U_{i}{ }^{k l}$ for $n \geq 1$. The case $n=1$ is used.
For RN solution, $W_{0}{ }^{0 \lambda}=-2\left(\frac{\rho^{\lambda}}{\kappa \rho}\right) \mathcal{N}^{2} \mathcal{D}^{\prime} \mathcal{D}, W_{\mu}{ }^{0 \lambda}=0$.
Since $|h|(\rho)=\mathcal{N} \mathcal{D}^{2}=0$ when $\rho=\rho_{\text {min }}$, then $W_{i}{ }^{0 \lambda}(\rho) \rightarrow 0$ at $\rho \rightarrow \rho_{\text {min }}$.
If $|h|(\rho) \rightarrow|h|_{\infty}$ when $\rho \rightarrow \infty$, therefore $W_{i}{ }^{0 \lambda}(\rho) \rightarrow|h|_{\infty} U_{i}{ }^{0 \lambda}(\rho)$
$\tilde{P}_{i}=\frac{1}{c} \int_{\Sigma} W_{i}{ }^{0 \lambda} k_{\lambda} d \sigma=\frac{|h|_{\infty}}{c} \lim _{R \rightarrow \infty}\left\{\int_{\Omega_{R}} U_{i}{ }^{0 \lambda}\left(\frac{\rho_{\lambda}}{\rho}\right) d \sigma\right\}$.
$\tilde{P}_{i}=P_{i}|h|_{\infty}$. For RN solution $|h|_{\infty}=1, \tilde{P}_{i}=m c \delta_{i}^{0}$, hence $m_{\text {inert }}=m=m_{g r}$ (equivalence principle).
- It is possible to use the definition of the energy-momentum vector which does not loose its meaning for solutions with singular electromagnetic and gravitational fields.
- Classical electron is a system of electromagnetic and gravitational fields localized in a space region of a range $r_{e} \sim 10^{-34} \mathrm{~cm}$. It is described with the ReissnerNordström (RN) solution in the tetrad representation with parameters e and m equal to the experimental electron electrical charge and mass, respectively.
- The total Lagrangian density of this system and action are finite for the tetrad representation.
- The superpotential can be defined in such a way that it provides the finite total inert mass for the RN solution.
- The equivalence principle for the classical electron under discussion is fulfilled.
- There is no need in additional point-like particles having the charge e and any bare mass.
- Charge conjugation $(e \rightarrow-e, m \rightarrow m, \vec{E} \rightarrow-\vec{E}$, $g_{i j} \rightarrow g_{i j}$) of the solution for the electron gives the solution for the positron.
It has the same positive mass as the electron.

