Измерение электронов и фотонов в Au+Au взаимодействиях при энергиях $\sqrt{s_{NN}} = 39-200$ ГэВ в эксперименте ФЕНИКС

Котов Д.О. (ЛРЯФ ОФВЭ)

Коллайдер RHIC

	System	√s _{NN} , GeV
	p+p	22.4, 62.4, 200, 500, 510
RHIC	p+Al	200
PHENIX	p+Au	200
LINAC PRIC NSRL TINE A CONTRACT OF THE REAL OF	d+Au	20, 39, 62, 200
BOOSTER AGS	He ³ +Au	200
	Cu+Cu	22, 62, 200
	Cu+Au	200
	Au+Au	7, 15, 9, 19, 39, 62, 130, 200
the second se	U+U	193

- 2000–2017 год, обширная физическая программа:
 - ✓ p+p, p+A, A+A при максимальной энергии √s_{NN}=200 ГэВ (9 комбинаций);
 - ✓ программа по сканированию энергии взаимодействия;
 - ✓ единственный коллайдер пучков поляризованных протонов;

Эксперимент PHENIX на коллайдере RHIC

Основные подсистемы и их характеристики

1. Восстановление треков.

Дрейфовые камеры (DC): $\delta p/p = 0.7\% + 1.1\% \cdot p$ (ГэВ/с)

Падовые камеры (PC): $\sigma_z = 1.7$ мм, $\sigma_{\phi} = 2.4$ мм

2. Измерение энерговыделения.

Калориметр (EMCal): $\delta E/E \approx 4.5\% + 8.0\%/\sqrt{E}$ (ГэВ)

3. Идентификация заряженных адронов.

Времяпролётная система (TOF.east + TOF.west):

- σ_τ ~ 100 псек, 1/3 одного плеча;
- разделение *π/К*: 0.3 < *p*_T (ГэВ/с) < 2.2;

Калориметр (EMCal): $\sigma_{\tau} \sim 500$ псек

4. Идентификация электронов.

Черенковский детектор (RICH) и калориметр (EMCal)

 Система
 1. Высокое быстродействие (> 5 кГц)

 сбора данных:
 2. Триггеры LVL1 (ERT) и LVL2 (отбор редких событий)

Аксептанс: -0.35 < η < 0.35, $\Delta \phi$ – 2 x 90°

Новое состояние вещества на RHIC

В 2005 году ряд наблюдений позволил всем коллаборациям на RHIC сделать заявление об обнаружении сильновзаимодействующей **кварк-глюонной плазмы (КГП)** – «идеальной жидкости» с партонными степенями свободы:

1. Эффект гашения струй:

- Выход π⁰-мезонов подавлен пятикратно;
- Выход прямых фотонов не подавлен;

2. Эллиптические потоки:

 Универсальное скалирование коэффициента v₂ на число кварков для идентифицированных адронов;

3. Измерения температуры среды:

• В центральных Au+Au столкновениях при $\sqrt{s_{NN}} = 200 \ \Gamma \Rightarrow B \ T > 150 \ M \Rightarrow B;$

Измерения электронов и фотонов интересны т.к.:

 они рождаются на всех стадиях взаимодействия и несут информацию об эволюции образовавшейся среды.

Семинар ОФВЭ, 13.03.2018, Котов Д.О.

Прямые фотоны

Прямые (direct) фотоны в d+Au и Au+Au

Прямыми фотонами называются фотоны, которые рождаются в результате любых процессов во время столкновения двух ядер, за исключением фотонов от распадов адронов.

Методика измерения

- 1. Калориметр:
- ✓ Хорошее разрешение на больших p_T , большой вклад адронных распадов на малых p_T ;
- 2. Конверсия:
- ✓ Хорошее разрешение при малых р_т, малая статистика:

Внешняя конверсия ($\gamma \rightarrow e^+ + e^-$);

Внутренняя конверсия ($\gamma^* \rightarrow e^+ + e^-$);

Прямые фотоны в Au+Au при $\sqrt{s_{NN}} = 200 \text{GeV}$

Прямые фотоны в Cu+Cu при $\sqrt{s_{NN}} = 200 \text{GeV}$

- Избыток выхода прямых фотонов в области малых p_T наблюдается в Cu+Cu;
- Величина Т_{эфф} в пределах неопределенностей измерений совпадает с Au+Au.

Прямые фотоны в Au+Au при $\sqrt{s_{NN}} = 62.4$ и 39 GeV

- Избыток выхода мягких прямых фотонов наблюдается при $\sqrt{s_{NN}} = 62.4$ и 39 ГэВ;
- Величина Т_{эфф} составляет 211 МэВ для 62.4 ГэВ, 177 МэВ для 39 ГэВ.

Мягкие прямые фотоны, скан по энергии

• Т_{эфф} в диапазоне энергии 39-2760 ГэВ

С ростом энергии взаимодействия ядер величина Т_{эфф} возрастает от 177 до 297 МэВ.

Мягкие прямые фотоны, скан по энергии

- Для всех представленных центральностей и энергий A+A взаимодействий выходы мягких прямых фотонов описываются функцией множественности (dN_{ch}/dη)^{1.2};
- Выход мягких прямых фотонов в p+p взаимодействиях меньше, чем в A+A:
 - ✓ Измерения продолжаются в диапазоне $dN_{ch}/d\eta$ от 2 до 20 в p+Au и He³+Au.

Потоки (v₂ и v₃) прямых фотонов

Геометрическая анизотропия в начальном состоянии создает градиент давления

Импульсная анизотропия в конечном состоянии

$$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\phi - \psi_n)\right] \right)$$
$$v_n = \left\langle \cos\left[n(\phi - \psi_n)\right] \right\rangle$$

trianglar flow v_3

Потоки (v₂ и v₃) прямых фотонов

Ненулевые величины v₂ и v₃ (~v₂/2):

✓ v_2 зависит от центральности, v_3 нет;

- Модельные расчёты не позволяют одновременно описать большие величины выхода прямых фотонов и потоков v₂:
 - ✓ измерения и расчёты продолжаются.

Семинар ОФВЭ, 13.03.2018, Котов Д.О.

Семинар ОФВЭ, 13.03.2018, Котов Д.О.

Диэлектронные измерения

Диэлектронный континуум

- 1. Область малых масс (m < m $_{\phi}$):
 - Распады π⁰, η, ρ, ω;
- 2. Область промежуточных масс $(m_{\phi} < m < m_{J/\psi}):$ _____
 - \succ e⁺и e⁻ от распадов D, D;
 - е+е- из партонной фазы.
- Область больших масс (m > m_{J/ψ}):
 - Распады Ј/ψ, ψ' и Дрелл-Ян.

р+р взаимодействия при $\sqrt{s_{NN}} = 200 \ \Gamma$ эВ

- Экспериментальные результаты согласуются с "коктейлем" от адронных распадов;
- Результат, полученный с использованием нового детектора HBD, полностью согласуется с ранее опубликованным (PRC81, 034911);
- Базис для сравнения с Au+Au результатами, отработка методик анализа данных HBD;

Au+Au взаимодействия при $\sqrt{s_{NN}} = 200 \ \Gamma$ эВ

Область малых масс:

- избыточный выход согласуется с результатами STAR;
- ✓ от SPS к RHIC описывается в рамках одной модели увеличение ширины резонанса ρ -мезона ($\pi^+\pi^- \rightarrow \rho \rightarrow e^+e^-$ в HG).

Область промежуточных масс:

- ✓ ненулевой избыток выхода → возможный тепловой вклад от КГП;
- ✓ измерения продолжаются с VTX (2014).

Электроны тяжёлых ароматов

Au+Au взаимодействия при $\sqrt{s_{NN}} = 200 \ \Gamma$ эВ

- Тяжёлые кварки рождаются на самых ранних стадиях взаимодействия ядер;
- Энергетические потери на излучение глюонов ожидаются меньше, чем у лёгких кварков:
 - ✓ Измерения: $R_{AA} < 1$ и $v_2 > 0!$
- Множество попыток получить теоретическое описание обнаруженных зависимостей:
 - ✓ Потери на излучение (I);
 - ✓ Транспортные модели (II & III).

- Измерения эксперимента PHENIX смесь электронов от распадов D и B мезонов:
 - ✓ Разделить вклады от с и b кварков можно, используя разные времена жизни
 D и B мезонов и измеряя вторичную вершину → PHENIX VTX.

R_{AA} для с и b, Au+Au при $\sqrt{s_{NN}} = 200$ ГэВ

• В центральных Аи+Аи столкновениях:

- ✓ с→е подавлены не зависимо от p_T , b→е при $p_T < 5 \ \Gamma \Rightarrow B/c$ подавлены меньше;
- ✓ R_{AA} в согласии с транспортными (T-Matrix, SUBATECH) моделями и с потерями на излучение (DGLV);
- В области p_T > 5 ГэВ/с при данной точности уверенно разделить с→е и b→е нельзя: ✓ измерения продолжаются с VTX (2016).

Заключение

- Выходы мягких прямых фотонов в диапазоне энергий сталкивающихся ядер 39–2760 ГэВ описываются функцией множественности (dN_{ch}/dη)^{1.2}:
 ✓ измерения продолжаются в диапазоне dN_{ch}/dη от 2 до 20 в p+Au и He³+Au.
- 2. Диэлектронный континуум в Au+Au взаимодействиях при $\sqrt{s_{NN}} = 200 \ \Gamma$ эB:
 - ✓ в области малых масс обнаружен избыточной выход диэлектронных пар, который описывается через увеличение ширины резонанса ρ-мезона;
 - ✓ в области промежуточных масс присутствует ненулевой избыток выхода диэлектронных пар – возможный тепловой вклад от КГП;
 - ✓ измерения в области промежуточных масс продолжаются с VTX (2014).
- 3. При помощи вершинного детектора PHENIX VTX:
 - ✓ R_{AA} для с и b, описываются излучением и транспортными моделями;
 - ✓ измерения продолжаются с VTX (2016).

Backups

Детектор HBD в эксперименте PHENIX

- Расположен вне области магнитного поля;
- Детектор черенковского света: CF₄ в качестве радиатора и рабочего газа;
- Фотокатод трехслойный GEM с покрытием CsI;
- Адроны с р_Т < 10 ГэВ/с, не излучают черенковского света в детекторе;
- Электроны от адронов, дрейфуют в сторону противоположную катоду из-за специально созданного распределения электрического поля;

Экспериментальные трудности

• Величина отношения (сигнал/фон) в области малых масс составляет ~1/200;

• Основным источником фонового вклада являются комбинаторные e^+e^- пары от распадов π^0 -мезонов:

 $\checkmark \pi^{0} \rightarrow \gamma e^{+}e^{-}$ $\checkmark \pi^{0} \rightarrow \gamma \gamma \rightarrow e^{+}e^{-}e^{+}e^{-}$

 Под действием магнитного поля пары электронов разлетаются на большие углы и затем восстанавливаются по отдельности:

> ✓ Необходимо тагировать данные распады перед тем, как магнитное поле разделит их;

FIG. 2. (Color online) Sketch illustrating the HBD response to an e^+e^- pair from π^0 Dalitz decay and from a ϕ meson decay. The circles represent the Čerenkov blobs whereas the hexagons are the hexagonal pads of the HBD readout plane.

Доп. инфо по континууму

- Избыток в области малых масс исчезает с ростом поперечного импульса
- В этой области масс низкая температура и вклад прямых фотонов мал

uropping mass une to uroppi

Модель Rapp & Wambach описывает избыточный выход через увеличение ширины резонанса ро-мезона для SPS данных, больше 1 ГэВ/с omega&phi

- Распределение DCA для электронов измеряется с помощью VTX;
- Относительные вклады от с и b определяются из аппроксимации измеренного распределения DCA вкладами от различных источников;

• Вклады в DCA от различных источников оцениваются с использованием Pythia, свернутой с откликом экспериментальной установки, включая разрешение по DCA

В-мезоны в области больших быстрот

- Выход Ј/ψ от В-мезонов больше в столкновениях тяжёлых ядер (Cu+Au) чем в p+p:
 ✓ feed-down 10% в CuAu, 2% в p+p;
- В-мезоны меньше подавлены, по сравнению с прямыми (prompt) J/ψ
 - ✓ величины факторов ядерной модификации В-мезонов находятся вблизи 1 в соответствии с параметризацией EPS09;

R_{AA} прямых (direct) фотонов в d+Au и Au+Au

В d+Аи взаимодействиях:

 ✓ не наблюдается модификаций в выходе прямых фотонов;

✓ расчёты согласуются с
 экспериментальными результатами;

В Аи+Аи взаимодействиях:

 ✓ Избыточный выход прямых фотонов в области малых р_т не является эффектом начального состояния;

✓ интерпретируется как тепловое излучение плотной материи (КГП, адронный газ);

Методика измерения

- 1. Калориметр:
 - ✓ Хорошее разрешение на больших р_T;
 - ✓ Значительный фоновый вклад на малых р_т от адронных распадов;
- 2. Конверсия:
 - ✓ Хорошее разрешение при малых р_T;

Внешняя конверсия ($\gamma \rightarrow e^+ + e^-$);

✓ Существенное уменьшение статистики по сравнению с первым методом.

Внутренняя конверсия ($\gamma^* \rightarrow e^+ + e^-$);

Загадка прямых фотонов

- Thermal photons (HG+QGP), pQCD with fireball scenario

- H.van Hees, C. Gale, R. Rapp PRC 84 054906 (2011)
- Include finite initial flow at thermalization
- Include resonance decays and hadronhadron scattering
- Blue shift of HG spectrum included

- Microscopic transport (PHSD)

- O. Linnyk, W. Cassing, E.L. Bratkovskaya, PRC 89, 034908 (2014)
- Parton-Hadron-String dynamics
- Include large contribution from hadron-hadron interaction in HG using Boltzmann transport
- Include thermal photons from QGP

- Enhanced emission from non-

equilibrium effects (glasma, etc.)

- C. Gale et al., PRL114, 072301 + priv.comm. with Y Hidaka and J-F. Paquet
- Semi-QGP is the QGP near $T_{\rm c}$
- Annihilation and Compton processes around hadronization time are naturally included

- Enhanced early emission from

magnetic field

- G. Basar, D. E. Kharzeev, V. Skokov, PRL 109 202303 (2012)
- Initial strong magnetic field produces anisotropy of photon emission
- magnetic field + thermal photons (lattice QCD)

Не удается одновременно описать большие величины выхода прямых фотонов и потоков!