ОКТУПОЛЬНАЯ ДЕФОРМАЦИЯ ЯДЕР

1. Как октупольная деформация проявляется в свойствах ядер?

2. Результаты экспериментов на ISOLDE и TRIUMF: октупольная деформация в ^{217–219}At и ^{225–229}Ac

3. Что дают октупольно деформированные ядра для физики элементарных частиц?

Octupole deformation

Where are the possible regions of octupolarity?

Strong octupole correlations leading to pear shapes can arise when nucleons near the Fermi surface occupy states of opposite parity with orbital and total angular momentum differing by 3.

Region of octupole deformation

Low-lying negative parity bands in even-even nuclei

Parity doublets in odd nuclei

3/2[761] + 3/2[631] + 3/2[642] +

Parity doublets in odd nuclei

Minima in the potential energy surfaces at $\beta_3 > 0$

Minima in the potential energy surfaces at $\beta_3 > 0$

Octupole deformation and radii

Odd-even staggering in radii

staggering parameter:
$$\gamma(N) = \frac{2 \cdot \delta \langle r_{N,N-1}^2 \rangle}{\delta \langle r_{N+1,N-1}^2 \rangle} \quad N - \text{odd}$$

$$\gamma = 1$$
 — no staggering
 $\gamma < 1$ — normal staggering
 $\gamma > 1$ — inverse staggering

Inverse radii staggering and octupole deformation

The parity doublets are experimentally found to be more closely spaced in the odd nuclei than in their even neighbours.

Octupolarity: 132 < N < 139 (inverse OES)

Spins and octupole deformation

 225 Ra, $I = 1/2^+ (N = 137)$

Magnetic moments and octupole deformation

Whether the parity doubled bands arise from single parity-mixed hybrid Nilsson orbitals generated from a stable octupole potential or from two different sets of Nilsson orbitals with different intrinsic properties.

$$|\pm\rangle = \frac{1}{\sqrt{2}} (|\bullet\rangle \pm |\bullet\rangle)$$

$$\langle +|O|+\rangle = \langle -|O|-\rangle = \langle \bullet|O|\bullet\rangle = \langle O\rangle_{\text{intr.}}$$

$$\mu_{\text{expt}}(^{223}\text{Ra}, 3/2^{-}) = 0.4 \text{ n.m.}$$

 $\mu_{\text{expt}}(^{223}\text{Ra}, 3/2^{+}) = 0.3 \text{ n.m.}$

Parity mixed: $\mu_{\text{theor}}(^{223}\text{Ra}, 3/2^+) = \mu_{\text{theor}}(^{223}\text{Ra}, 3/2^-) = 0.5 \text{ n.m.}$ Reflection symmetric: $\mu_{\text{theor}}(^{223}\text{Ra}, 3/2^+) = 0.03 \text{ n.m.}; \mu_{\text{theor}}(^{223}\text{Ra}, 3/2^-) = -0.06 \text{ n.m.}$

B(E3) and octupole deformation

For octupole-vibrations it is expected that all E3 matrix elements between states other than those coupled via an octupole phonon, i.e. $\langle (I-3)^+ || E3 || I^- \rangle$ vanish.

²²⁴Ra: $<2^+||E3||1^->=210(40)$ W. u.

Ionization schemes

Astatine

Experimental hfs spectra

^{217–219}At

^{225–229}Ac

HF calculations: octupole region

$$Q_{S}(^{217}\text{Ac}) = 1.74(10) \text{ b}$$

$$Q_{S} = \frac{3}{\sqrt{5\pi}} \frac{I \cdot (2I - 1)}{(I + 1) \cdot (2I + 3)} ZR_{0}^{2}\beta_{2} \left(1 + \sqrt{\frac{5}{4\pi}} \frac{4}{7}\beta_{2}\right) \implies \beta_{2} = 0.223(12)$$

$$\langle r^{2} \rangle = \langle r^{2} \rangle_{0} \left[1 + \frac{5}{4\pi} \langle \beta_{2}^{2} \rangle\right] \implies \delta \langle r^{2} \rangle_{\text{calc}}^{227,215} = 1.29 \text{ fm}^{2} \quad \delta \langle r^{2} \rangle_{\text{exp}}^{227,215} = 1.50 \text{ fm}^{2}$$
influence of β_{3} ? $\langle r^{2} \rangle = \langle r^{2} \rangle_{0} \left[1 + \frac{5}{4\pi} (\langle \beta_{2}^{2} \rangle + \langle \beta_{3}^{2} \rangle)\right]$

$$Q_{S} = \frac{I \cdot (2I - 1)}{(I + 1) \cdot (2I + 3)} \frac{3}{\sqrt{5\pi}} ZR_{0}^{2} f_{1}(\beta_{2}, \beta_{3}, \beta_{4})$$

$$\beta_{3}(^{217}\text{Ac}) = 0.13(3)$$

$$\left\langle r^{2} \right\rangle = \left\langle r^{2} \right\rangle_{0} \left[1 + f_{2}(\beta_{2}, \beta_{3}, \beta_{4}) \right]$$

$$\beta_{3}(^{217}\text{Ac}) = 0.13(3)$$

$$\left[\beta_{3}(^{217}\text{Ac})_{\text{theor}} = 0.014 \right]$$

HF calculations

Mixed-parity single-particle states

 $I^{\pi}(225, 227 Ac) = 3/2^{-1}$

Magnetic moment of odd Ac isotopes as indicator of the octupolarity

Magnetic moment of ²¹⁸At: a sign of the octupolarity?

 $\mu_{\text{expt}}(^{218}\text{At}; 3^{-}) = 1.25(12)\mu_{N}.$

Additivity relation:

$$\mu_{I}(i_{p},i_{n}) = \left(\frac{\mu(i_{p})}{i_{p}} + \frac{\mu(i_{n})}{i_{n}}\right) \cdot \left(I/2\right) + \left(\frac{\mu(i_{p})}{i_{p}} - \frac{\mu(i_{n})}{i_{n}}\right) \cdot \frac{i_{p} \cdot (i_{p}+1) - i_{n} \cdot (i_{n}+1)}{2 \cdot (I+1)}$$

 $\mu_{\text{add}} ({}^{218}\text{At; 3}^-) = 0.87(9)\mu_N \text{ for configuration } (\pi 1h_{9/2} \otimes v2g_{9/2})_{3-}$ (additivity relation)

Even a small admixture from $(\pi i_{13/2} \otimes v g_{9/2})_{3+}$ or $(\pi i_{13/2} \otimes v i_{11/2})_{3+}$ configurations would ensure an agreement between the additivity-rule estimations and the experimental results. Such an admixture is only possible in cases with mixing between opposite-parity states at nonzero octupole deformation. The use of other configurations decreases μ

Inverse radii staggering: Ac and At

 $Q_S(^{218}\text{At}) = 0.55(33) \text{ b} \qquad \implies \beta_2 = 0.04(2)$

Octupole deformation without quadrupole one? — cf. ²¹⁶Fr. Qualitative explanation by Otten is questioned (β_3 on top of β_2)

octupole collectivity: $86 \le Z \le 92$ (Rn, Fr, Ra, Ac, Th, Pa, U) — At? $131 \le N \le 141$

EDM search: Schiff moment

Theorem (Schiff)

The nuclear dipole moment causes the atomic electrons to rearrange themselves so that they develop a dipole moment opposite that of the nucleus. In the limit of nonrelativistic electrons and a point nucleus the electrons' dipole moment exactly cancels the nuclear moment, so that the net atomic dipole moment vanishes.

Post-screening nucleus-electron interaction is proportional to Schiff moment

$$\hat{S}_{0} = \frac{e}{10} \sqrt{\frac{4\pi}{3}} \sum_{i} \left(r_{i}^{3} - \frac{5}{3} \overline{r_{ch}^{2}} r_{i} \right) Y_{0}^{1}(\Omega_{i}) + \dots$$

$$S \equiv \langle \Psi_{0} | \hat{S}_{0} | \Psi_{0} \rangle \approx \sum_{i \neq 0} \frac{\langle \Psi_{0} | \hat{S}_{0} | \Psi_{i} \rangle \langle \Psi_{i} | \hat{V}_{PT} | \Psi_{0} \rangle}{E_{0} - E_{i}} + \text{c.c.} \quad \Psi_{i} - \text{another parity state}$$

Electrostatic potential produced by the Schiff moment $\varphi(\mathbf{R}) = 4\pi \mathbf{S} \cdot \nabla \delta(\mathbf{R})$ Atomic EDM induced by nucleus in an atom with a single electron in state *ns*

$$\mathbf{d}_{\text{atom}} = 2\sum_{m} \frac{\langle ns| - e\varphi(\mathbf{R}) | mp \rangle \langle mp | - e\mathbf{R} | ns \rangle}{E_{ns} - E_{mp}}$$

B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, PRL 119, 119901 (2017) (University of Washington)

 $d(^{199}\text{Hg}) = 2.20 (2.75) (1.48) 10^{-30} e \text{ cm}$ $|d(^{199}\text{Hg})| < 7.4 \ 10^{-30} e \text{ cm}$ $|S_{\text{Hg}}| < 3.1 \ 10^{-13} e \text{ fm}^3$

EDM search: enhancement at octupole deformation

the presence of the parity partner $\left|\overline{\Psi_{0}}\right\rangle$ of g.s. $\left|\Psi_{0}\right\rangle$

in ²²⁵Ra $1/2^+$ ground state has a $1/2^-$ partner at 55 keV

$$\begin{split} S &\equiv \langle \Psi_0 | \hat{S}_0 | \Psi_0 \rangle \approx \sum_{i \neq 0} \frac{\langle \Psi_0 | \hat{S}_0 | \Psi_i \rangle \langle \Psi_i | \hat{V}_{PT} | \Psi_0 \rangle}{E_0 - E_i} + \text{c.c.} \\ S &\approx -2 \frac{\langle \Psi_0 | \hat{S}_0 | \bar{\Psi}_0 \rangle \langle \bar{\Psi}_0 | \hat{V}_{PT} | \Psi_0 \rangle}{\Delta E} \end{split}$$

Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

Skyrme Model	Isoscalar	Isovector
SIII	300	4000
SkM*	300	2000
SLy4	700	8000

Schiff moment of ²²⁵Ra, Dobaczewski, Engel (2005) Schiff moment of ¹⁹⁹Hg, Ban, Dobaczewski, Engel, Shukla (2010)

Atomic physics enhances any EDM in Ra by another factor of 3 over that in Hg

Schiff moment: calculations

EDF	method	221 Rn	223 Rn	223 Fr	225 Ra	229 Pa
SIII	BCS	13.9	6.9	24.0	27.0	37.6
$\rm SkM^*$	BCS	21.6	30.7	32.5	38.9	46.4
SkO^{\prime}	BCS	11.4	18.3	23.2	31.5	40.9
SkX_c	BCS	6.4	13.8	18.3	23.6	34.6
SLy4	BCS	20.4	26.2	28.8	36.8	46.0
UNEDF0	BCS	10.6	17.2	19.9	27.9	33.4
D1S	HFB	27.6	30.9	34.3	43.4	52.0
UNEDF0	HFB	20.5	23.5	25.1	32.7	32.9

Intrinsic Schiff moments S_0 (e fm³)

. . .

Factor of 2-4!

Correlation of Schiff moment and Q_3

J. Dobaczewski, J. Engel, M. Kortelainen, and P. Becker, PRL 121, 232501 (2018)

Intrinsic Schiff moment from measured Q_3

Intrinsic Schiff moments S_0 (e fm³)

	K	from 224 Ra	from 226 Ra	from 220 Rn
221 Rn	$\frac{7}{2}$			19.2(1.9)
223 Rn	$\frac{\overline{7}}{2}$	13.5(2.8)		
223 Fr	$\frac{\overline{3}}{2}$	20.3(1.5)		
225 Ra	$\frac{1}{2}$	26.6(1.9)	× ,	× /
229 Pa	$\frac{5}{2}$	35.2(2.9)	39.5(2.1)	41.9(2.7)

 $Q_{30} (expt) = 940(30) e \text{ fm}^3 \text{ for } {}^{224}\text{Ra},$ $Q_{30} (expt) = 1080(30) e \text{ fm}^3 \text{ for } {}^{226}\text{Ra},$ $Q_{30}(expt) = 810(50) e \text{ fm}^3 \text{ for } {}^{220}\text{Rn}$

Summary

- 1. Октупольная деформация ядра проявляется в целом ряде интересных ядерноспектроскопических феноменов, требующих для своего описания развития теоретических подходов.
- Корреляция обратного четно-нечетного эффекта в зарядовых радиусах с октупольной коллективностью требует количественного теоретического описания. Установление границ области обратного четно-нечетного эффекта одна из актуальных задач ядерной физики.
- Накопление экспериментальных данных об эффектах октупольности имеет большое значение для формирования надежных ядерных моделей для извлечения информации о Т- и Р-нечетных компонентах взаимодействия элементарных частиц.