БЕТА-РАСПАД ¹⁰⁰Sn

Discrepancy between experimental and theoretical β-decay rates resolved from first principles

P. Gysbers^{1,2}, G. Hagen^{3,4*}, J. D. Holt¹, G. R. Jansen^{3,5}, T. D. Morris^{3,4,6}, P. Navrátil¹, T. Papenbrock^{3,4}, S. Quaglioni⁷, A. Schwenk^{8,9,10}, S. R. Stroberg^{1,11,12} and K. A. Wendt⁷

We present state-of-the-art computations of β-decays from light- and medium-mass nuclei to ¹⁰⁰Sn by combining effective field theories of the strong and weak forces with powerful quantum many-body techniques

Впервые получено согласие между теоретической оценкой и "экспериментальным" значением подавления скорости разрешённого бетараспада Гамова Теллера

Экстраполяция эксперимент теория

 $B_{GT} = 5.6(6)$ $B_{GT} = 9.1^{+4.8}_{-2.3}$ 5.2(5) < BGT < 7.0(7)

$$\begin{split} \mathcal{H}_W &= J_L \cdot J_H \\ J_h &= F + GT + \dots \\ \widehat{F} &= g_V \sum_k^A t_{\pm}^{(k)} \\ \widehat{GT}_{\mu}^{\pm} &= g_A \sum_k^A \sigma_{\mu}^{(k)} t_{\pm}^{(k)} + \begin{array}{c} \text{Зарядово-} \\ \text{обменные} \\ \text{токи} \end{split}$$

 EC/β_+

$$B_{GT}^{i,f} = \sum_{M_{f},\mu} |\langle If, Mf | GT_{\mu} | I_{i}, M_{i} \rangle|^{2}$$

$$B_{GT}^{i,f} = \frac{3885 \ b^{i,f}}{f(Z, E_{\beta})t_{1/2}}$$

$$W = EC/\beta_{+}$$

$$W$$

$$EC/\beta_{+}$$

$$V$$

Правило сумм $S^{-} - S^{+} = 3(N - Z)$

Brown B.A. and B.H. Wildenthal, 1988, Annu. Rev. Nucl.

¹⁰⁰Sn

Метод полного поглощения ү-излучения при измерении заселений состояний при бета распаде среднетяжёлых ядер

G.D. Alkhazov, A.A. Bykov, V.D. Wittmann, Yu. V.Naumov and S. Yu. Orlov, Proc. 4th Int. Conf. on Nuclei Far From Stability, Helsignor, Denmark, 1981, p. 238.

область ¹⁴⁶Gd; Z=64 N=82

ГАММА СПЕКТРОМЕТР ПОЛНОГО ПОГЛОЩЕНИЯ

Установка ISOL в GSI

Примеры распределений силы перехода Гамова-Теллера, измеренных ү-спектрометром полного поглощения.

Характеристики β-распада ядер в окрексности ¹⁰⁰Sn

Nuclide	$B_{\rm GT}$	\overline{E}_X	$E_{\rm GT}$	$Q_{ m EC}$
		(MeV)	(MeV)	(MeV)
¹⁰⁸ Sn	1.33(5)	0.73	-1.34	2.075(19)
106 Sn	2.12(20)) 1.12	-2.14	$3.256(15)^{b}$
¹⁰⁵ Sn	2.63(35	5) 3.76	-2.54	$6.299(19)^{b}$
104 Sn	2.7(3)	1.40	-3.12	4.515(60)
¹⁰³ Sn	3.4(5)	4.11	-3.52	7.635(300)
^{102}Sn	4.2(8)	1.78	-4.00	5.780(70)
¹⁰⁶ In	1.4(3)	5.43	-1.10	6.526(11)
¹⁰⁵ In	1.7(2)	3.35	-1.34	4.849(13)
104 In	2.1(3)	5.94	-1.84	$7.796(8)^{b}$
¹⁰³ In	2.4(3)	3.81	-2.20	$6.014(14)^{b}$
102 In	4.7(10)	6.41	-2.57	8.968(108)
¹⁰⁰ In	3.9(9)	6.54	-3.44	10.08(23)
¹⁰² Cd	1.55(16)	6) 0.91	-1.68	2.587(8)
¹⁰⁰ Cd	2.29(26)	6) 1,23	-2.66	3.890(67)
⁹⁸ Cd	2.90(22)	2) 1.85	-3.58	5.420(40)
¹⁰⁰ Ag	1.7(2)	5.72	-1.36	7.078(76)
^{100m} Ag	1.35(20)) 5.75	-1.34	7.093(76)
⁹⁸ Ag	2.7(4)	6.05	-2.19	8.239(63)
⁹⁷ Ag	2.97(40))) 4.21	-2.77	6.980(110)
⁹⁸ Pd	1.22(12	2) 0.68	-1.20	1.873(24)
⁹⁶ Pd	2.12(16	6) 1.26	-2.24	3.500(14)
⁹⁴ Ru	1.05(15	6) 0.74	-0.85	1.586(13)

только Ge-детекторы

АППРОКСИМАЦИЯ

Экспериментальные характеристики бета-распада ¹⁰⁰Sn

			# ¹⁰⁰ Sn	E _{βo} , MeV	B _{GT}
эксперимент	GSI FRS	1994	7	$3.4^{+0.7}_{-0.3}$	$11.3^{+6.5}_{-8.3}$
эксперимент	GSI FRS	1997	1+7	$3.8^{+0.7}_{-4.3}$	$5.83^{+5.3}_{-4.1}$
экстраполяция	GSI ISOL	2010		3.84(23)	5.23(60)

Экспериментальные характеристики бета-распада ¹⁰⁰Sn

			# ¹⁰⁰ Sn	E _{βo} , MeV	B _{GT}
эксперимент	GSI FRS	1994	7	$3.4^{+0.7}_{-0.3}$	$11.3^{+6.5}_{-8.3}$
эксперимент	GSI FRS	1997	1+7	$3.8^{+0.7}_{-4.3}$	$5.83^{+5.3}_{-4.1}$
экстраполяция	GSI ISOL	2010		3.84(23)	5.23(60)
эксперимент	GSI FRS	2012	259→70	3.29 ± 0.2	$9.1^{+4.8}_{-2.3}$

ARTICLE doi:10.1038/nature11116 Superallowed Gamow–Teller decay of the doubly magic nucleus 100Sn

Schematic illustration of the Fragment Separator (FRS) at GSI

Рисунок скопирован из С.В. Hinke

Рисунок скопирован из С.В. Hinke

SIMBA Si-детектор, окружённый 15х7 Ge-детекторами Среднее расстояние от гамма-детектора до оси пучка 22 см. Эффективность в фото-пике 15% на линии 661 кэВ; разрешение 3 кэВ

Рисунок скопирован из С.В. Hinke

Distribution of the positron energies emitted in the b-decay of ¹⁰⁰Sn. E_{β} =3.29(20) MeV.

Most likely level scheme for the five observed y-transitions in 100In

673 + *x*

237 + x

96 + x

Х

0

Improved Value for the Gamow-Teller Strength of the ¹⁰⁰Sn Beta Decay

PHYSICAL REVIEW LETTERS 122, 222502 (2019) RIKEN

Экспериментальные характеристики бета-распада ¹⁰⁰Sn

			# ¹⁰⁰ Sn	Eβ	, MeV		B _{GT}
эксперимент	GSI FRS	1994	7	3.	$4^{+0.7}_{-0.3}$	11	L.3 ^{+6.5} *
эксперимент	GSI FRS	1997	1+7	3.	$8^{+0.7}_{-4.3}$	5.	83 ^{+5.3} *
экстраполяция	GSI ISOL	2010		3.	84(23)	5	.23(60)
эксперимент	GSI FRS	2012	259→70	3.	.29 ± 0.2	9	$.1^{+4.8}_{-2.3}$
Эксперимент	RIKEN	2019	5000→60	00	3.91 ± 0.1	15	$4.4^{+0.9}_{-0.7}$ *

* *

Экспериментальные характеристики бета-распада ¹⁰⁰Sn

			# ¹⁰⁰ Sn	E _{βo} , MeV	B _{GT}
эксперимент	GSI FRS	1994	7	$3.4^{+0.7}_{-0.3}$	$11.3^{+6.5}_{-8.3}$
эксперимент	GSI FRS	1997	1+7	$3.8^{+0.7}_{-4.3}$	$5.83^{+5.3*}_{-4.1}$
аппроксимация	GSI ISOL	2010		3.84(23)	5.23(60)
эксперимент	GSI FRS	2012	259→70	3.29 ± 0.2	9.1 ^{+4.8} *
Эксперимент	RIKEN	2019	5000→6	00 3.91 \pm 0.1	$154.4^{+0.9}_{-0.7}$
эксперимент	RIKEN TAS	2020			

LSSM предсказывает что ~30% В_{GT} идут выше первого 1⁺уровеня. Если это учесть, то величина В_{GT} на первый 1⁺ уровень уменьшается, но сумма В_{GT} несколько увеличивается. Для оценки интенсивности бета-распада выше первого 1⁺уровня планируется использовать 4π-γ-детектор (TAS)

RIKEN-TAS эксперимент

RIKEN-TAS эксперимент

Двух частичный компонент тока слабого взаимодействия (Meson-exchange currents)

бета-распад ¹⁰⁰Sn

			# ¹⁰⁰ Sn	Eβ	,MeV		BG	г
эксперимент	GSI FRS	1994	7	3.4	$4^{+0.7}_{-0.3}$	11	1.3	+6.5* -8.3
эксперимент	GSI FRS	1997	1+7	3.	$8^{+0.7}_{-4.3}$	5.	83	+ 5.3* - 4.1
аппроксимация	GSI ISOL	2010		3	.84(23)	5.	23	(60)
эксперимент	GSI FRS	2012	259→70	3.	29 <u>+</u> 0.2	29	$.1^{+}$	+4.8 *
Эксперимент	RIKEN	2019	5000→60	00 <mark>3</mark>	.91 ± 0.	15	4.4	+0.9 * -0.7
Эксперимент	RIKEN TAS	2020						
Teopия : Couple	ed Cluster Model	s +Two-pa	rticle weak o	curre	nt B _{GT} q	5.2(0.7:	5) · 3 -	7.0(7) 0.85

Двух частичный компонент тока слабого взаимодействия (Meson-exchange currents)

$$\begin{aligned} \mathbf{J}_{i,2b}^{\text{eff}} &= -g_A \boldsymbol{\sigma}_i \tau_i^- \frac{\rho}{F_\pi^2} \bigg[\frac{c_D}{g_A \Lambda_\chi} + \frac{2}{3} c_3 \frac{\mathbf{p}^2}{4m_\pi^2 + \mathbf{p}^2} \\ &+ I(\rho, P) \bigg(\frac{1}{3} (2c_4 - c_3) + \frac{1}{6m} \bigg) \bigg], \\ I(\rho, P) &= 1 - \frac{3m_\pi^2}{2k_F^2} + \frac{3m_\pi^3}{2k_F^3} \operatorname{arccot} \bigg[\frac{m_\pi^2 + P^2/4 - k_F^2}{2m_\pi k_F} \bigg] \\ &+ \frac{3m_\pi^2}{4k_F^3 P} \bigg(k_F^2 + m_\pi^2 - \frac{P^2}{4} \bigg) \log \bigg[\frac{m_\pi^2 + (k_F - P/2)^2}{m_\pi^2 + (k_F + P/2)^2} \bigg]. \end{aligned}$$

mπ=138 MeV; Fπ=92.4 MeV; Λ=700 MeV; ρ=3k3 F /(3π2)=0.1 – 0.12 fm-3; gA=1.27 I(ρ,P) = 0:58; . . . ; 0:60 cD is short range constant |cD| < 1 ; c3≈–3GeV-1 2c4-c3≈10 GeV-1 d1 + 2d2=cD/(gA ΛX Возбуждение резонанса Гамова Теллера в зарядово обменной реакции

Можно ожидать, что в следующим году в результате эксперимента RIKEN-TAS приведённая вероятность бета-распада ядра ¹⁰⁰Sn будет измерена.

СПАСИБО!

Model	Ref	unquenched	quenched	quenching factor
ESPM	[30]	17.78	10.00	0.75
MCSM	[8]	10.3	6.5	0.79
QRPA	[9]	8.95		
FFS	[9]	7.63		
extrapol.	[10]	9.8	5.2	0.75
SM+corr.	[7]	14.2		
LSSM	this work	~ 13.90	~ 7.82	0.75
LSSM				
(only 1_1^+)	this work	10.10	5.68	0.75

Model Ref unquenched quenched quenchingfactor

ESPM[30]	17.78	10.00	0.75
MCSM[1996]	10.3	6.5	0.79
QRPA[2000]	8.95		
FFS[2000]	7.63		
extrapol.[2010]	9.8	5.2	0.75
SM+corr.[1994]	14.2		
LSSM this work (2012)	13.90	7.82	0.75
LSSM(1+ ₁) this work	10.10	5.68	0.75

сравнению подавления силы GT-перехода β распаде и зарядово обменных реакций

В рамках киральной теории возмущений малым параметром является отношение m_п/m_p. В экспериментах по перезаряде энергия пучка 300 МэВ. Энергия при столкновении нуклонов в ядре <≈100 МэВ, но в экспериментах по перезаряде энергия пучка 300 МэВ. Поэтому корректно теория возмущений не может использоваться. Тем не менее, казалось бы как то оценить эффект

Из данных по з-о реакциям 90Zr(p,n) [90Zr(n,p)??] следует что q²=(S⁻ - S⁺)/3/(N-Z)=0.88(6) т.е. q=0.94(4). что не согласуется с q \approx 0.75 из β распада. Однако обращает на себя внимание тот факт, что сила перехода в области резонанса составляет примерно половину правила сумм $S^- - S^+ \approx 0.5 \cdot 3(N - Z)$. Если забыть про успешное объяснение природы добавочного 30% подавления, то можно было бы сказать, что мы просто не можем увидеть возбуждение в широкой области энергий возбуждения. Приближение случайной фазы и не обязано описывать нерезонансные возбуждения. Но мы не можем увидеть эту область и в расчёте. Поэтому возникает подозрение, что подход киральной теории возмущения действительно успешно объясняет добавочное подавление при низких энергиях. Но остаётся проблема с описанием силы перехода выше энергии.