Изучение свойств J/ψ на установке КЕДР

(по материалам диссертации Харламовой Т.А., ИЯФ им. Будкера, Новосибирск, 2019)

Дзюба Алексей / ЛМФКС ОФВЭ ПИЯФ НИЦ КИ

План доклада

• Оппонент на защите диссертации Харламовой Т.А.

• Защита состоится 3 декабря 2019 г. в ИЯФ им. Г.И. Будкера

• С текстом диссертации и автореферата можно ознакомится в библиотеке ПИЯФ

ЭЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ВЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ ИМ. Г. И. БУДКЕРА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

ХАРЛАМОВА Татьяна Александровна

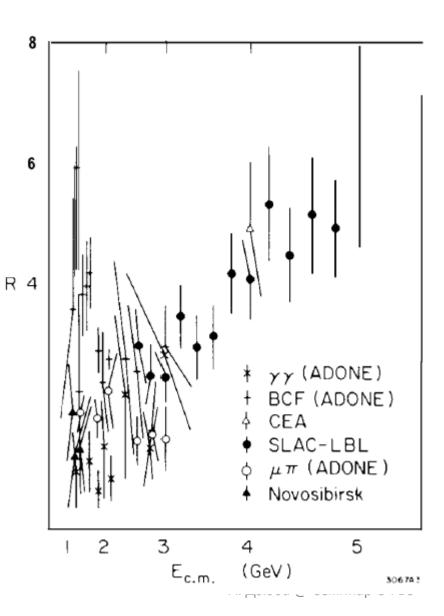
Измерение полной и парциальных ширин J/ψ -мезона с детектором КЕДР

01.04.16 - Физика атомного ядра и элементарных частиц

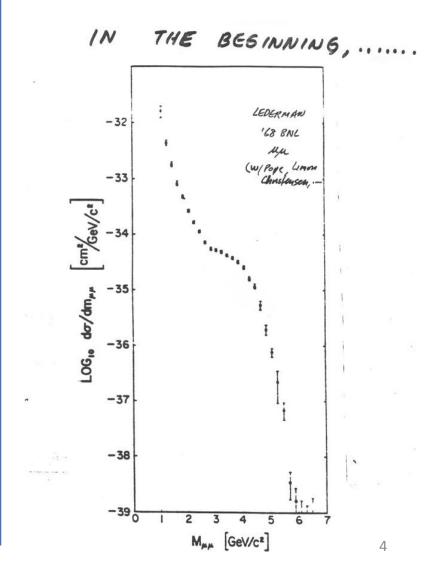
ДИССЕРТАЦИЯ

на соискание ученой степени кандидата физико-математических наук

> Научный руководитель: кандидат физико-математических наук Тодышев Корнелий Юрьевич

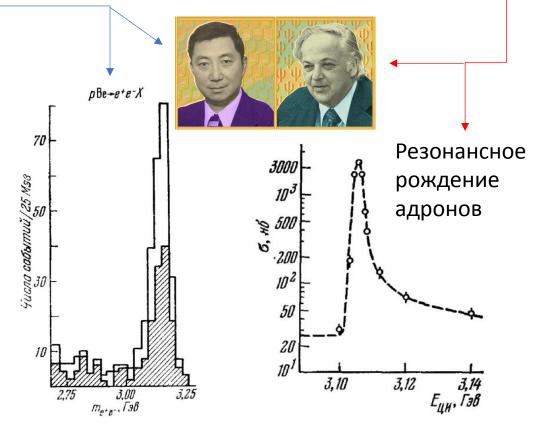

Основные результаты опубликованы

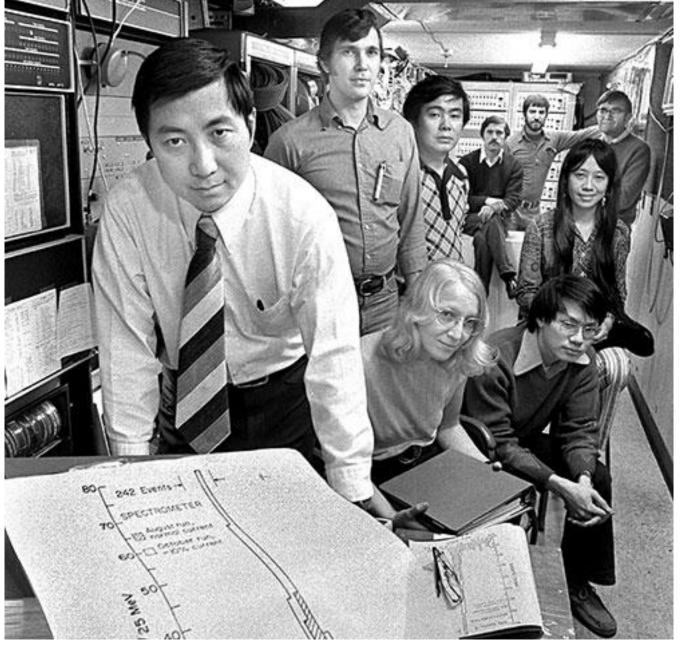
- 1. V. V. Anashin, . . . , T. A. Kharlamova *et al.* Measurement of $\Gamma_{ee}(J/\psi)$ with KEDR detector. Journal of High Energy Physics **05**, 119 (2018).
- 2. Т. А. Харламова. Измерение произведения лептонной ширины на вероятность распада J/ψ -мезона в адроны. Ядерная физика, **78**, 5, с. 399-402 (2015).
- 3. V. V. Anashin, ..., T. A. Kharlamova, et al. The KEDR detector. Physics of Particles and Nuclei 44, 4, p. 657–702 (2013).
- 4. V. V. Anashin, ..., T. A. Kharlamova, et al. (KEDR Collaboration). Final analysis of KEDR data on J/ψ and $\psi(2S)$ masses. Phys. Lett. B **749** 50 (2015).
- 5. V. V. Anashin, ..., T. A. Kharlamova et al.. Measurement of $\Gamma_{ee}(J/\psi)$ · $B(J/\psi \to e^+e^-)$ and $\Gamma_{ee}(J/\psi)$ · $B(J/\psi \to \mu^+\mu^-)$. Phys. Lett. B **685**, 134 (2010).
- 6. V. V. Anashin, ..., T. A. Kharlamova *et al.* Measurement of the ratio of the lepton widths $\Gamma_{ee}/\Gamma_{\mu\mu}$ for the J/ψ meson. Phys. Lett. B **731**, 227 (2014).


До открытия J/ψ

Отношения к вероятности рождения $\mu^+\mu^-$ пары к вероятностеи рождения адронов для электронпозитронных взаимодействий в зависимости от энергии этого взаимодействия

Рихтер, лето 1974


Ди-мюонный спектр возникающий при взаимодействии пучка протонов (29,5 ГэВ) с урановой мишенью **Phys. Rev. Lett. 25, 1523**



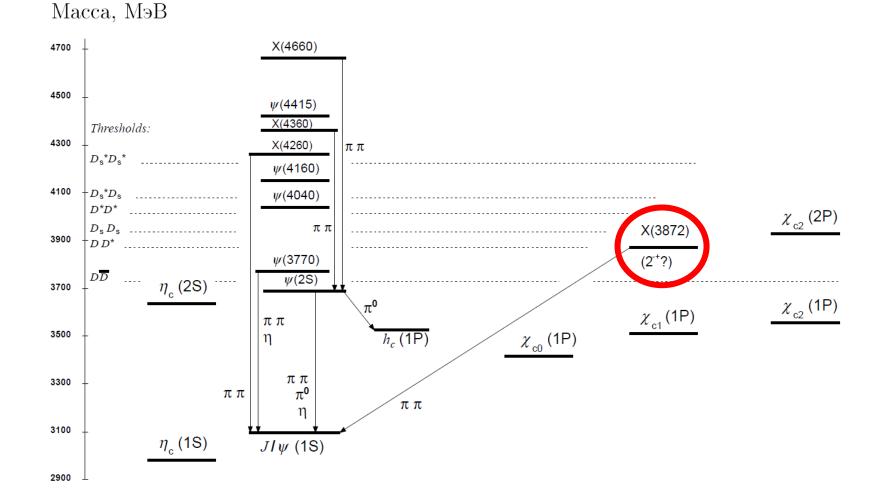
Открытие J/ψ

J. J. Aubert, $et\,al.$ Experimental Observation of a Heavy Particle J. Phys. Rev. Lett. ${\bf 33}\ (1974)$ p. 1404

J. E. Augustin, et al. Discovery of a Narrow Resonance in e^+e^- Annihilation Phys. Rev. Lett. **33** (1974) p. 1406

Семейство чармониевых состояний

on Normal meson



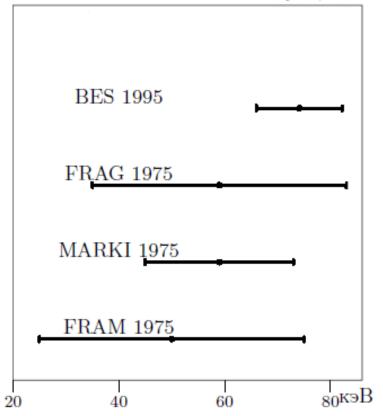
Pentaquark

9

II Hybrid meson

Зачем изучать «профиль» J/ψ ? (1/2)

- Полная и лептонная ширины J/ψ определяются фундаментальными свойствами сильного и электромагнитного взаимодействия с-кварков.
- Узкие резонансы дают вклад в поляризацию вакуума, т.е. используются для вычисления R, массы с кварка и адронного вклада в (g-2) мюона. Точное знание полной и парциальных ширин необходимы для точного расчета этих характеристик.
- Дальнейшее совершенствование потенциальных моделей и решёточных вычислений*, точность которых для вычисления лептонной ширины сопоставима с экспериментальной точностью.


* - ссылки в конце презентации

Зачем изучать «профиль» J/ψ ? (2/2)

- Ширина J/ψ необходимый «ингредиент» для извлечения константы связи бозона Хиггса с очарованными кварками, если будет зарегистрирован его распад на J/ψ и фотон (см. подробнее **PRD 88, 053003**).
- Параметры J/ψ мезона широко используются для калибровки детекторов БАК и определения эффективностей.
- Масса J/ψ используется для калибровки энергии ускорителей.

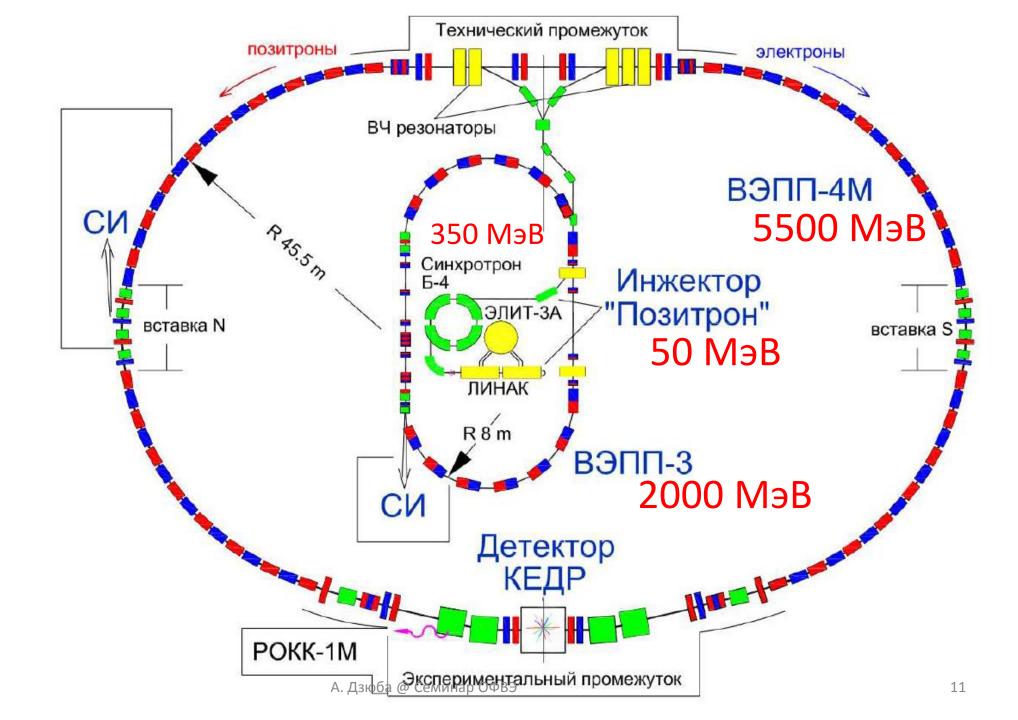
Мировые данные

 $\Gamma_{\mathrm{адр}}\left(J/\psi\right)$

KEDR

$$\Gamma_{e^+e^-}/\Gamma_{\mu^+\mu^-}(J/\psi) = 1.0022 \pm 0.0065,$$

Эксперимент	$\Gamma_{ee}(J/\psi)$, кэВ	$\Gamma(J/\psi)$, кэВ	Процесс
BES 95 [<u>41</u>]	5.14 ± 0.39	84.4 ± 8.9	$e^+e^- o$ адроны,
			$e^+e^- ightarrow e^+e^-,$
			$e^+e^- ightarrow \mu^+\mu^-$
BaBar 04 [<u>42</u>]	5.53 ± 0.18	92.7 ± 3.1	$e^+e^- o \mu^+\mu^-\gamma$ ISR
CLEO 06 [<u>43</u>]	5.68 ± 0.16	95.1 ± 2.7	$e^+e^- \rightarrow \mu^+\mu^-\gamma$ ISR
КЕДР 10 [1]	5.57 ± 0.13	93.2 ± 2.0	$e^+e^- ightarrow e^+e^-,$
			$e^+e^- ightarrow \mu^+\mu^-$
BES3 16 [44]	5.59 ± 0.09	93.7 ± 1.6	$e^+e^- \rightarrow \mu^+\mu^-\gamma$ ISR
PDG [<u>31</u>]	$5.55 \pm 0.14 \pm 0.02$	92.9 ± 2.8	
KEDR 18 [<u>46</u>]	5.55 ± 0.10	92.9 ± 1.8	$e^+e^- o$ адроны,
			$e^+e^- o e^+e^-$
Решёточные КХД-расчёты:			
HISQ [<u>27</u>]	5.48 ± 0.16	91.8 ± 2.7	
Twisted mass [30]	5.8 ± 0.2	97.1 ± 3.4	


Цели диссертационной работы Харламовой Т.А.

- прямое прецизионное измерение ширины J/ψ -мезона;
- измерение париальных ширин J/ψ -мезона и величины произведения электронной ширины на вероятность распада в адроны $\Gamma_{ee}(J/\psi)$ · $\mathcal{B}_{\text{адр}}(J/\psi)$;
- разработка метода идентификации заряженных частиц по их ионизационным потерям в дрейфовой камере.

Забегая вперед, основное замечание к диссертации состоит в том, что разработанный метод идентификации частиц по ионизационным потерям не использовался для получения полной и парциальной ширин J/ψ .

ВЭПП-4

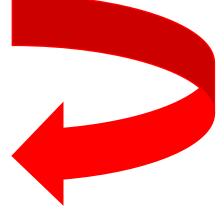
08.10.2019

Параметры ускорителя ВЭПП-4

Периметр кольца	366 м	
Радиус поворота	34.5 м	2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Максимальная энергия	5.5 ГэВ ——	Энергия ▶ взаимодействи пучков 11 ГэВ
Количество сгустков в пучке	2	
Продольный размер сгустка	5 см	Два
Максимальный ток в одном сгустке (E = 1.5 ГэВ)	1.5 мА	неза мето
Максимальная светимость (E = 1.5 Γ эВ)	$10^{30} \text{ cm}^{-2} \text{ c}^{-1}$	опре энер

- Метод резонансной деполяризации (точность в области 25 кэВ)
- Определение максимальной энергии гамма-квантов обратного комптоновского рассеяния лазерных фотонов (точность 100 кэВ)

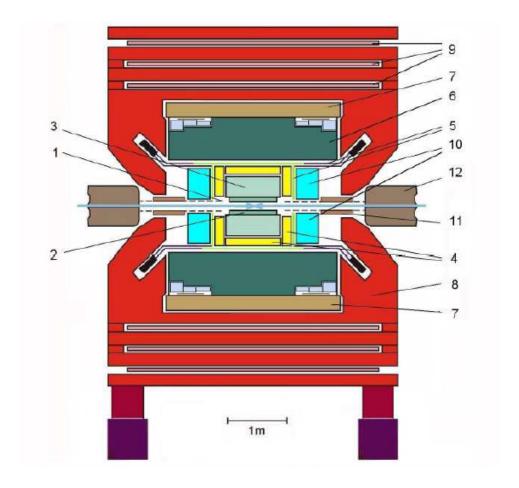
ависимых ода еделения ргии

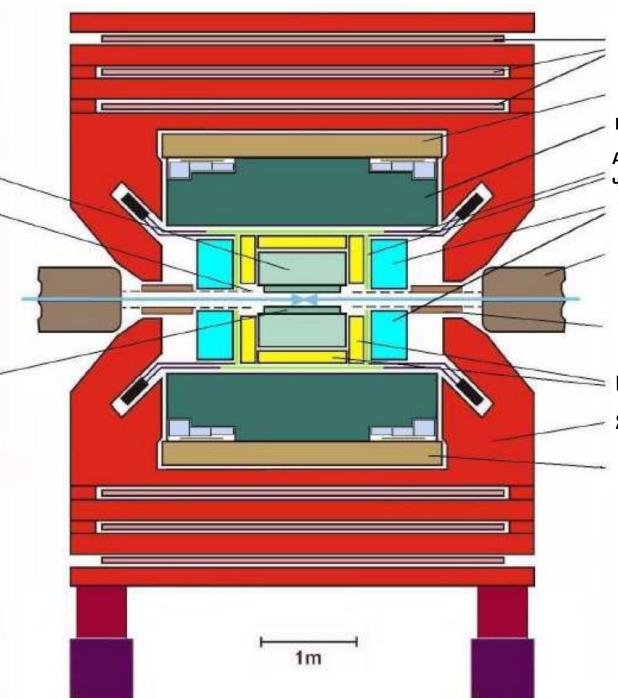


Параметры ускорителя ВЭПП-4

Периметр кольца	366 м
Радиус поворота	34.5 м
Максимальная энергия	5.5 ГэВ
Количество сгустков в пучке	2
Продольный размер сгустка	5 см
Максимальный ток в одном сгустке (E = 1.5 ГэВ)	1.5 мА
Максимальная светимость (E = 1.5 ГэВ)	$10^{30} \text{ cm}^{-2} \text{ c}^{-1}$

Метод регистрации фотонов тормозного излучения (два электромагнитных калориметра, сэндвич – 1 мм Pb / 5мм пластический сцинтиллятор, 18X₀, расположен в 18 м от детектора)




Рис. 2.2. Детектор КЕДР. Цифрами обозначены: 1 — вакуумная камера, 2 — вершинный детектор, 3 — дрейфовая камера, 4 — времяпролётная система, 5 — цилиндрический LKr-калориметр, 6 — обмотка магнита, 7 — мюонная система, 8 — ярмо магнита, 9 — торцевой СsI-калориметр, 10 — аэрогелевые черенковские счётчики.

КЕДР

Дрейфовая камера

Вакуумная камера

Вершинный детектор

Мюонная система

Сверхпроводящая катушка

Калориметр на жидком криптоне

Аэрогелевые пороговые черенковские счетчики Торцевой калориметр (CsI)

Компенсирующая катушка

Времяпролётная система Ярмо магнита

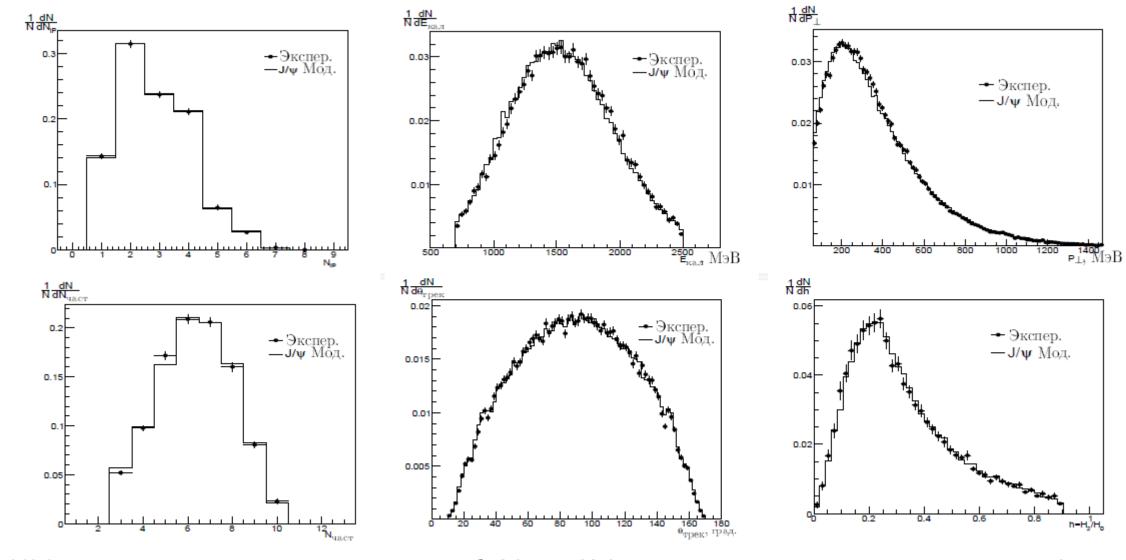
Сверхпроводящая катушка

Подавление электронной компоненты

Суммарное энерговыделение $700 < E_{\text{кал}} < 2500 \text{ M}_{2}\text{B}_{3}$:

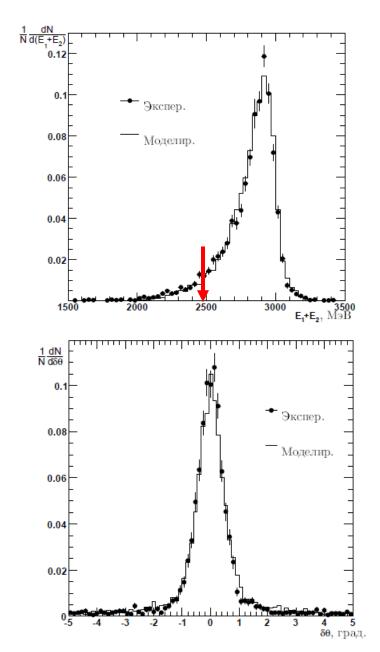

Энерговыделение в баррельном калориметре

 $E_{\rm LKr}/E_{\rm кал} > 0.15$;


Не менее трех треков в камере, включая один трек из первичной вершины

Кластеры в калориметре не приписанные к трекам

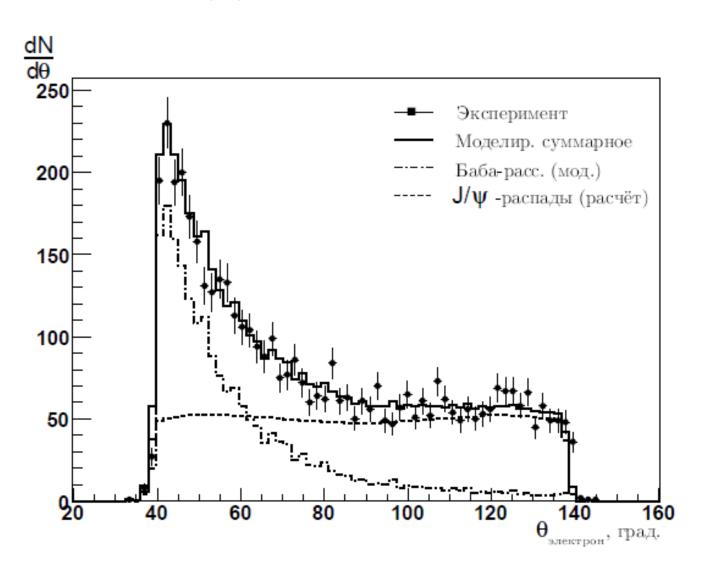
Валидация и определение эффективности по Монте-Карло



Адронные события (данные и модлирование)

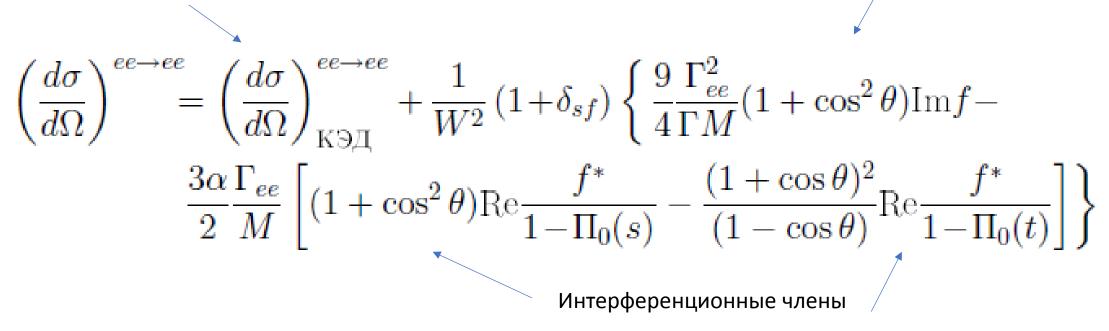
Отбор электронов

- наличие двух кластеров в калориметре, лежащих в диапазоне углов $40^{\circ} < \theta < 140^{\circ}$ от оси пучков и имеющих энерговыделение $E_{1,2}$ более 700 МэВ каждый;
- выделившаяся в калориметре энергия, не приписанная двум отобранным кластерам, менее 10% от полного энерговыделения;
- расколлинеарность по полярному θ и азимутальному ϕ углам менее 15°;
- сферичность события, вычисленная по заряженным трекам, менее 0.05;
- наличие двух или трех треков из места встречи в дрейфовой камере. Трек считался исходящим из места встречи, если для него прицельный параметр по отношению к оси пучков $\rho < 0.5$ см, координата на треке, ближайшая к оси пучков z < 13 см и поперечный импульс $P_{\perp} > 100$ МэВ.



Выделение резонансного вклада

Основным физическим фоном в электронном канале является нерезонансное упругое рассеяние (рассеяние Баба)


Выделяется по углу вылета электрона

Разделение использовалось в совместной подгонке параметров для определения парциальных ширин

Сечение упругого рассеяния

Нерезонансное сечение КЭД

«Резонансная функция»

$$f(W) = \frac{\pi \beta}{\sin \pi \beta} \left(\frac{W^2}{M^2 - W^2 - iM\Gamma} \right)^{1-\beta} \cdot \delta_{\text{sf}} = \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2} \right) + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{1}{36} \ln \frac{W}{m_e} \right),$$

Рад.поправки: Фадин, Кураев
$$\beta = \frac{4\alpha}{\pi} \left(\ln \frac{W}{m_{
m e}} - \frac{1}{2} \right)$$

$$\delta_{\rm sf} = \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2} \right) + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{1}{36} \ln \frac{W}{m_{\rm e}} \right) \,,$$

Сечение рождения адронов

Интерференция резонансного и нерезонансного вкладов

Сечение резонансного процесса

$$\sigma_{\mathrm{n.r.}}^{\mathrm{a,qp}}(W) = \frac{12\pi}{W^2} \left\{ \left(1 + \delta_{\mathrm{sf}} \right) \left[\frac{\Gamma_{ee} \tilde{\Gamma}_{\mathrm{a,qp}}}{\Gamma M} \mathrm{Im} f(W) - \frac{2\alpha \sqrt{R \, \Gamma_{ee} \tilde{\Gamma}_{\mathrm{a,qp}}}}{3W} \, \lambda \, \mathrm{Re} \frac{f^*(W)}{1 - \Pi_0} \right] \right. \\ \left. - \frac{\beta \, \Gamma_{ee} \tilde{\Gamma}_{\mathrm{a,qp}}}{2\Gamma M} \left[\left(1 + \frac{M^2}{W^2} \right) \, \mathrm{arctan} \, \frac{\Gamma W^2}{M(M^2 - W^2 + \Gamma^2)} \right] \right. \\ \left. - \frac{\Gamma M}{2W^2} \ln \frac{\left(\frac{M^2}{W^2} \right)^2 + \left(\frac{\Gamma M}{W^2} \right)^2}{\left(1 - \frac{M^2}{W^2} \right)^2 + \left(\frac{\Gamma M}{W^2} \right)^2} \right] \right\}, \qquad \text{Параметр характери эффектов (основная видент)}$$

Поправки на излучение жестких фотонов

Параметр характеризующий силу интерференционных эффектов (основная теоретическая систематика):

$$\lambda = \sqrt{\frac{R\mathcal{B}_{ee}}{\mathcal{B}_{\text{adp}}}} + \sqrt{\frac{1}{\mathcal{B}_{\text{adp}}}} \sum_{m} \sqrt{b_{m} \mathcal{B}_{m}^{(s)}} \langle \cos \phi_{m} \rangle_{\Theta} .$$

Связь эффективной и полной адронных ширин (суммирование по адронным каналам (m))

$$\tilde{\Gamma}_{\text{адр}} = \Gamma_{\text{адр}} \times \left(1 + \frac{2\alpha}{3(1 - \text{Re}\Pi_0)\mathcal{B}_{\text{адр}}} \sqrt{\frac{R}{\mathcal{B}_{ee}}} \times \sum_{m} \sqrt{b_m \mathcal{B}_m^{(s)}} \left\langle \sin \phi_m \right\rangle_{\Theta} \right)$$

Интегральная светимость

11 точек по энергии

Интегральная светимость 230 нбн - 1, что соответствует 250000 J/ψ

Светимость вычислялась по Бабарассеянию

Измерение энергии методом резонансной деполяризации (26 калибровочных заходов, точность интерполяции не превышает 25 кэВ)

Точка по	Энергия, МэВ	Интеграл светимости,
энергии		нбн ⁻¹
1	3107.206 ± 0.040	24.78 ± 0.08
2	3099.157 ± 0.040	8.34 ± 0.04
3	3098.704 ± 0.025	14.43 ± 0.06
4	3098.201 ± 0.025	18.84 ± 0.05
5	3097.652 ± 0.016	21.85 ± 0.06
6	3097.011 ± 0.012	16.22 ± 0.05
7	3095.929 ± 0.012	22.60 ± 0.07
8	3095.498 ± 0.020	23.03 ± 0.08
9	3093.355 ± 0.036	22.69 ± 0.08
10	3089.308 ± 0.040	14.65 ± 0.06
11	3096.223 ± 0.024	18.99 ± 0.07

Определение парциальных ширин

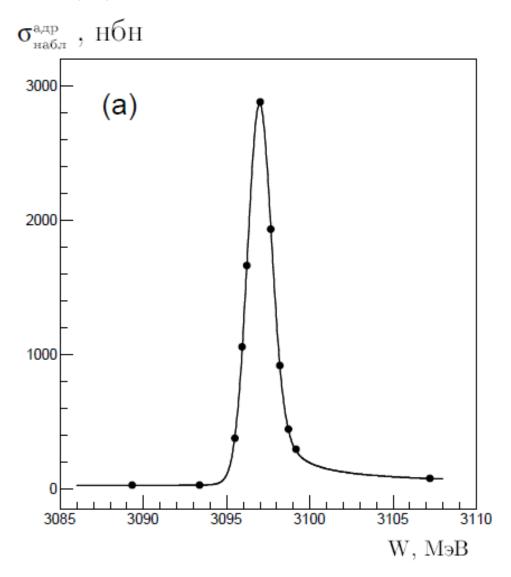
Адронный канал

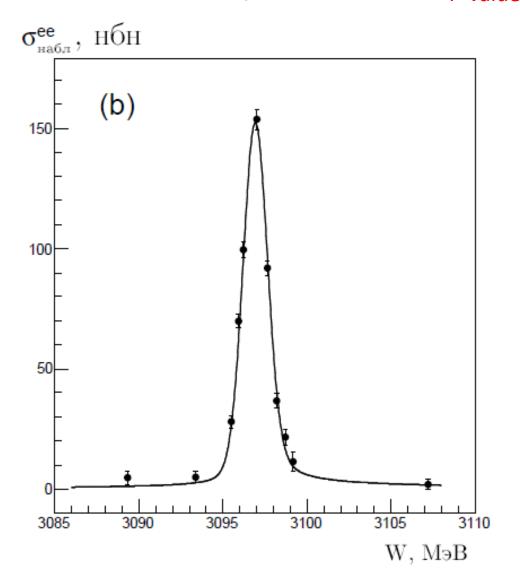
$$\chi^{2} = \sum_{i} \frac{(N_{i}^{\text{эксп}} - N_{i}^{\text{теор}})^{2}}{N_{i}^{\text{эксп}}} + \sum_{i} \sum_{j} \frac{(n_{ij}^{\text{эксп}} - n_{ij}^{\text{теор}})^{2}}{n_{ij}^{\text{эксп}}},$$

Электронный канал. События делятся по энергиям пучка (i) по углу (j, 10 точек в диапозоне от 40 до 140 градусов)

$$N_i^{\text{Teop}} = L_i \cdot \sigma^{\text{адр}}(W_i),$$

$$n_{ij}^{\text{Teop}} = L_i \cdot \sigma^{ee}(W_i, \theta_j).$$


$$\sigma^{ee}(W,\theta) = \varepsilon_{ee}(\theta) \left(\frac{d\sigma}{d\theta}\right)^{ee \to ee} (W).$$


Эффективности (триггерная и оффлайн) вычислялись путем Монте-Карло моделирования

$$\sigma^{\text{адр}}(W) = \varepsilon_{\text{адр}} \int \sigma_{\text{n.r.}}^{\text{адр}}(W') G(W, W') dW' + \sigma_{\text{конт}}(W), \qquad \sigma_{\text{конт}}(W) = \sigma_0 \cdot \left(\frac{m_{J/\psi}}{W}\right)^2.$$

Наблюдаемые сечения в области *J/* ψ

P-value 40%

Несколько вариантов подгонок

 $L_i = R_L \cdot L(E_i),$

Калибровочный коэффициент для расчёта светимости

Энергетический разброс пучка

	Параметр	Подгонка 1	Подгонка 2	Подгонка 3	Подгонка 4
	Γ (кэ B)			_	92.45 ± 1.40
	$\Gamma_{\! m aдp} \left(m к m m > m B m)$			81.37 ± 1.36	_
•	Γ_{ee} (кэВ)	5.550 ± 0.056		5.550 ± 0.056	5.549 ± 0.056
•	$\Gamma_{ee}\cdot \mathcal{B}_{ ext{адр}}$		4.884 ± 0.048	_	_
	$(\mathrm{Re}_{\mathrm{H}})$				
	$\Gamma_{ee}\cdot\mathcal{B}_{ee}$	0.3331 ± 0.0066	0.3331 ± 0.0066	_	_
	(Вен)				
	m (M \circ B)	3096.902 ± 0.004			
	R_L	0.973 ± 0.008			
	$\sigma_W (\mathrm{M} \ni \mathrm{B})$	0.692 ± 0.004			
	σ_0 (нбн)	28.70 ± 1.48			

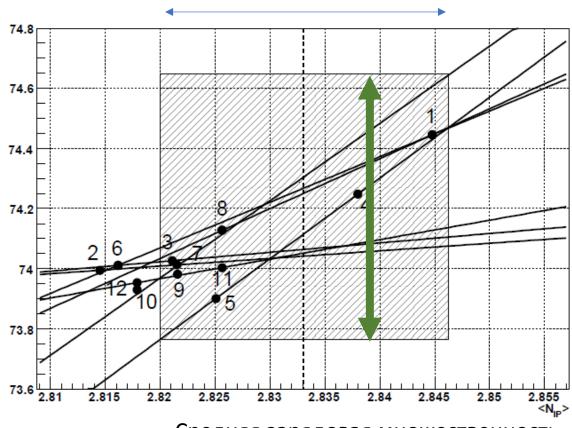
Систематические погрешности (светимость)

Источник погрешности	Неопределённость, $\%$
Вариация условий отбора	0.8
Выставка калориметра	0.2
Моделирование отклика калориметра	0.3
Эффективность регистрации $\varepsilon_{ee}(\theta)$	0.3
Статистика моделирования	0.2
Вычисление сечения	0.4
Относительная светимость	0.1
Квадратичная сумма	1.0

Суммарные «пучковые» погрешности 0.4%

Систематические погрешности (МС)

Схема математического моделирования


- 1. генерация исходного процесса, например, $e^+e^- \rightarrow q\bar{q}$;
- 2. излучение жестких глюонов по теории возмущений;
- 3. фрагментация партонов в адроны;
- 4. распад нестабильных частиц.

Точки - 12 различных вариантов моделирования (параметры генератора)

Линии - варьирование параметров

Пересечение с эксп. → погрешность

Эксперимент +- погрешность

Средняя зарядовая множественность

Систематические погрешности (МС)

Источник погрешности	Неопределённость, %	
Настройка генератора распадов	0.6	
Отбор событий для настройки генератора	0.3	
Статистическая ошибка моделирования	0.3	
Эффективность реконструкции треков	0.1	
Табличные вероятности распадов	0.1	
Квадратичная сумма	0.7	

Систематика (детекторная эффективность)

Источник погрешности	Неопределённость, %	
Триггерная эффективность	0.5	$91.45 \pm 0.05 \%$.
Подавление фона космических событий	0.3	
Ядерное взаимодействие	0.2	
Трековые P_{\perp}/θ разрешения	0.2	
Вариация условий отбора	0.5	
Квадратичная сумма	0.8	

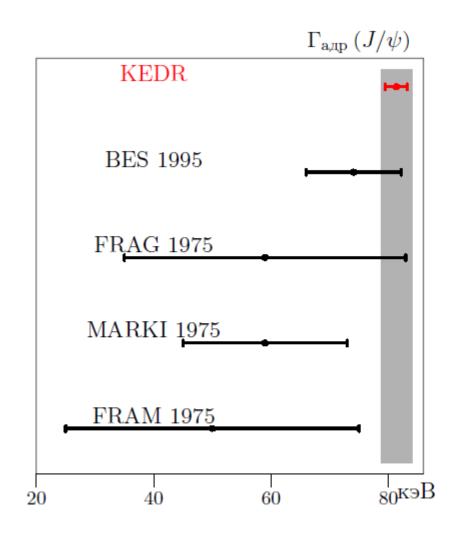
Триггер: первичный 100 МэВ в торцевых CsI (3500 Гц) Вторичный - два трека в вершинном детекторе или 1 трек+70МэВ в LKr

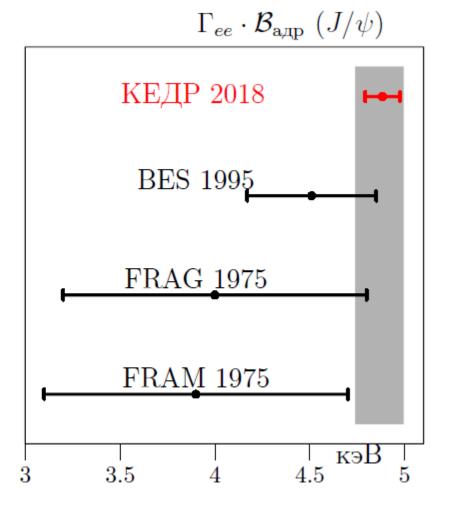
Полученные результаты

$$\Gamma(J/\psi) = 92.45 \pm 1.40 \pm 1.48 \,\mathrm{kgB},$$

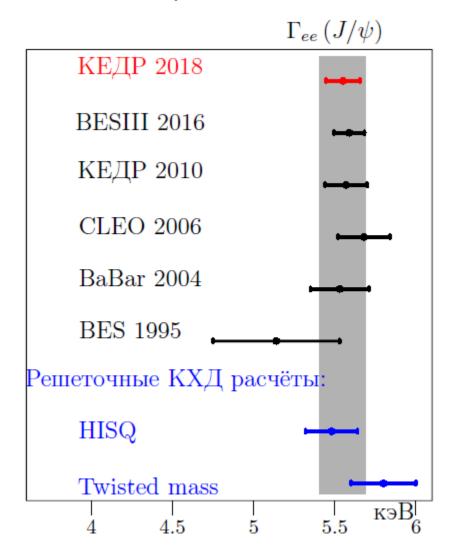
$$\Gamma_{\text{адр}}(J/\psi) = 81.37 \pm 1.36 \pm 1.30 \,\text{кэВ},$$

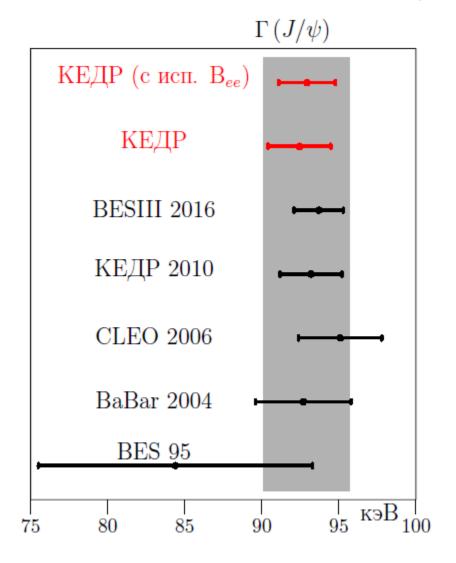
$$\Gamma_{ee}(J/\psi) = 5.550 \pm 0.056 \pm 0.089 \,\mathrm{kg}$$


$$\Gamma_{ee}(J/\psi) \cdot \mathcal{B}_{\text{адр}}(J/\psi) = 4.884 \pm 0.048 \pm 0.078 \,\text{кэB},$$


$$\Gamma_{ee}(J/\psi) \cdot \mathcal{B}_{ee}(J/\psi) = 0.3331 \pm 0.0066 \pm 0.0040 \,\mathrm{кэ}B.$$

Источник	Неопределённость, %	
	Γ , $\Gamma_{a,p}$,	$\Gamma_{ee} \cdot \mathcal{B}_{ee}$
	$\Gamma_{ee}, \Gamma_{ee} \cdot \mathcal{B}_{a,p}$	
Светимость	1.0	1.0
Моделирование распадов J/ψ	0.7	_
Отклик детектора	0.8	0.4
Ускорительные эффекты	0.4	0.4
Теоретические неопределённости	0.4	0.2
Квадратичная сумма	1.6	1.2


Note: Сильная корреляция!


Результаты (адроны, рекордная точность)

Результаты (ее, точность сопоставима с мировой)

Основные результаты полученные в диссертации

— Прямым способом измерены полная, адронная и электронная ширины J/ψ -мезона:

$$\Gamma(J/\psi)=92.45\pm1.40\pm1.48$$
 кэВ,
$$\Gamma_{\rm a,dp}(J/\psi)=81.37\pm1.36\pm1.30$$
 кэВ,
$$\Gamma_{ee}(J/\psi)=5.550\pm0.056\pm0.089$$
 кэВ,

С помощью отношения лептонных ширин J/ψ -мезона $\Gamma_{e^+e^-}/\Gamma_{\mu^+\mu^-}(J/\psi)$ вычислена мюонная ширина:

$$\Gamma_{\mu\mu}(J/\psi) = 5.538 \pm 0.111$$
 кэВ.

— Проведено наиболее актуальное измерение произведения электронной ширины на вероятность распада в адроны для J/ψ -мезона:

$$\Gamma_{ee}(J/\psi) \cdot \mathcal{B}_{\text{адр}}(J/\psi) = 4.884 \pm 0.048 \pm 0.078 \,$$
кэВ.

Основные результаты полученные в диссертации

Разработано программное обеспечение для калибровки ионизационных потерь dE/dx в дрейфовой камере детектора КЕДР, проводимой с помощью космических мюонов, а также для идентификации заряженных частиц по ионизационным потерям. Достигнутое разрешение составило 9.5 % для минимально ионизирующих частиц при нормальном падении, что лучше проектного разрешения 10.3 %.

Проделана огромная работа

Однако, разработанный метод идентификации частиц по ионизационным потерям не использовался для получения полной и парциальной ширин J/ψ .

Запасные слайды

Потенциальные модели чармония

E. Eichten, K. Gottfried, T. Kinoshita, et al. Charmonium: Comparison with experiment. Phys. Rev. D 21 (1980) p. 203–233.

W. Buchmuller, S.-H. H. Tye. Quarkonia and quantum chromodynamics. Phys. Rev. D **24** (1981) p. 132–156.

L. P. Fulcher. Perturbative QCD, a universal QCD scale, long-range spin-orbit potential, and the properties of heavy quarkonia. Phys. Rev. D 44 (1991) p. 2079–2084.

S. N. Gupta, W. W. Repko, C. J. Suchyta. Nonsingular potential model for heavy quarkonia. Phys. Rev. D **39** (1989) p. 974–977.

S. N. Gupta, J. M. Johnson, W. W. Repko, C. J. Suchyta. Heavy quarkonium potential model and the $1P_1$ state of charmonium. Phys. Rev. D **49** (1994) p. 1551–1555.

E. J. Eichten, C. Quigg. Mesons with beauty and charm: Spectroscopy. Phys. Rev. D 49 (1994) p. 5845–5856.

D. Ebert, R. N. Faustov, V. O. Galkin. Hyperfine Splitting and Leptonic Decay Rates in Heavy Quarkonia. Modern Physics Letters A **18** (2003) 23, p. 1597–1600.

P. Gonzalez, A. Valcarce, H. Garcilazo, J. Vijande. Heavy meson description with a screened potential. Phys. Rev. D 68 (2003) p. 034007.

S. F. Radford, W. W. Repko. Potential model calculations and predictions for heavy quarkonium. Phys. Rev. D **75** (2007) p. 074031.

A. M. Badalian, I. V. Danilkin. Di-electron and two-photon widths in charmonium. Physics of Atomic Nuclei **72** (2009) 7, p. 1206–1213.

L. Cao, Y.-C. Yang, H. Chen. Charmonium States in QCD-Inspired Quark Potential Model Using Gaussian Expansion Method. Few-Body Systems **53** (2012) 3, p. 327–342.

M. Shah, A. Parmar, P. C. Vinodkumar. Leptonic and digamma decay properties of S-wave quarkonia states. Phys. Rev. D 86 (2012) p. 034015.

S. Patel, P. C. Vinodkumar, S. Bhatnagar. Decay rates of charmonia within a quark-antiquark confining potential. Chinese Physics C 40 (2016) 5, p. 053102.

37

Вычисление КХД на решетке

G. C. Donald *et al.* (HPQCD Collaboration). Precision tests of the J/ψ from full lattice QCD: Mass, leptonic width, and radiative decay rate to η_c . Phys. Rev. D **86** (2012) 094501.

G. Bali, S. Collins, D. Mohler, et al. Charmonium resonances on the lattice.
EPJ Web Conf. 175 (2018) p. 05020.

G. Bailas, B. Blossier, V. Morenas. Some hadronic parameters of charmonia in $N_f = 2$ lattice QCD. Eur. Phys. J. C 78 (2018) 1018.

D. Becirevic, F. Sanfilippo. Lattice QCD study of the radiative decays $J/\psi \rightarrow \eta_c \gamma$ and $h_c \rightarrow \eta_c \gamma$. J. High Energ. Phys. **01** (2013) 28.