

Ядерно-физические исследования на реакторе TRIGA в Майнце (Германия)

Ченмарев Станислав Валерьевич

Сотрудник лаборатории физики экзотических ядер ПИЯФ

Семинар отделения физики высоких энергий. 22.10.2019

Рассказать о достижениях по физике на ТРИГе и перекинуть мост к тем аналогичным проблемам, которые планируются исследовать на ПИКе:

 Масс-спектрометрия экзотических ядер (прототип проекта ПИТРАП на реакторе ПИК),

•Проблемы ядерного эталона частоты (^{229m}Th),

•Время жизни нейтрона,

•Прецизионные значения массы протона и его g-фактора

Применения ядерных реакторов в физике

Исследовательские ядерные реакторы в первую очередь используются как мощные источники нейтронов для

• Изучения свойств самих нейтронов

Определение времени жизни, электрического дипольного момента...

• Ядерной физики

Изучение структуры ядра, наработки искусственных радиоактивных нуклидов для различных задач физики, астрофизики, химии и биотехнологий

ΦΤΤ

Исследование структуры твёрдого тела

• Прикладные задачи

Материаловедение

Реакторы TRIGA

Iraining, Research, Isotopes, General Atomics – серия исследовательских реакторов, использующих топливо на основе UZrH_x, содержащего

8,5-12% U из которого 20% 235U

Построено с 1958 года 65 реакторов в 24 странах

Fig. 1. World map showing TRIGA installations to date

Обеспечивается поток нейтронов в зоне облучения <u>7х10¹¹ н / см² с</u> в непрерывном и <u>1,75х10¹⁵ н / см² с</u> в импульсном режиме

Характеристики реактора ТРИГА в сравнении с реакторами ПИК и ВВР-М в Гатчине

	TRIGA Mainz		ПиК	BBP-M	
Режим	непрерывный импульсный		непрерывный	непрерывный	
Тепловая мощность	100 кВт	250 МВт в течение 30 мс	100 МВт	18 МВт	
Плотность потока нейтронов, н/см²с	7x10 ¹¹	¹ 1,75x10 ¹⁵ 5x10 ¹⁵		4x10 ¹⁴	
Топливо	U ZrH _x		UO ₂ +CuBe	U AI керамика	
Степень обогащения топлива по ²³⁵ U	8,5-12% x 20%	, D	90%	90%	
Замедлитель	ZrH _x + вода		Вода	Вода	
Отражатель	Графит		Тяжелая вода	Металличекий Ве	
Число ГЭК	4		10	17	
Число ВЭК	1 + барабан и пневмопочты в	2 петли з отражателе	6 + 6 наклонных	15	
Ввод в эксплуатацию	1965		2018	1960	

Импульсный режим

На реакторе **TRIGA-Mainz** в течении 30 мс нейтронный ПОТОК увеличивается в 2500 раз

импульса реактора и появление активности на выходе

- Например позволяет упростить спектроскопию изомерных состояний
- Более эффективная работа при проведении экспериментов изначально в прерывистом режиме
 - Удобно для временных измерений

Ченмарев С. В. семинар ОФВЭ 22.10.2019

Проблема изомера тория

Мишени для получения ^{229m}Th

Низколежащий изомер ^{229m}Th позволяет создать ядерные «часы»

В Мюнхене был проведен эксперимент по определению энергии перехода в низколежащее изомерное состояние и его свойств методом лазерной спектроскопии

Для этого в Майнце группой проф. К. Дюльмана была создана мишень из ²³³U

 $E_{is} = 8,28 \pm 0,17 \text{ eV}$

 $Q_{s}^{m}=1,74(6)$ eb

Benedict Seiferle, Lars von der Wense, Christoph E. Düllmann, et. al. *Energy of the 229Th nuclear clock transition* Nature 573, 243–246. **2019**

В нашем институте темой изомера ²²⁹Th активно занимается А.В. Попов из нашей лаборатории

Yu. I. Gusev, Yu. N. Novikov, A. V. Popov, and V. I. Tikhonov. Studying the Decay of Thorium-229 Isomer by Means of Conversion Spectroscopy. 2016
Yu. I. Gusev, F. F. Karpeshin, Yu. N. Novikov, and A. V. Popov. Measuring the Energy of 229Th Isomer Decay. 2019

Время жизни нейтрона

Время жизни нейтрона

Эксперимент тSPECT

Основной эксперимент с ультрахолодными нейтронами

Измерения времени жизни нейтронов в пучках, а также в кристаллах дают несколько различающиеся значения.

В экспериментах с ультрахолодными нейтронами осуществляется их удержание в магнитной ловушке и производится детектирование протонов и электронов бета-распада.

«Нейтронная аномалия»

•Есть два пути для определения времени жизни нейтрона – в пучках и в ловушках

•Результаты измерения времени жизни нейтрона в пучках и в ловушках различаются

По последним данным, это может быть связано с систематической погрешностью измерения числа протонов бета-распада, связанной с потерей их в столкновениях с молекулами остаточного газа и пр дающей противонаправленные сдвиги для обоих методов

J. Byrne and D. L. Worcester. The neutron lifetime anomaly and charge exchange collisions of trapped protons. 2019

A. P. Serebrov, R. M. Samoilov, I. A. Mitropolsky, A. M. Gagarsky.

Neutron lifetime, dark matter and search for sterile neutrino. 2017

Ионные ловушки TRIGA-TRAP vs. ПИТРАП

Система TRIGA-TRAP

– Пока единственная установка на базе ловушки Пеннинга на реакторе для масс-спектрометрии продуктов деления

Ченмарев С. В. семинар ОФВЭ 22.10.2019

Модернизация системы TRIGA-TRAP

В качестве прототипа Из-за очень высоких выбрана хорошо себя требований к стабильности зарекомндовавшая потенциалов электродов и геометрия ловушек сложности откачки замкнутой систем SHIP-Trap и геометрии принято JYFL-Trap решение перейти от гиперболической измерительной ловушки к цилиндрической Модель ловушки в сборе с усилителем и новым SECTION B-E резонатором для измерения межэлектродной емкости и уточнения добротности резонатора с реальной нагрузкой

Квазимагические числа N = 152 и N = 162 ?

(TRIGA-TRAP vs. SHIP-TRAP)

Ю. Новиков, О. Безроднова, Г. Воробьев, М. Гончаров, Ю. Гусев, С. Елисеев, Н. Мартынова, Д. Нестеренко, П. Филянин, С. Ченмарев и коллаборация SHIP-TRAP

Измерения на TRIGA-TRAP

Ion r to $\delta r/r$ $1^2C_{22}^+$ ME_{TT}^{stom} (keV)SHIP-11ap 2010-2 TRIGA-Trap 2012 SHIP-11ap 2012 TRIGA-Trap 2012 SHIP-Trap 2018 SHIP-Trap 2018 TRIGA-Trap 2019 $^{241}Am^{16}O^+$ $^{243}Am^{16}O^+$ $^{244}Pu^{16}O^+$ $^{249}Cf^{16}O^+$ 1.0040521297(52)7.4 5.7 5.7 5.2 69718.1(1.3)SHIP-11ap 2010-2 TRIGA-Trap 2012 SHIP-Trap 2018 TRIGA-Trap 2019M. Eibach, K. Blaum, Sz. Nagy, et al.Direct high-precision mass mageuraments on $^{241}2^{23}Am$ ^{249}Cf 249 Cf 100-100-1000 $and 2^{249}Cf$ 2010-2 2010-2 2010-2 2010-2 2010-2 2010-2 2010-2 2010-2 2010-2 2010-2 2018 2010-2 2019	$2012 \\ 150 \# us \\ 150 \# us \\ 150 \# us \\ 5.0 us \\ 5.0 us \\ 100 \\ $	369 ms 632 251 No 252 800 ms 2.4 250 Md 251 250 Md 251 9 250 1 4.2 1 30.4	17.1 s 17.1 s 17.1 s 1.5 c 1.5 c	31.1 s 254 NO 51.2 s 253 Md 12 m 252 Fm 25.39 h	27 s 255 NO 3.52 m 254 Md 10 m 253 Fm 3.00 d
241 Am ¹⁶ O ⁺ 0.9736807966(72) 7.4 52936.9(1.8) SHIP-Trap 2018 243 Am ¹⁶ O ⁺ 0.9812738087(56) 5.7 57176.2(1.4) TRIGA-Trap 2019 244 Pu ¹⁶ O ⁺ 0.9850723904(72) 7.3 59806.2(1.8) TRIGA-Trap 2019 249 Cf ¹⁶ O ⁺ 1.0040521297(52) 5.2 69718.1(1.3) Image: Comparison M. Eibach, K. Blaum, Sz. Nagy, et al. Direct high-precision Image: Comparison Image: Comparison	$\begin{array}{c} 240 \text{ MU} \\ 5.0 \text{ us} \\ 5.0 \text{ us} \\ 5.0 \text{ us} \\ \hline 5.0 \text{ us} \\ \hline 5.0 \text{ us} \\ \hline 10000000000000000000000000000000000$	250 Md 250 Md 250 Md 250 Md 250 Md 250 30.0	250 NU 5 s 1.56 m 1.56 m 252 Md 2.3 m Fm 4 m	253 Md 12 m 253.39 h	253 NU 3.52 m 254 Md 10 m 253 Fm 3.00 d
M. Eibach, K. Blaum, Sz. Nagy, et al. Direct high-precision	T<0.1s T < 0.1s $0.1s \le T < 3 s$ $3 s \le T < 2 m$ $2 m \le T < 1 h$	m 250 30	Fm 4 m 5.30 h	²⁵² Fm 25.39 h	253 Fm 3.00 d
и предварительному измерению Q величины	1 $h \le T < 1 d$ 1 $d \le T < 1 y$	s 249 m 102.	Es 250 Es 2 m 8.6 h	251 ES 33 h	252 ES 471.7 d
Перехода то > то	1 y ≤ T < 1 Gy 1 Gy ≤ T	f 248 h 333	Cí 249 Cí 5 d 351 V	<mark>250 Cf</mark> 13.08 v	251 Cf 900 y
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	244 Bk 245 Bk h 5.02 h 4.95 d	246 BK 1.80 d	Bk 8 ky >9 y	249 BK 327.2 d	250 BK 3.212 h
F. Schneider, K. Blaum, S. Chenmarev, S. Eliseev, Sz. Nagy, Yu. N. Novikov, et Al. Preparatory studies for a high-precision Penning-trap measurement of the ¹⁶³ Ho electron capture Q-value. Eur. Phys. J. A 51, 89 2015	243 Cm 244 Cm 8 d 29.1 y 18.10 y 18.10 y 18.10 y 10 y 10 y	245 Cm 8.25 ky 244 Am 10.1 h 2.0	247 Cm 5 ky 5 h 246 Am 39 m	248 Cm 348 ky 247 Am 23.0 m	249 Cm 64.15 m 248 Am 3# m
В ближайшее время планируется измерение ряда редких актиноидов, в районе N 152	y 241 Pu 14.329 y 375 ky	243 PU 4.956 h 80.0	PU My 10.5 h	246 PU 10.84 d	247 PU 2.27 d

Неразрушающая детекция ионов при комнатной температуре

использования криогенных температур.

Для попадания в резонанс удобнее корректировать частоту движения ионов чем перестраивать кварц Ченмарев С. В. семинар ОФВЭ 22.10.2019

S. Lohse, S. Chenmarev, D. Rodríguez, et. al. A quartz amplifier for high-sensitivity Fourier-transform ioncyclotron-resonance measurements with trapped ions. **2015**

 $v - v_{crystal}$ (Hz)

Газовый носитель

Выходы продуктов деления

Сравним выходы в планируемых установках для получения экзотических нейтронно-избыточных ядер

Использование реакторов выгодно для получения изотопов в районе массовых чисел нуклидов 80<A<150.

Картинка показывает значительное преимущество реактора ПИК на фоне всех других планируемых нереакторных проектов. На оси абсцисс картинки показаны нуклиды с неизвестными массами

Система ПиТРАП в ПИЯФ (Гатчина)

Эксперименты с протонами

На территории университета Майнца производились или планируются несколько экспериментов, связанных с протонами

- Планируемый эксперимент по определению радиуса протон а (А. А. Воробьев и др.)
- Эксперимент по определению гиромагнитного соотношения протона в ловушке Пеннинга
- G. Schneider, A. Mooser, M. Bohman, et. Al, *Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision.* **2017**

$\mu_{\rm p} = 2.79284734462$ (82) $\mu_{\rm N}$

Установка для измерения масс легких ядер на основе ловушки пеннинга, на которой была уточнена масса протона
 m_p = 1.007 276 466 598(16)(29) u,

Ловушка для измерения масс легких ядер LION-Trap

Существует вопрос несоответствия современных серий измерения масс молекул H и HD друг другу Для решения этой загадки в институте физики в Майнце создана новая установка на основе ловушек Пеннинга, оптимизированная для лекгих ионов

F. Heiße, S. Rau, F. Köhler-Langes, W. Quint, G. Werth, S. Sturm, and K. Blaum

Phys. Rev. A 100, 022518 (2019)

Ченмарев С. В. семинар ОФВЭ 22.10.2019

 m_p

 $= 3.3 \times 10^{-11}$

 $m_p = 1.007\,276\,466\,598(16)(29)\,\mathrm{u},$

Спасибо за внимание

И большое спасибо сотрудникам коллабораций TRIGA-TRAP, SHIP-TRAP, PENTA-TRAP

Ченмарев Станислав Валерьевич

Сотрудник лаборатории экзотических ядер ПИЯФ

Семинар отделения физики высоких энергий. 22.10.2019

Сравнение выходов

Можно сравнить ожидаемую эффективность получения нуклидов на различных установках

 При различных способах получения – ускорители или реактор

 Для системы TRIGA-Spec и перспективной установки
 ПиТРАП на реакторе ПиК

Элемент	Щелочные	Щелочно- земельные	Остальные	Щелочные	Щелочно- земельные	Остальные		
Сечение		TRIGA-Spec	;	ПиК				
1 мб	8,0E+4	8,0E+3	8,0E+2	2,0E+9	2,0E+8	2,0E+7		
100 мкб	8,0E+3	8,0E+2	8,0E+1	2,0E+8	2,0E+7	2,0E+6		
1 мкб	8,0E+1	8,0E+0	8,0E-1	2,0E+6	2,0E+5	2,0E+4		

Основные варианты реакторов ТРИГА

Mark II

- ●С 1965 года
- тепловая мощность от
 100 до 250 кВт
- •и импульсный режим

●С 1960 года

тепловая
мощность от
10 до 250 кВт

●Mark III ●C 1968 года

•тепловая мощность от 1 до 2 МВт

Эксперименты на TRIGA-Mainz

 В вертикальных каналах
 производится
 облучение образцов

 Горизонтальные каналы А и В задействованы для ионной ловушки ТригаТрап

Горизонтальные каналы С и D
 задействованы для источников УХН

Список реакторов ТРИГА

Mark 1			Mark 2			Mark 3			ACRP		
Brazil	100	1960	Viena	250	1962	Ger FRN	1000	1972	Jap NSRR	300	1975
Congo	50	1959	Bangladesh	3000	1986	Kor SEOUL	2000	1972	USA ACRR	4000	1967
Ger FRH	250	1973	Congo	1000	1972	Мехсо	1000	1968			
Ger HD1	250	1966	Finland	250	1962	Thai TRR	2000	1977			
Ger HD2	250	1978	Ger FRMZ	100	1965	USA BERCLEY	1000	1966	Dual core		
UKICI	250	1971	Inndonesia KARTINI	100	1979	USA GA	1500	1966			
USA ILLINOIS	10	1971	Indonesia BANDUNG	2000	1964				Rom PITESTI	14000	1980
USA ATUTR	250	1989	Pavia	250	1965				Rom PITESTI	500	1980
USA DOW	300	1967	Italy RC1	1000	1960	Mark F					
USA GA	250	1960	Jap MUSASHI	100	1963						
USA GA	250	1958	Jap RIKKIO	100	1961	USA AFFRI	1000	1962	Modiffied to TRIGA		
USA GSTR	1000	1969	Kor SEOUL	250	1962	USA DORF	250	1989			
USA NRF	1000	1977	Mal PUSPATI	1000	1962	USA NORTHR	1000	1963	Ger FRF2	1000	1977
USA RRF	250	1968	Slo LJUBLIANA	250	1966				Philipp PRR	3000	1963
USA MICHIGAN	250	1969	Turk ITU-TRR	250	1979				Taiwan THOR	2000	1961
USA UTAH	100	1975	USA KSU	250	1962				USA ARRR	250	1964
USA VET. ADMIN	20	1959	USA NARD	250	1977				USA TEXAS	1000	1962
USA UCI IRVIN	250	1969	USA OREGON	1100	1967				USA PUERTO RICO	2000	1960
USA UI	100	1960	USA COLUMBIA	250	1977				USA WASHINGTON	1000	1961
USA ARIZONA	100	1958	USA CORNEL	500	1962				USA WISCONSIN	1000	1961
USA UT Texas	1000	1963	USA TEXAS	1100	1992	Opera	iting		USA PSBR PENN	1000	1955
			USA DAVIS	2000	1990	Shutde	own				
			USA ILLINOIS	1500	1969	Decommis	ssioned				

Доступные для TRIGA-TRAP методы измерения масс атомов

 $m_{atom} = rac{\omega_{c,ref}}{\omega_{c}}(m_{ref} - m_{e}) + m_{e}$ В ловушках Пеннинга задача измерения массы атома сводится к измерению отношения частот движения измеряемого и опорного иона

0

S. Eliseev, K. Blaum, M. Block et al. *Phase-imaging ion-cyclotron*resonance measurements for short-lived nuclides. Phys. rev. lett., **110(8)**, (2013) 082501.

Ченмарев С. В. семинар ОФВЭ 22.10.2019

0

a.u.

Облучение образцов для ядерной физики и химии

•Основное облучение потоком нейтронов производится в «карусели» на 20 мест для 40 образцов, расположенной в верхней части отражателя

•Возможно использование камеры в центре активной зоны с большим потоком нейтронов

 Для работы с короткоживущими нуклидами есть две петли пневмопочты – устройства быстрой доставки облучённых образцов сжатым воздухом

FIG. 3. Vertical cross section view of the TRIGA Mainz and photo of reactor pool indicating the position of the four beam ports A-D. Ченмарев С. В. семинар ОФВЭ 22.10.2019

Наработка ¹⁶³Но при облучении мишени из эрбия нейтронами для определения точного Q-значения электронного захвата

Источники УХН на реакторе ТРИГА

Система TRIGA-TRAP

– Пока единственная установка на базе ловушки Пеннинга на реакторе для масс-спектрометрии продуктов деления

Ченмарев С. В. семинар ОФВЭ 22.10.2019

Газовый носитель

