

1

Observation of Higgs boson decay to b-quarks at ATLAS and CMS experiments

Victor Kim

- Motivation

- Width of Higgs boson decay to b-quarks in SM
- Status of Higgs boson decay to b-quarks before Summer 2018
- ATLAS & CMS: analysis with 2017 data
- ATLAS & CMS: combination with previous data
- Conclusions

based on

- ATLAS and CMS papers submitted in Aug. 24, 2018
- ATLAS and CMS presentations in Aug. 28, 2018 @LPCC CERN

Motivation

HV - 4 Fre F

十、平下

In the SM, the Higgs mechanism provides masses to bosons and fermions

- Higgs boson discovery in 2012 opens a whole new sector of the Lagrangian
- Yukawa couplings not required by EWSB
- \Rightarrow ad-hoc solution to generate fermion masses

Main questions to answer

- Is the SM structure of the Lagrangian correct ?
- Are the values of the couplings as predicted in the SM ?
- \Rightarrow Broad programme at the LHC

HEPD seminar, NRC KI - PNPI, 25 Sep. 2018

Victor Kim

Η

SM Higgs boson production @LHC

HEPD seminar, NRC KI - PNPI, 25 Sep. 2018

CMS

Higgs boson branching ratios The Higgs boson couples to mass

- \Rightarrow Many decay modes accessible at the LHC
- $\Rightarrow b \overline{b}$ largest BR \sim 58%
- \Rightarrow Coupling to $\gamma\gamma$ or gg through loops

${\rm H} \rightarrow b \bar{b}$ and Higgs boson couplings

- Total width not directly measurable at the LHC
 - ⇒ Only coupling ratios truly modelindependent
- Hypothesis of SM structure of the loops and no BSM decays
 - $\Rightarrow b\bar{b}$ largest BR: drives total width, thus measurements of absolute couplings
- If BSM particles allowed in loops and decays
- \Rightarrow Measuring $H \rightarrow b\bar{b}$ limits BSM branching fraction allowed

EXTLAS Higgs boson width to b-quarks upto N⁴LO

HEPD seminar, NRC KI - PNPI, 25 Sep. 2018

3 Victor Kim

Hbb @ATLAS & @CMS

7

H->bb searches @LEP

Physics Letters B 565 (2003) 61–75 Search for the Standard Model Higgs boson at LEP

ALEPH Collaboration¹ DELPHI Collaboration² L3 Collaboration³ OPAL Collaboration⁴ F The LEP Working Group for Higgs Boson Searches⁵

PHYSICS LETTERS B

HEPD seminar, NRC KI – PNPI, 25 Sep. 2018

HEPD seminar, NRC KI – PNPI, 25 Sep. 2018

Victor Kim

Searches for H->bb @LHC: challenges

 Inclusive Higgs boson production (2 b-jets in final state) overwhelmed by bkgs by many orders of magnitude

Use associated productions to reduce bkgs

- **ggF** Only possible in boosted regime
- **VBF** Inclusive search + exclusive VBF+ γ search
- VH Most sensitive channel
- ttH Also important for top Yukawa coupling

Gluon Fusion (87%)

Overwhelming (**10⁷ larger**) background of b-quark production due to strong interactions

CMS: PRL 120 (2018) 071802

Vector-Boson Fusion (7%)

Very large background but a very distinctive topology ISR photon to enhance S/B

ATLAS: arXiv:1807.08639 submitted to PRD ATLAS: JHEP 11 (2016) 112 CMS: HIG-16-003 CMS: PRD 92 (2015) 032008

Higgs-strahlung (4%)

leptons, E_T^{mis} to trigger and high $p_T V$ suppress backgrounds

Most sensitive

Top Fusion ttH (1%) dominant background is tt + jets

ATLAS: JHEP 05 (2016) 160 ATLAS: PRD 97, 072016 (2018) CMS: JHEP 09 (2014) 087 CMS: arXiv:1804.03682 submitted to JHEP CMS: JHEP 06 (2018) 101

EXATLAS Higgs boson couplings before Su

Run-1 Legacy

- ggF and VBF production modes observed
- Observation of decays in vector bosons (γ , Z, W)
- Observation of Yukawa couplings to τ leptons

Run-2 Achievements

- Many measurements much better than Run-1 accuracy
- Direct observation of top Yukawa coupling
- Single-experiment observation of VBF and $t\bar{t}H$ production modes and of τ decays.
- Evidence for *bb* decays

Summary

- All measurements in agreement with SM so far
- Observations of VH production and of $b\bar{b}$ decays still missing
- Yukawa couplings to second generation fermions not yet in reach

Victor Kim

Data/Bkgd.

Processes

- ZH and WH production
 - Leptonic decays of *Z*/*W* for bkg rejection and trigger
 - 3 channels: 0, 1, 2 electrons or muons
- $H \rightarrow b\bar{b}$ decays
 - 2 high- $p_{\rm T}$ *b*-jets
- Possibly additional jets

• *ZH* has additional *gg* induced diagrams

VH(bb) results @LHC with 2016 data

- VH(bb) evidence at LHC established with 2016 data by both ATLAS and CMS
 - Detectors clearly demonstrated ability to deal with very high pile-up for such complex analysis
- Signal strength uncertainty ~40%

	signal strength	significance (exp)	significance (obs)	
ATLAS Run 1 [1]	$0.52\substack{+0.40 \\ -0.37}$	2.6σ	1.4σ	
CMS Run 1 [2]	$0.89\substack{+0.47 \\ -0.44}$	2.5σ	2.1σ	
ATLAS+CMS Run 1 [3]	$0.79\substack{+0.29 \\ -0.27}$	3.7σ	2.6σ	
ATLAS 2015+2016 [4]	$1.20\substack{+0.42 \\ -0.36}$	3.0σ	3.5σ	
CMS 2016 [5]	$1.19\substack{+0.40\\-0.38}$	2.8σ	3.3σ	
[1] JHEP 01 (2015) 069				

[1] JHEP 01 (2015) 069
[2] JHEP 08 (2016) 045
[3] JHEP 08 (2016) 045
[4] JHEP 12 (2017) 024

[5] PLB 780 (2018) 501

HEPD seminar, NRC KI – PNPI, 25 Sep. 2018

- increased datasets
- improved b-tagging
- improved dijet invariant mass resolution m_{bb}
- high pT-kinematics

Data: stunning LHC performance

- After successful Run 1, LHC has produced >3 years of 13 TeV data with stunning performance
- Expected integrated luminosity >150 fb⁻¹ by the end of 2018
- DESIGN peak luminosity exceeded by a factor of 2
 - Average pileup ~38 in 2017 and 2018
- Incredible machine availability, >50% of time in stable operation CMS Integrated Luminosity, pp

b-tagging: ATLAS

b-tagging discriminant *b*-tagging discriminant

b-tagging

- Depends critically on the excellent operation of the tracker
- Performance in Run 2 relying on
 - New IBL detector installed in LS1 (2013-2014)
 - Tracking optimized for high-PU and high- $p_{\rm T}$ environments
 - Better ML algorithms

Run 2 performance

- Rejection of light / c jets 300 / 8 at 70% b-jets efficiency
- Well modelled in simulation
- Good performance even at high pile-up
- \Rightarrow Use only events with 2 good *b*-tags

HEPD seminar, NRC KI – PNPI, 25 Sep. 2018

18 Victor Kim

b-tagging: CMS

Dijet mass resolution m_{bb}

Mass resolution improvements Higgs boson candidate from a pair of *b*-jets

- Add muons in the vicinity (semi-lep. decays)
- Simple average jet p_{T} correction
 - Accounts for neutrinos, and interplay of resolution and $p_{\mathbf{T}}$ spectrum effects.
- Mass resolution improvement: \sim 18%

Kinematic Fit in 2-lepton channel

- Final state fully reconstructed
- High resolution on leptons
- Constrain jet kinematics better: $\sum \vec{p_T}(\ell) = -\vec{p_T}(bb)$ modulo soft radiation
- Mass resolution improvement: \sim 40%

HEPD seminar, NRC KI – PNPI, 25 Sep. 2018

Backgrounds

Diboson WZ, ZZ

- Similar to VH
- Lower mass, larger cross-section
- Softer $p_{T}(V)$ spectrum
- Sherpa 2.2.1

Z**+hf,** W**+**hf

- Same final state as VH
- non-peaking
- Sherpa 2.2.1

tt, single-top

- 2 lepton: same final state as signal
- 0 and 1 leptons: additional jets and/or leptons, not reconstructed
- Powheg+Pythia

Multijet

- Very large cross-section and high rejection factors
- Negligible in 0- and 2-lepton
- Small and data-driven in 1-lepton

Consequences

- Diboson process: validation of the analysis
- m_{bb} , $\Delta R(b, b)$ very powerful variables
- S/B depends on number of jets in the event

HEPD seminar, NRC KI – PNPI, 25 Sep. 2018

Victor Kim

High-pT kinematics

Improving S/B

- Harder $p_{\mathbf{T}}^{\mathbf{V}}$ spectrum for signal than bkgs
 - Going to high-*p*_T improves S/B
- Used for event classification: 75 $< p_{\rm T}^{\rm V} <$ 150 GeV, $p_{\rm T}^{\rm V} >$ 150 GeV
- Added as input variable in MVA analysis
- Need large bkg MC statistics in tails of distributions !

Topology

- $H \rightarrow b\bar{b}$ is a simple 2-body decay
- At high p_T, can cut hard on ΔR(b, b) with very high signal efficiency
- Helps reducing backgrounds significantly
 - Most prominently $t\bar{t}$

Analysis strategy:

- **3 channels** with 0, 1, and 2 leptons and 2 b-tagged jets
 - To target Z(vv)H(bb), W(lv)H(bb)and Z(ll)H(bb) processes
- Signal region designed to increase S/B
 - Large boost for vector boson
 - Multivariate analysis exploiting the most discriminating variables ($m_{b\bar{b}}$, $\Delta R_{b\bar{b}}$, b-tag)
- Control regions to validate backgrounds and control/constrain normalizations

• Analysis strategy:

- **3 channels** with 0, 1, and 2 leptons and 2 b-tagged jets
 - To target Z(vv)H(bb), W(lv)H(bb)and Z(II)H(bb) processes
- Signal region designed to increase S/B
 - Large boost for vector boson
 - Multivariate analysis exploiting the most discriminating variables ($m_{b\bar{b}}$, $\Delta R_{b\bar{b}}$, b-tag)
- Control regions to validate backgrounds and control/constrain normalizations

- VZ analysis using Z(bb) standard candle next to H(bb) peak
- Same "technology" used for VH(bb) fit
 - Same DNN inputs (but dedicated training), same Control Regions,
 VH(bb) normalized to SM and left free to float
 - Larger m(bb) window in Signal Region to fully include Z(bb) peak

HEPD seminar, NRC KI - PNPI, 25 Sep. 2018

- Results with 2017 data compatible with SM expectations
 - Observed significance 3.3σ , signal strength 1.08 ± 0.34
 - O(5-10%) increase in analysis sensitivity wrt 2016, depending on channel
 - Remarkable channel compatibility

VH(bb): Run 1 + Run 2 combination @CMS

0	
	<u> </u>

Significance (σ)					
Data set	Expected	Observed	Signal strength		
2017	3.1	3.3	1.08 ± 0.34		
Run 2 (2016+2017) 4.2	4.4	1.06 ± 0.26		
Run 1 + Run 2	4.9	4.8	1.01 ± 0.23		

HEPD seminar, NRC KI - PNPI, 25 Sep. 2018

Victor Kim

VH(bb): Run 1 + Run 2 combination @ATLAS

Combination

How to correlate systematic uncertainties ?

- Correlate *b*-jet energy scale uncertainty, and Higgs boson production cross-sections
- Test carefully that other correlations have little impact

Results

- VH(bb) signal at 4.9 σ (5.1 σ exp.)
- Signal strength compatible between *WH* and *ZH* modes at 72%

Victor Kim

H(bb): production mode combination @CMS

- Combination of CMS H→bb measurements : VH, boosted ggH, VBF, ttH
- Most sources of systematic uncertainty are treated as uncorrelated
 - Theory uncertainties are correlated between all processes and data sets
- Measured signal strength is $\mu = 1.04 \pm 0.20$

Observation of the H→bb decay by the CMS Collaboration

HEPD seminar, NRC KI - PNPI, 25 Sep. 2018

8 Victor Kim

FATLAS H(bb): production mode combination @ATLAS

$H \rightarrow b \bar{b}$ combination

- Combine Run-1 and Run-2 analyses in VH, VBF, *t*tH production modes
 - 2015+2016 Run-2 data for VBF and *t*t*H*
- Uncertainty model from previous Run-1 and Run-2 combinations
- Results assume SM Higgs boson production cross-sections

Results

- Observation of $H \rightarrow b\bar{b}$ decays at 5.4 σ (5.5 σ exp.)
- $\mu_{H \to bb} = 1.01 \pm 0.20$
- Contributions of VBF and $t\bar{t}H$ channels 1.5 σ and 1.9 σ
- Compatibility of the 6 measurements 54%

HEPD seminar, NRC KI – PNPI, 25 Sep. 2018

Victor Kim

VH combination

- Combine Run-2 analyses in $b\bar{b}$, $\gamma\gamma$ and 4 ℓ decays
 - Updated analyses with 2015-2017 Run-2 data in all channels
- Results assume SM Higgs boson branching fractions

Results

- Observation of VH production at 5.3 σ (4.8 σ exp.)
- $\mu_{VH} = 1.13 \pm 0.24$
- Contributions of 4 ℓ and $\gamma\gamma$ channels 1.1 σ and 1.9 σ
- Compatibility of the 3 measurements 96%

oull (stat.)

Conclusions: ATLAS

Weighted events / 10 GeV

100

80

60

40

20

Data - bkg

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 79.8 \text{ fb}^{-1}$

0+1+2 leptons

2+3 jets, 2 b-tags

Dijet mass analysis

Weighted by Higgs S/B

Data

tī

100 120 140 160

Diboson

Single top

W+jets

Z+jets

Contentation Uncertainty

----- Pre-fit background ----- VH, $H \rightarrow b\overline{b} \times 5$

VH, H \rightarrow bb (μ =1.06)

• *VH(bb*) analysis with 80fb⁻¹ of Run-2 data

- $\mu_{
 m VH}^{bb}=$ 1.16 \pm 0.26, with a significance of 4.9 σ
- Cross-checked with the measurement of the *VZ(bb)* process, and a dijet-mass analysis
- Observation of $H \rightarrow b\bar{b}$ decays
 - $\mu_{H \to bb} = 1.01 \pm 0.20$
 - Observation at 5.4 σ in combination with $t\overline{t}H$ and VBF production modes
 - 89% of the Higgs boson BR is now observed !

Observation of VH production

In combination with $\gamma\gamma$ and 4ℓ analyses

- $\mu_{VH} = 1.13 \pm 0.24$
- VH production observed at 5.3 σ
- All main production modes now observed !
- Results submitted to PLB: arXiv:1808.08238
 - Unchanged since their first presentation at ICHEP
 - Additional material:

https://atlas.web.cern.ch/Atlas/ GROUPS/PHYSICS/PAPERS/HIGG-2018-04/ 40

60

80

180 200

m_{bb} [GeV]

- CMS has reached a 5.6 σ observation of the H \rightarrow bb decay, with signal strength μ = 1.04 ± 0.20
 - Combination of several production channels, dominated by VH(bb)
 - Result contained in arXiv:1808.08242 and provisionally accepted for publication in PRL
 - Thank you to PRL and its referees for their impressive turn-around in reviewing the paper! Published 17 Sep 2018 in PRL 121 (2018) 121801
- Standard Model assumption on Yukawa coupling to b's confirmed within the present uncertainty
- This result is the culmination of H→bb searches that started at LEP, continued at Tevatron and at the LHC
- Achievement possible only thanks to the fantastic run of the LHC, and the CMS detector performance
 - But is only a step towards the ultimate $H \rightarrow bb$ precision at LHC

Backup Slides

H(bb) systematic uncertainties: impact on measurement @ATLA

Source of uncertainty		σ_{μ}	
Total		0.259	
Statistical		0.161	
Systematic		0.203	
Experimenta	al uncertainties		
Jets		0.035	
$E_{\rm T}^{\rm miss}$		0.014	
Leptons		0.009	
-	<i>b</i> -jets	0.061	
b-tagging	c-jets	0.042	
	light-flavour jets	0.009	
	extrapolation	0.008	
Pile-up		0.007	
Luminosity		0.023	
Theoretical and modelling uncertainties			

|--|

Floating normalisations	0.035
Z + jets	0.055
W + jets	0.060
tī	0.050
Single top quark	0.028
Diboson	0.054
Multi-jet	0.005
MC statistical	0.070

Analysis dominated by systematic uncertainties

Measured by impact on signal strength (μ)

Many important sources !

b-tagging both *b* and *c* jet tagging calibration

• Resp. \sim 3% and \sim 10% per jet

Background modelling Z+hf, W+hf, $t\bar{t}$

- Mainly shape and extrapolation uncertainties Signal modelling little impact on significance
 - Dominated by systematic uncertainties on the acceptance

MC stats never-ending race between data stat and MC stat

- Use of dedicated MC filters
- Not easy in all cases, e.g $t\bar{t}$ phase space in 0/1-lepton

HEPD seminar, NRC KI - PNPI, 25 Sep. 2018