Precision Measurements of Fundamental Interactions with (Anti)neutrinos

R. Petti

University of South Carolina, USA

PNPI physics seminar Gatchina, March 26, 2019

I Introduction

- + Electron and ν probes
- + Status of ν scattering experiments
- **II** Requirements for Precision Physics
 - Statistics vs. resolution
 - ✦ Control of the targets
 - ✦ Control of the fluxes

III Precision Measurements

- Measurements of $\sin^2 \theta_W$
- Model uncertainties
- ✦ Relevance of measurements
- The Adler sum rule
- + Measurement of Δs
- Tests of isospin symmetry
- **IV** Summary

<u>PRECISION PHYSICS: e^{\pm} PROBE</u>

 Reference EW studies in e⁺e⁻ at LEP by enhancing weak σ at the Z⁰ mass pole:

	Number of Z^0	Number of W	
LEP	18×10^6	80×10^3	

 \implies High-statistics electroweak measurements at LEP/SLC reached a precision $< 10^{-3}$.

◆ Reference QCD studies in ep at HERA with measurements ~ 10⁻² of the nucleon structure complementary to fixed target from JLab, COMPASS, SLAC, NMC, BCDMS etc.

 \implies Can a modern $\nu(\bar{\nu})$ facility deliver comparable precisions unveiling discovery potential in precision tests of fundamental interactions?

PRECISION PHYSICS: $\nu/\bar{\nu}$ PROBE

Neutrinos offer an ideal probe for EW physics and partonic/hadronic structure of matter:

- Clean probe since only weak interaction;
- Complete flavor separation in Charged Current interactions $(d/u, s/\bar{s}, \bar{d}/\bar{u})$
- Separation of valence (xF_3) and sea (F_2) distributions, complementary to e^{\pm} .

 \implies Potential so far only partially explored due to 3 (main) issues

STATISTICS

Tiny cross-sections with limited beam intensities required massive & coarse detectors.

► TARGETS

Need of massive nuclear targets did not allow a precise control of the interactions.

♦ FLUXES

Incoming (anti)neutrino energy unknown implied substantial flux uncertainties.

STATISTICS vs. RESOLUTION

Existing detectors compromise between high (low) statistics and high (coarse) resolution are affected by systematics on E_{μ} , $E_{\rm H}$ scales, nuclear targets & flux

Experiment	Mass	$ u_{\mu}$ CC Stat.	Target	$E_{ u}$ (GeV)	ΔE_{μ}	$\Delta E_{\rm H}$
CDHS	750 t	10^{7}	p,Fe	20-200	2.0%	2.5%
BEBC	various	5.7×10^4	p,D,Ne	10-200		
CCFR	690 t	$1.0 imes 10^6$	Fe	30-360	1.0%	1.0%
NuTeV	690 t	1.3×10^{6}	Fe	30-360	0.7%	0.43%
CHORUS	100 t	3.6×10^{6}	Emul.,Pb	10-200	2.5%	5.0%
NOMAD	2.7 t	1.3×10^{7}	C,Fe	5-200	0.2%	0.5%
MINOS ND	980 t	3.6×10^{6}	Fe	3-50	2-4%	5.6%
T2K ND	1.9 t	10^{5}	$CH_{,}H_{2}O$	0.2-5	0.6%	2-4%
MINER ν A	5.4 t	10^{7}	CH, C, Fe, Pb	1-30	2%	

 \implies Precision measurements require close to 10^8 CC AND high resolution $\Delta E_{\mu} \sim 0.2\%$

Precision EW and QCD studies prefer high energy (anti)neutrinos

⇒ Modern beam facilities optimized at lower energies for detection of oscillations

- Available LBNF Long-Baseline Neutrino Facility beam optimized for FD ν_τ appearance: Conceivable dedicated run after 5y FHC + 5y RHC with the "standard" beams optimized for CP
 - LBNF: 120 GeV p, 1.2 MW, 1.1×10²¹ pot/y, ND at 574m;
 - LBNF upgrade: 120 GeV p, 2.4 MW (x 2), $\sim 3 \times 10^{21}$ pot/y.
- + Assume a modest 2y FHC run with ν_{τ} optimized beam & LBNF upgrade
- \implies Can afford a high resolution ND of a few tons and still collect desired statistics $\sim 10^8$

CONTROL OF TARGETS

• Precision EW & QCD measurements require control of ν -target(s) as in e^{\pm} DIS:

- Massive ν detectors intrinsically limited by the knowledge of the target composition & materials;
- Possible accurate control of target(s) by separating target(s) from active detector(s);
- Thin targets spread out uniformly within tracker by keeping low density $\left|
 ight.
 ight.$
- \implies Straw Tube Tracker (STT) in $B \sim 0.6 T$ with 4π electromagnetic calorimeter

- Radiator targets (100% purity) account for > 95% of STT mass and can be tuned to achieve desired statistics & resolutions.
- Separation from excellent vertex, angular & timing resolutions.
- Radiators can be replaced by thin nuclear targets: C, Ca, Ar, Fe, etc.

Roberto Petti

♦ Need to understand nuclear modifications & corresponding systematic uncertainties:

- Use of heavy target material(s) unavoidable to achieve desired statistics;
- Complexity of weak current (vs. EM) + substantial nuclear modifications (primary & FSI);
- Cannot rely only on model corrections for precision EW & QCD studies.

⇒ Necessary condition availability of (complementary) free nucleon target (hydrogen)

NuTeV Coll., PRD 74 (2006) 012008

N. Kalantarians, C. Keppel, M.E. Cristy, PRC 96 (2017) 032201

• Novel technique to measure $\nu(\bar{\nu})$ -Hydrogen by subtracting CH₂ and C targets:

- Exploit high vertex, angular & time resolutions of STT to locate interactions within targets;
- Model-independent data subtraction of dedicated C (graphite) target from main CH₂ target;
- Kinematic selection provides clean H samples of inclusive & exclusive CC topologies with 80-92% purity and >90% efficiency before subtraction.
- \implies Viable and realistic alternative to liquid/gaseous H_2 detectors

Roberto Petti

CONTROL OF FLUXES

◆ Relative $\nu_{\mu}, \bar{\nu}_{\mu}$ flux vs. energy from low- ν_{0} method: $N(E_{\nu}, E_{\text{Had}} < \nu_{0}) \propto \Phi(E_{\nu}) f_{c}(\frac{\nu_{0}}{E_{\nu}})$ correction factor $f_{c}(\nu_{0}/E_{\nu}) \rightarrow 1$ for $\nu_{0} \rightarrow 0$.

- Used by past and current experiments with nuclear targets from C to Pb:
 - For $\nu_0 \leq 1$ GeV sample dominated by inclusive QE+RES interactions;
 - Need precise muon energy scale and good resolution at low ν values;
 - Nuclear effects on f_c , E_{Had} reconstruction & acceptance of cut $\nu < \nu_0$.

⇒ Intrinsically limited by the (large especially in Ar like DUNE) uncertainties from nuclear smearing (neutrons, FSI, etc.)

- + Exclusive $\nu(\bar{\nu})$ -Hydrogen topologies dramatically reduce hadronic uncertainties:
 - Well defined cross-section for single exclusive process on H;
 - Remove bottleneck from nuclear smearing.

• Relative ν_{μ} flux vs. E_{ν} from exclusive $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ on Hydrogen:

- Select well reconstructed $\mu^- p \pi^+$ topology on H ($\delta p/p \sim 3\%$);
- Cut $\nu < 0.5(0.75)$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence;
- Systematic uncertainties dominated by muon energy scale ($\Delta E_{\mu} \sim 0.2\%$ in STT from K₀ mass).

H. Duyang, B. Guo, S.R. Mishra, RP, arXiv:1902.09480 [hep-ph]

• Relative $\bar{\nu}_{\mu}$ flux vs. E_{ν} from exclusive $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ QE on Hydrogen:

- E_{ν} from QE kinematics on H and detection of interacting neutrons: ~25 (45)% in STT (ECAL);
- Cut $|\nu < 0.1(0.25)$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence;
- Systematics and total uncertainties comparable to relative ν_{μ} flux from $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ on H.

H. Duyang, B. Guo, S.R. Mishra, RP, arXiv:1902.09480 [hep-ph]

• Absolute $\bar{\nu}_{\mu}$ flux from QE on Hydrogen $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$:

$$\frac{d\sigma}{dQ^2} \mid_{Q^2=0} = \frac{G_F^2 \cos^2 \theta_c}{2\pi} \left[F_V^2(0) + G_A^2(0) \right]$$

where terms in $(m_l/M)^2$ are neglected.

- Select reconstructed QE events with small Q^2 values: $\sim 135,000$ events with $Q^2 < 0.05$ GeV²;
- At $Q^2 = 0$ QE cross-section determined by neutron β -decay to a precision $\ll 1\%$;
- ⇒ Calibrate absolute n detection efficiency with dedicated irradiation of STT & ECAL

Roberto Petti

GENERAL PURPOSE PHYSICS FACILITY

- Possible to solve the main issues of neutrino experiments (statistics, control of targets & fluxes) largely filling the precision gap with electron experiments.
 - ⇒ Exploit the unique properties of the (anti)neutrino probe to study fundamental interactions & structure of nucleons and nuclei
- ◆ Turn the DUNE ND site into a general purpose v&v physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts:
 - Measurement of $\sin^2 \theta_W$ and electroweak physics;
 - Precision tests of isospin physics & sum rules (Adler, GLS);
 - Measurements of strangeness content of the nucleon $(s(x), \bar{s}(x), \Delta s, \text{ etc.})$;
 - Studies of QCD and structure of nucleons and nuclei;
 - Precision tests of the structure of the weak current: PCAC, CVC;
 - Measurement of nuclear physics and (anti)-neutrino-nucleus interactions;
 - Precision measurements of cross-sections and particle production; etc.
 - Searches for New Physics (BSM)
 - ⇒ Significant discovery potential & hundreds of diverse physics topics
- Synergy with PNPI scientific program in High Energy Physics & Nuclear Physics

MEASUREMENT OF $\sin^2 \theta_W$ FROM ν N DIS

NC/CC RATIO in ν -N Deep Inelastic Scattering:

$$R^{\nu} \stackrel{\text{def}}{\equiv} \frac{\sigma_{\text{NC}}^{\nu}}{\sigma_{\text{CC}}^{\nu}} = \rho^2 \left[\frac{1}{2} - \sin^2 \theta_W + \frac{5}{9} \sin^4 \theta_W (1 + \frac{\sigma_{\text{CC}}^{\bar{\nu}}}{\sigma_{\text{CC}}^{\nu}}) \right]$$

sensitivity $\delta \sin^2 \theta_W / \sin^2 \theta_W \sim 1.5 \delta R^{\nu} / R^{\nu}$

- Events with $E_{had} > 5$ GeV for higher Q^2 (CHARM used 4 GeV);
- High purity NC sample with NC/CC kinematic selection (NOMAD).

- Dominated by systematics. Model systematics constrained by dedicated in-situ measurements:
 - Charm production from both dileptons (~ 100k μμ&μe) and exclusive charmed hadrons (e.g., D^{*+}, D_s, Λ_c);
 - Structure function measurement and QCD analysis of ND data (PDFs, High Twists, R_L, nuclear effects, etc.)

Process	$E_{\rm had} > 5~{ m GeV}$		
Standard CP optimized:			
$ u_{\mu}$ CC (5 y)	3×10 ⁶		
Optimized $ u_{ au}$ appearance:			
$ u_{\mu}$ CC (2 y)	19 ×10 ⁶		
TOTAL W^+	22 ×10 ⁶		
TOTAL Z^0	7×10 ⁶		

15

Possible to reduce theoretical uncertainties with Paschos-Wolfenstein relation:

$$R^{-} \stackrel{\text{def}}{\equiv} \frac{\sigma_{\rm NC}^{\nu} - \sigma_{\rm NC}^{\bar{\nu}}}{\sigma_{\rm CC}^{\nu} - \sigma_{\rm CC}^{\bar{\nu}}} = \rho^2 \left(\frac{1}{2} - \sin^2 \theta_W\right)$$

assumptions: isospin (charge) symmetry, $s(x) = \bar{s}(x)$, cancellation of nuclear effects. \implies Requires dedicated ν **AND** $\bar{\nu}$ beams with small contaminations

\bullet R^- experimentally challenging:

 ν and $\bar{\nu}$ beams NOT simultaneous & different spectra and acceptances for ν and $\bar{\nu}$.

• NuTeV measured $\sin^2 \theta_W$ to 0.7% by measuring separately R^{ν} and $R^{\overline{\nu}}$:

 $\sin^2 \theta_W^{\text{on-shell}} \equiv 1.0 - \frac{M_W^2}{M_Z^2} = 0.2277 \pm 0.0013 \text{(stat.)} \pm 0.0009 \text{(syst.)}$ SM from LEPEWWG = 0.2227 ± 0.00037

$$R^{\nu} = \frac{\sigma_{\rm NC}^{\nu}}{\sigma_{\rm CC}^{\nu}} = 0.3916 \pm 0.0013 \quad (SM \ 0.3950) \qquad \Longrightarrow A \frac{discrepancy \ of \ 3\sigma}{in \ the \ NEUTRINO \ data} \text{ with } SM \\ R^{\bar{\nu}} = \frac{\sigma_{\rm NC}^{\bar{\nu}}}{\sigma_{\rm CC}^{\bar{\nu}}} = 0.4050 \pm 0.0027 \quad (SM \ 0.4066)$$

A DIRECT PROBE OF STRANGE SEA

• Charm production in ν and $\bar{\nu}$ DIS provides a clean and direct access to s(x) and $\bar{s}(x)$

$$F_{2,c}(x,Q) = 2\xi \left[|V_{cs}|^2 s(\xi,\mu) + |V_{cd}|^2 \frac{u(\xi,\mu) + d(\xi,\mu)}{2} \right]$$
$$\xi = x \left(1 + m_c^2/Q^2 \right), \ \mu = \sqrt{Q^2 + m_c^2}$$

where simple LO approximations are given for illustration purpose

$$\begin{cases} \nu : s/(d_v + d_s) \to c \simeq 50\% \\ \bar{\nu} : \bar{s}/\bar{d}_s \to \bar{c} \simeq 90\% \end{cases}$$

Roberto Petti

♦ NOMAD measurement allows reduction of s(x) uncertainty down to ~ 3%: $\kappa_s = \int_0^1 x(s+\bar{s}) dx / \int_0^1 x(\bar{u}+\bar{d}) dx = 0.591 \pm 0.019 \qquad (\text{NPB 876 (2013) 339})$

- ◆ Improved determination of the $\overline{\text{MS}}$ mass from global PDF fits: $m_c(m_c) = 1.252 \pm 0.018 \pm 0.010(QCD) \qquad (S. Alekhin et al., PRD 96 (2017) 014011)$
- Recent ATLAS claims of enhanced s(x) seems related to overconstrained PDF parameterization (S. Alekhin et al., PLB 777 (2018) 134, PRD 91 (2015) 094002)

HIGH TWIST CONTRIBUTIONS

- No evidence for sizeable twist-6 terms from global fit to e, μ DIS and DY data (upper limit ~ 0.02 well below twist-4)
- HT similar in F_T and F₂ indicate HT contributions to F_L very small
- ← HT on F_2 and F_T from CHORUS $\nu(\bar{\nu})$ cross-section data consistent with charged leptons after charge rescaling.
- Simultaneous extraction of HT in xF₃ from neutrino data
 - S. Alekhin, S. Kulagin and R.P., arXiv:0710.0124 [hep-ph], arXiv:0810.4893 [hep-ph]

Roberto Petti

PECULIARITY OF THE WEAK CURRENT

 \implies Substantial difference with respect to charged lepton scattering.

S. Kulagin and R.P., PRD 76 (2007) 094023

MEASUREMENT OF $\sin^2 \theta_W$ FROM ν -e

 Actio of ve → ve and ve → ve NC elastic scattering, which is free from hadronic uncertainties:

 $R_{\nu e} \stackrel{\text{def}}{\equiv} \frac{\sigma(\nu e^{-})}{\sigma(\bar{\nu} e^{-})} = 3 \frac{1 - 4\sin^2 \theta_W + 16/3\sin^4 \theta_W}{1 - 4\sin^2 \theta_W + 16\sin^4 \theta_W}$

sensitivity $\delta \sin^2 \theta_W / \sin^2 \theta_W \sim 0.6 \delta R_{\nu e} / R_{\nu e}$.

- Signal sharply peaked at small $E_e \theta_e^2$ of electron;
- Small backgrounds in STT: $\nu_e \ QE \ (3\%) \ \& \ NC \ \pi^0 \ (2\%)$.

 Benefits from combination of light high resolution (5 t) and massive LAr ND detectors (25 t)

- Dominated by statistics. Need high resolution detectors
 & accurate flux measurements:
 - Electron systematics cancel in the ratio;
 - Background rejection & calibration (e^{\pm} ID, resolution);
 - ν and $\bar{\nu}$ flux measurements from $\nu(\bar{\nu})$ -H.

Process	Evts (5 t)	
Standard CP optimized:		
u e NC (5 y)	5×10 ³	
$ar{ u}e$ NC (5 y)	3×10 ³	
Optimized $ u_{ au}$ appearance:		
u e NC (2 y)	10×10 ³	
$ar{ u}e$ NC (2 y)	6×10 ³	

RELEVANCE OF $\sin^2 \theta_W$ MEASUREMENTS

Sensitivity expected from ν scattering in DUNE comparable to the Collider precision:

- FIRST single experiment to directly check the running of $\sin^2 \theta_W$;
- <u>Different scale</u> of momentum transfer with respect to LEP/SLD (off Z^0 pole);
- Direct measurement of neutrino couplings to Z^0 \implies Only other measurement LEP $\Gamma_{\nu\nu}$
- Independent cross-check of the NuTeV $\sin^2 \theta_W$ anomaly (~ 3σ in ν data) in a similar Q^2 range.

• Different independent channels: • $\mathcal{R}^{\nu} = \frac{\sigma_{\mathrm{NC}}^{\nu}}{\sigma_{\mathrm{CC}}^{\nu}}$ in ν -N DIS (~0.35%)

•
$$\mathcal{R}_{
u e} = rac{\sigma_{
m NC}^{ar{
u}}}{\sigma_{
m NC}^{
u}}$$
 in u -e⁻ NC elastic (~1%)

- NC/CC ratio $(\nu p \rightarrow \nu p)/(\nu n \rightarrow \mu^- p)$ in (quasi)-elastic interactions
- NC/CC ratio ρ^0/ρ^+ in coherent processes

 \implies Combined EW fits like LEP

 Further reduction of uncertainties depending upon beam exposure

ADLER SUM RULE & ISOSPIN PHYSICS

The Adler integral provides the ISOSPIN of the target and is derived from current algebra:
S_A(Q²) = ∫₀¹ dx/2x (F₂^{νp} - F₂^{νp}) = I_p
At large Q² (quarks) sensitive to (s - s̄) asymmetry, isospin violations, heavy quark production
Generalize the integral to nuclear targets and test nuclear effects (S. Kulagin and R.P. PRD 76 (2007) 094023)

 \implies Precision test of S_A at different Q^2 values

- Only measurement available from BEBC based on 5,000
 vp and 9,000 vp (D. Allasia et al., ZPC 28 (1985) 321)
- ◆ Direct measurement of F₂^{νn}/F₂^{νp} free from nuclear uncertainties and comparisons with e/µ DIS
 ⇒ d/u at large x and verify limit for x → 1

Process	$ u(ar{ u}) ext{-}H$	
Standard CP optimized:		
$ u_{\mu}$ CC (5 y)	3.4×10 ⁶	
$ar{ u}_{\mu}$ CC (5 y)	$2.5 imes 10^{6}$	
Optimized $ u_{ au}$ appearance:		
$ u_{\mu}$ CC (2 y)	$6.5 imes10^{6}$	
$ u_{\mu}$ CC (2 y)	4.3×10^{6}	

MEASUREMENT OF Δs

NC ELASTIC SCATTERING *neutrino-nucleus is sensitive to the strange quark* contribution to nucleon spin, Δs , through axial-vector form factor G_1 :

$$G_1 = \left[-\frac{G_A}{2} \tau_z + \frac{G_A^s}{2} \right]$$

At $Q^2 \to 0$ we have $d\sigma/dQ^2 \propto G_1^2$ and the strange axial form factor $G_A^s \to \Delta s$.

- Combined analysis with parity-violating electron scattering data (HAPPEX, G0, A4) allows an accurate determination of all three strange form factors G^s_E, G^s_M, G^s_A.
- Measure NC/CC RATIOS as a function of Q^2 to reduce systematics ($\sin^2 \theta_W$ as well):

$$R_{\nu} = \frac{\sigma(\nu p \to \nu p)}{\sigma(\nu n \to \mu^{-} p)}; \qquad R_{\bar{\nu}} = \frac{\sigma(\bar{\nu} p \to \bar{\nu} p)}{\sigma(\bar{\nu} p \to \mu^{+} n)}$$

- Compare axial current charge radius r_A^2 with muon capture in muonic hydrogen [Rept. Prog. Phys. 81 (2018) 096301];
- Expect $\sim 2 \times 10^6 \nu$ NC and $\sim 1 \times 10^6 \bar{\nu}$ NC events (BNL E734: 951 νp and 776 $\bar{\nu} p$);
- Precision measurement over an extended Q^2 range reduces systematic uncertainties from the Q^2 dependence of vector $(F_{1,2}^s)$ and axial (G_A^s) strange form factors.

NUCLEAR MODIFICATIONS OF NUCLEON PROPERTIES

• Availability of ν -H & $\overline{\nu}$ -H allows direct measurement of nuclear modifications of $F_{2,3}$:

$$R_A \stackrel{\text{def}}{\equiv} \frac{2F_{2,3}^{\nu A}}{F_{2,3}^{\bar{\nu}p} + F_{2,3}^{\nu p}}(x, Q^2) = \frac{F_{2,3}^{\nu A}}{F_{2,3}^{\nu N}}$$

- Comparison with e/μ DIS results and nuclear models;
- Study flavor dependence of nuclear modifications using $\nu \& \bar{\nu}$;
- Effect of the axial-vector current.
- \bullet Study nuclear modifications to parton distributions in a wide range of Q^2 and x.
- ◆ Study non-perturbative contributions from High Twists, PCAC, etc. and quark-hadron duality in different structure functions $F_2, xF_3, R = F_L/F_T$.
- Nuclear modifications of nucleon form factors e.g. using NC elastic, CC quasi-elastic and resonance production.
- Coherent meson production off nuclei in CC & NC and diffractive physics.

- Limited $\nu(\bar{\nu})$ data on ratios $\sigma^{A'}/\sigma^A$ (BEBC, MINER νA) and differential cross-sections $d\sigma^2/dxdy$ (NuTeV, CCFR, CHORUS)
- ♦ Model predictions agree with data in the bulk of phase space but show discrepancies at x < 0.05 and x > 0.5 (S. Kulagin and R.P., NPA 765 (2006) 126; PRD 76 (2007) 094023).
 ⇒ Need new precision measurements with both v AND v

Substantial nuclear smearing rapidly varying in oscillation range

Understanding of nuclear smearing (response function for unfolding) crucial for systematics in DUNE oscillation analyses

TESTS OF ISOSPIN (CHARGE) SYMMETRY

★ Extraction of sin² θ_W from νN DIS sensitive to violations of isospin symmetry in nucleon, u_{p(n)} ≠ d_{n(p)}. Measure ν AND ν̄ on HAND C TARGETS: $R_{2,3}^{H} \stackrel{\text{def}}{\equiv} \frac{F_{2,3}^{\bar{\nu}p}}{F_{2,3}^{\nu p}}(x,Q^{2}) = \frac{F_{2,3}^{\nu n}}{F_{2,3}^{\nu p}}; \qquad R_{2,3}^{C} \stackrel{\text{def}}{\equiv} \frac{F_{2,3}^{\bar{\nu}C}}{F_{2,3}^{\nu C}}(x,Q^{2}) - 1 = \frac{\Delta F_{2,3}^{\bar{\nu}-\nu}}{F_{2,3}^{\nu}}$

- Structure function ratio reduces systematic uncertainties;
- Need to take into account charm quark effects $\propto \sin^2 \theta_C$. Sensitivity to m_c ;
- A non-vanishing strange sea asymmetry $s(x) \bar{s}(x)$ would affect the result. Need combined analysis with charm production in ν and $\bar{\nu}$ interactions;
- Potential effect of nuclear environment e.g. with Coulomb field.
- Collect ν and $\bar{\nu}$ interactions on both Ca AND Ar TARGETS to disentangle nuclear effects from isospin effects in nucleon structure functions.
 - Measure ratios $R^A_{2,3} = \Delta F^{(\bar{\nu}-\nu)A}_{2,3} / F^{\nu A}_{2,3}(x,Q^2)$;
 - Use heavier isoscalar target, $^{20}_{40}$ Ca, to verify nuclear effects in $^{6}_{12}$ C;
 - Use second target with isovector component but same A as Ca: $^{18}_{40}$ Ar.

ADDITIONAL CHANNELS

 $R_{\nu} = \frac{\sigma(\nu p \to \nu p)}{\sigma(\nu n \to \mu^{-} p)}; \qquad R_{\bar{\nu}} = \frac{\sigma(\bar{\nu} p \to \bar{\nu} p)}{\sigma(\bar{\nu} p \to \mu^{+} n)}$

Determine axial form factor G_A from the CC sample.

- Significant reduction of systematics from NC/CC ratios.
- Estimate Q^2 values in NC from 2-body kinematics;
- $\sin^2 \theta_W$ sensitivity in vector $F_{1,2}$ form factors.

 \implies Systematics from FF, neutrons, nuclear effects?

Additional sensitivity from the NC/CC ratio of coherent ρ meson production:

$$R_{\rho} = \frac{\sigma(\nu_{\mu}A \rightarrow \nu_{\mu}\rho^{0}A)}{\sigma(\nu_{\mu}A \rightarrow \mu^{-}\rho^{+}A)} = \frac{1}{2} \left(1 - 2\sin^{2}\theta_{W}\right)^{2}$$

expect ~ 30k coherent ρ^0 and 200k coherent ρ^+ in ND. \implies Systematics from background subtraction in the coherent ρ^0 selection?

USC

SUMMARY

- The intensity and $\nu(\bar{\nu})$ spectra available at the LBNF offer a unique opportunity for neutrino physics, if coupled with a high resolution ND of a few tons
- Possible to achieve a control of configuration, material & mass of neutrino targets similar to electron experiments & use a suite of various target materials.
- ◆ A novel technique can provide high statistics $O(10^6)$ samples of $\nu(\bar{\nu})$ -hydrogen interactions, allowing precisions in the measurement of $\nu \& \bar{\nu}$ fluxes < 1%.
- Turn the DUNE ND site into a general purpose v & v physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts
 European Particle Physics Strategy Update 2018-2020: https://indico.cern.ch/event/765096/contributions/3295805/
 - ⇒ Significant discovery potential & hundreds of diverse physics topics

Reuse existing KLOE magnet + ECAL and fill it with STT & nuclear targets

SUMMARY

- The intensity and $\nu(\bar{\nu})$ spectra available at the LBNF offer a unique opportunity for neutrino physics, if coupled with a high resolution ND of a few tons
- Possible to achieve a control of configuration, material & mass of neutrino targets similar to electron experiments & use a suite of various target materials.
- ◆ A novel technique can provide high statistics $O(10^6)$ samples of $\nu(\bar{\nu})$ -hydrogen interactions, allowing precisions in the measurement of $\nu \& \bar{\nu}$ fluxes < 1%.
- Turn the DUNE ND site into a general purpose v & v physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts
 European Particle Physics Strategy Update 2018-2020: https://indico.cern.ch/event/765096/contributions/3295805/
 - \implies Significant discovery potential & hundreds of diverse physics topics

New ideas or suggestions to further broaden physics scope welcomed Looking for feedback and/or potential interest

Backup slides

	$\delta R^{ u}/R^{ u}$		
Source of uncertainty	NuTeV	DUNE	Comments
Data statistics	0.00176	0.00057	With "standard" CP 0.00115
Monte Carlo statistics	0.00015		
Total Statistics	0.00176	0.00057	Depending upon beam exposure
$ u_e, ar{ u}_e$ flux	0.00064	0.00010	e^{\pm} identification
Energy measurement	0.00038	0.00040	
Shower length model	0.00054	n.a.	
Counter efficiency, noise	0.00036	n.a.	
Interaction vertex	0.00056	n.a.	
Kinematic selection	N.A.	0.00090	NC/CC separation like NOMAD
Experimental systematics	0.00112	0.00100	
d,s→c, s-sea	0.00227	0.00140	Based on current knowledge
Charm sea	0.00013	n.a.	
$r=\sigma^{ar{ u}}/\sigma^{ u}$	0.00018	n.a.	
Radiative corrections	0.00013	0.00013	
Non-isoscalar target	0.00010	0.00010	Constrained by H measurements
Higher twists	0.00031	0.00070	Lower Q^2 values
$R_L \ (F_2,F_T,xF_3)$	0.00115	0.00140	Lower Q^2 values
Nuclear corrections	n.a.	0.00020	Constrained by H measurements
Model systematics	0.00258	0.00210	Reducible with in-situ measurements

 \implies Non-perturbative effects (High Twists, R_L , etc.) & nuclear corrections?

