Исследование свойств *t*-кварка в эксперименте ATLAS

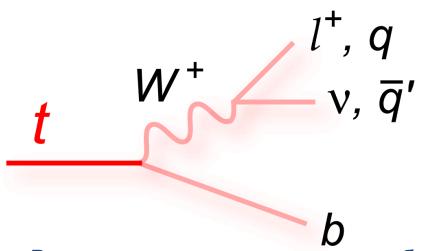
В.М. Соловьев

Семинар ОФВЭ 1 октября 2019

Содержание

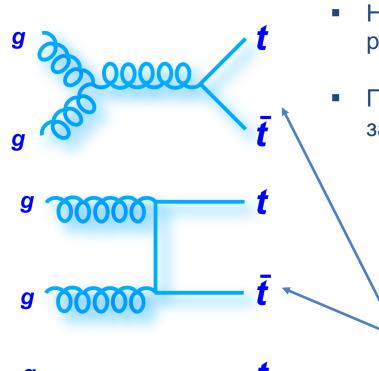
- Введение
- Распад *t*-кварка
- Рождение *t*-кварка на адронных коллайдерах
- Измерение сечений рождения *t*-кварка
- Измерение массы *t*-кварка
- Измерение ширины *t*-кварка
- Зарядовая асимметрия в процессах $t\bar{t}$
- Измерение элемента V_{tb} матрицы СКМ
- lacktriangle Спиновые корреляции в процессах tar t
- Заключение

Введение


- Открыт в 1995 году экспериментами CDF и D0 на Tevatron
- Самая тяжелая из всех открытых элементарных частиц

Q	S	m_t , ГэВ	Γ_t , ГэВ	τ, c
$^{2}/_{3}$	1/2	$173,0 \pm 0,4$	$1,41 \pm_{0,15}^{0,19}$	5×10 ⁻²⁵

- В основном рождается парами $(t\bar{t})$
- Процессы с одиночным рождением t-кварка вносят существенно меньший вклад
- С началом работы LHC
 продолжилось начатое на Tevatron активное изучение свойств *t*-кварка
- LHC является «фабрикой» частиц, в том числе и *t*-кварка


Produced in 139 fb ⁻¹ @ √s = 13 TeV			
Higgs Bosons	7.7 million		
Top Quarks	275 million		
Z Bosons	2.8 billion		
W Bosons	12 billion		
Bottom Quarks	~40 trillion		

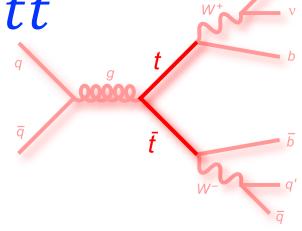
Распад *t*-кварка

- С вероятностью 99,9% t-кварк распадается в канале $t \to Wb$
- Вследствие малого времени жизни *t*-кварк распадается до адронизации
- Продукты распада *t*-кварка сохраняют информацию о его спине
- Возможные конечные состояния будут определяться каналом распада W-бозона (лептонным или адронным)
- При распаде *W*-бозона в лептонном ($\approx 33\%$) канале детектором регистрируется заряженный лептон и недостающая поперечная энергия (E_T^{miss})
- При распаде W-бозона в адронном (≈ 67%) канале детектором регистрируются 2 струи
- Помимо этого детектором будет регистрироваться *b*-струя (для этого используются специальные алгоритмы, т.н. "b-tagging")

Парное рождение *t*-кварка

00000

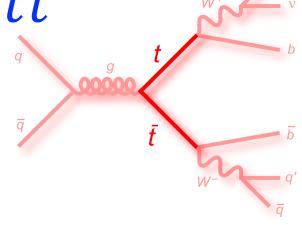
- На коллайдерах *t*-кварк в основном рождается парами ($t\bar{t}$)
 - Парное рождение t-кварка ($t\bar{t}$) происходит за счет сильного взаимодействия


Коллайдер (\sqrt{s})	$\sigma_{tar{t}}$, пб
Tevatron (1,96 T ₃ B)	7,16
LHC (8 T ₃ B)	252,9
LHC (13 T ₉ B)	831,8

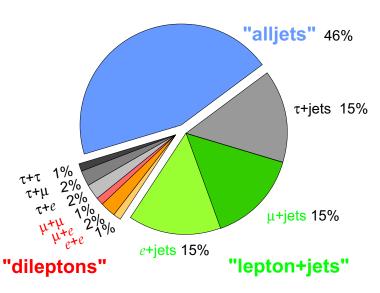
90% на LHC (рр при 13 ТэВ)

Регистрация пары $t \bar t$

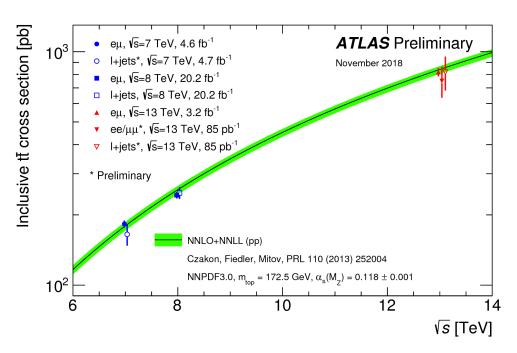
- alljets (all-hadronic):
 - 6 струй в конечном состоянии
 - наибольшая вероятность
 - большой вклад от КХД фона
- lepton + jets:
 - 1 заряженный лептон + 4 струи + E_T^{miss} в конечном состоянии
 - высокая вероятность
 - вклад от КХД фона ниже
- dilepton:
 - 2 заряженных лептона + 2 струи + E_T^{miss} в конечном состоянии
 - низкая вероятность
 - наименьший вклад от КХД фона
 - наилучшее соотношение сигнал/фон

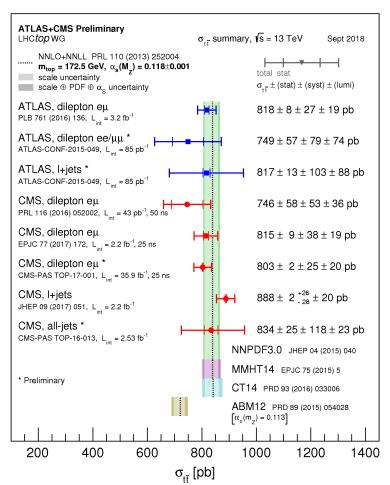


Top Pair Decay Channels

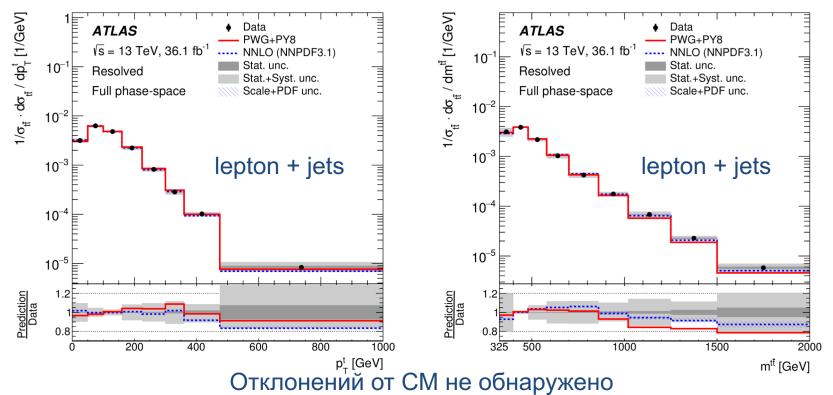

SS	electron+jets			all-hadronic	
ūд					
٦-	еτ	μτ	ξī	tau+jets	
_µ	еμ	μτ Jo ^x eu	μτ	muon+jets	
Θ ¹	eģ	еμ	еτ	electron+jets	
N decay	e ⁺	μ^{+}	τ+	ud	cs

Регистрация пары $t \bar t$


- alljets (all-hadronic):
 - 6 струй в конечном состоянии
 - наибольшая вероятность
 - большой вклад от КХД фона
- lepton + jets:
 - 1 заряженный лептон + 4 струи + E_T^{miss}
 в конечном состоянии
 - высокая вероятность
 - вклад от КХД фона ниже
- dilepton:
 - 2 заряженных лептона + 2 струи + E_T^{miss} в конечном состоянии
 - низкая вероятность
 - наименьший вклад от КХД фона
 - наилучшее соотношение сигнал/фон


Top Pair Branching Fractions

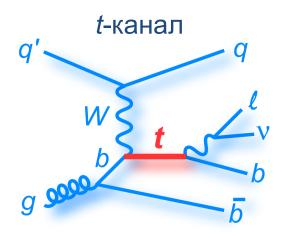
Сечение рождения tar t


- Точное измерение сечений проверка предсказаний СМ
- Хорошее согласие измеренных интегральных сечений для различных конечных состояний с расчетными

Результаты ATLAS и CMS находятся в достаточно хорошем согласии

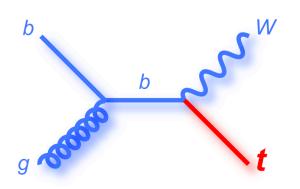
Сечение рождения $t\bar{t}$

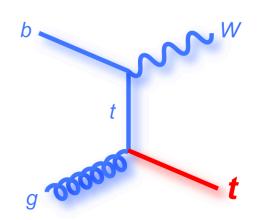
- Измерение дифференциальных сечений более чувствительный способ поиска явлений «новой физики»
- Такие явления могут быть обнаружены по отклонениям данных в спектре по поперечному импульсу, инвариантной массе и т.д.



Рождение одиночного *t*-кварка

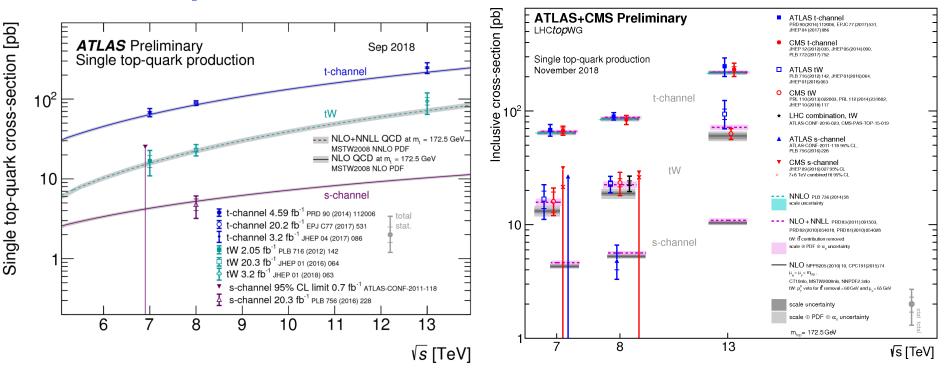
 Рождение одиночного *t*-кварка происходит в электрослабых процессах


Коллайдер (\sqrt{s})	σ (s), пб	σ (<i>t</i>), пб
Tevatron (1,96 T ₉ B)	1,03	2,06
LHC (8 T ₃ B)	5,24	84,7
LHC (13 T ₃ B)	10,3	217

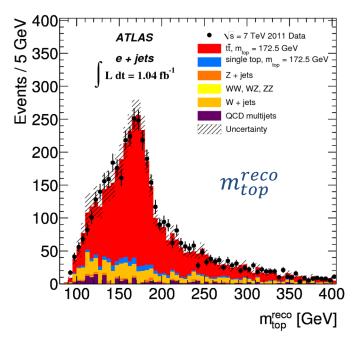

- Ha LHC $\sigma_t/\sigma_{\bar{t}} \approx 2$
- Меньшее количество струй и лептонов в конечном состоянии (по сравнению tt) делает регистрацию одиночного t-кварка значительно сложнее из-за бОльших фонов (особенно W+струи)
- Рождение одиночного *t*-кварка было открыто на Теvatron лишь в 2009
- Для регистрации используется лептонный канал распада W-бозона
- 1 заряженный лептон + струи (в т.ч. b-струи) + E_T^{miss} в конечном состоянии

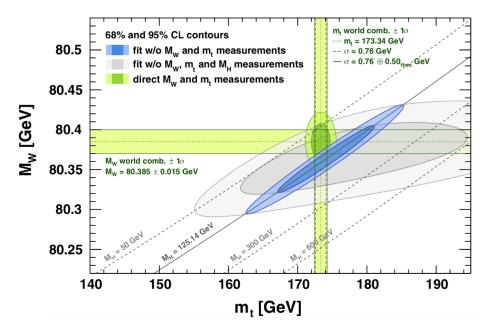
Рождение одиночного *t*-кварка

■ Третий процесс – ассоциированное рождение W и t



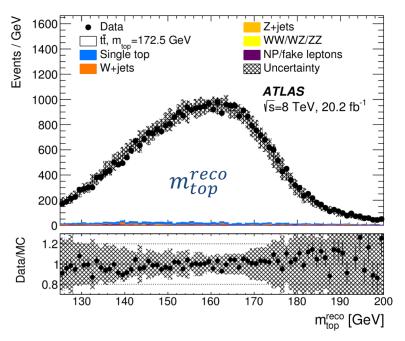
Коллайдер (\sqrt{s})	σ (<i>Wt</i>), пб
Tevatron (1,96 ТэВ)	пренебр.
LHC (8 T ₃ B)	22,4
LHC (13 ТэВ)	71,7

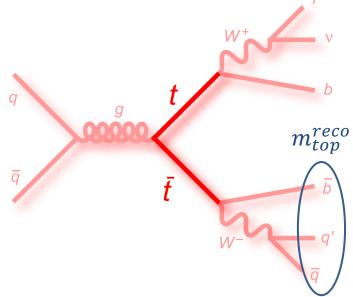

- Сечение рождения на Tevatron пренебрежимо мало
- Несмотря на значительную величину сечения на LHC, наблюдение этого процесса затруднено наличием большого фона от рождения tt̄
- 2 заряженных лептона + b-струя + E_T^{miss} в конечном состоянии


Сечение рождения одиночного t-кварка

- Измеренные сечения совпадают с теоретическими расчетами (при $m_t = 172,5~\Gamma_{\rm 3}B$)
- Результаты ATLAS и CMS находятся в хорошем согласии
- s-канал является самым «сложным» для измерений вследствие малого сечения

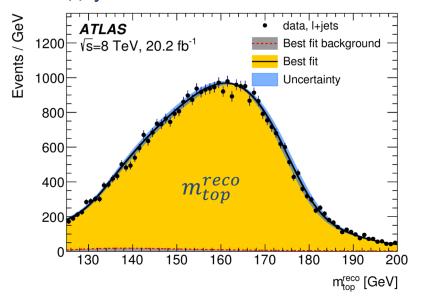
■ Точное измерение массы tкварка, m_t, а также масс W- и Hбозонов (m_W и m_H) позволяет проверить результаты полученные из фитирования электрослабых измерений в рамках СМ

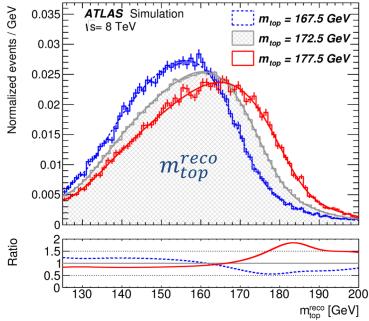


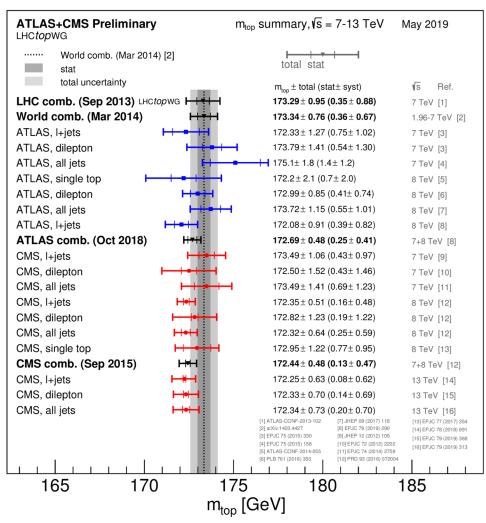


- Измерение массы t-кварка осуществляется только для процесса парного рождения $t\bar{t}$
- Реконструированная масса *t*-кварка «искажена» разрешением детектора
- Существуют специальные методы измерения масса *t*-кварка

 Для прямого измерения массы *t*-кварка используется т.н. «метод шаблонов» (template method)


• Например, в канале "lepton+jets" отбираются q события с электроном или мюоном, 4 струями (2 из которых — это b-струи) и E_T^{miss}



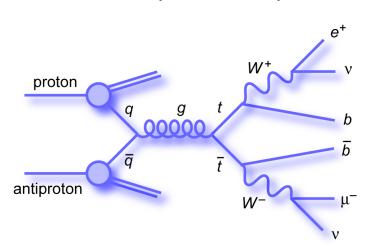

- Выбирается наблюдаемая величина чувствительная к массе t-кварка, например реконструированная масса m_{top}^{reco}
- *m*^{reco}_{top} реконструируется по 3-м струям: 2 струи от распада *W*-бозона, 1 *b*-струя

- Для m_{top}^{reco} методом Монте-Карло моделируются шаблоны для сигнала для разных масс t-кварка и шаблоны для фона
- Шаблоны для сигнала фитируются суммой функции Гаусса и двух функций Ландау. Фон фитируется функцией Ландау

- Коэффициенты функций фитирования сигнала линейно зависят от m_{top}
- Функция фитирования фона не зависит от m_{top}
- Распределение в данных фитируется, используя метод максимального правдоподобия

- Сравнение результатов в в экспериментах ATLAS и CMS с комбинацией Tevatron+LHC 2014 года
- Результаты находятся в хорошем согласии друг с другом

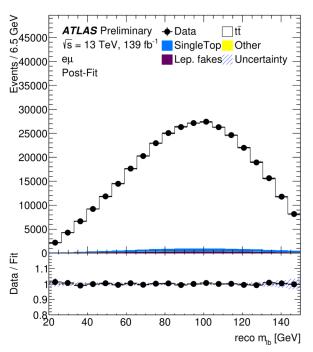
Измерение ширины *t*-кварка

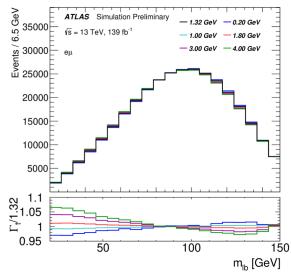

В рамках СМ ширина t-кварка:

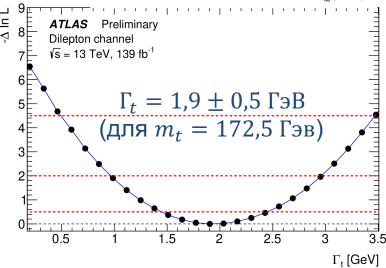
$$\Gamma_t^{SM}=1$$
,322 ГэВ для $m_t=1$ 72,5 ГэВ

- Некоторые теории за рамками СМ предсказывают ширину отличную от Γ_t^{SM}
- Измерения ширины делятся на прямые и непрямые
- В непрямых измерениях ширина определяется следующим образом:

$$\Gamma(t \to Wb) = \Gamma_{SM}(t \to Wb) \frac{\sigma_{meas}^{t-chan}}{\sigma_{SM}^{t-chan}} \longrightarrow \Gamma_{t} = \frac{\Gamma(t \to Wb)}{B_{meas}(t \to Wb)}$$

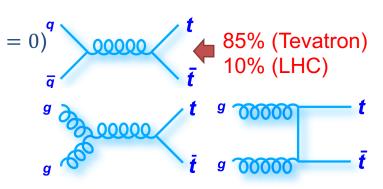

Недостаток непрямых измерений – их сильная модельная зависимость



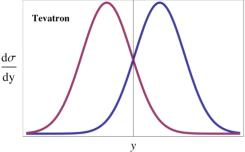

- ATLAS недавно опубликовал результаты прямого измерения ширины для дилептонного канала на полной статистики Run-II
- Для этого канала невозможно восстановить инвариантную массу *t*-кварка т.к. часть энергии уносится нейтрино
- В качестве наблюдаемой величины использовалась инвариантная масса заряженного лептона и b-струи m_{lb}

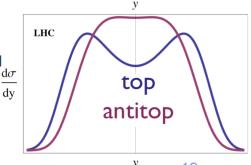
Измерение ширины *t*-кварка

- Для прямого измерения ширины использовался метод шаблонов
- Были получены шаблоны для различных Γ_t для фиксированной массы $m_t=172$,5 ГэВ
- Данные фитировались методом наибольшего правдоподобия



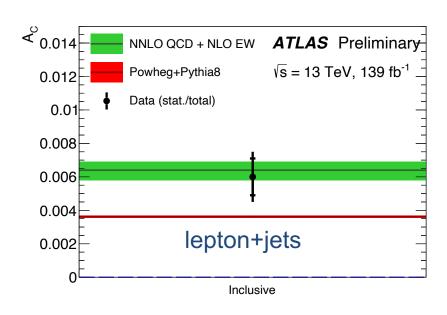
Зарядовая асимметрия $t \bar{t}$

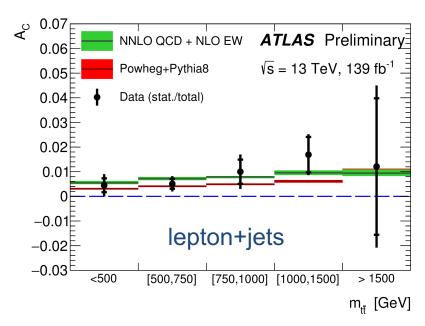

- На Tevatron в LO приближении КХД асимметрия рождения $t\bar{t}$ при аннигиляции $q\bar{q}$ отсутствует ($A_{FB}=0$)
- В (N)NLO приближении КХД для этого процесса предсказывается, что t-кварк будет рождаться преимущественно в направлении q, а \bar{t} в направлении \bar{q}
- На Tevatron это приводит к преимущественному рождению $t(\bar{t})$ по направлению $p(\bar{p})$. Вводится понятие асимметрии вперед-назад:


$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}, \qquad \Delta y = y_t - y_{\bar{t}}$$

- На LHC симметричное начальное состояние протонов не позволяет различить переднее и заднее направления и измерить A_{FB}
- Разница в PDF для валентных и морских кварков приводит к тому, что t-кварки процессе аннигиляции $q\bar{q}$ рождаются преимущественно с большими |y| по сравнению с \bar{t} -кварками
- На LHC доминирующий процесс зарядово-симметричный глюонный синтез, который не приводит к асимметрии и затрудняет наблюдение асимметрии от аннигиляции $q\bar{q}$

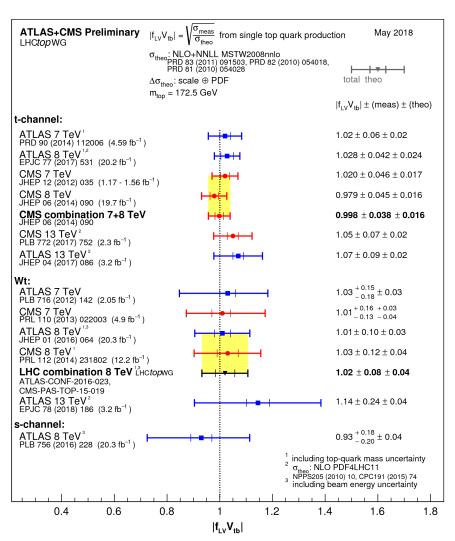
 $A_{FB} = (9.5 \pm 0.7)\%$ (Tevatron)




Зарядовая асимметрия $t \bar{t}$

■ Вместо A_{FB} на LHC вводится понятие зарядовой асимметрии $A_{\mathcal{C}}$:

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)},$$


$$\Delta |y| = |y_t| - |y_{\bar{t}}|$$
 $A_C = (0.64^{+0.05}_{-0.06})\%$ (LHC)

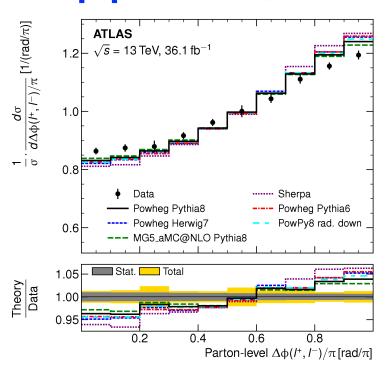
Величина измеренной зарядовой асимметрии 0,6% ± 0,15%
 согласуется с расчетами NNLO QCD + NLO EW и отличается на 4σ от 0

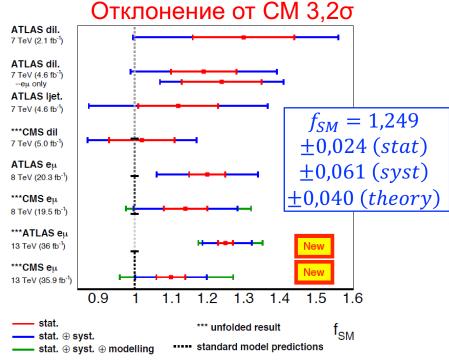
Элемент V_{tb} матрицы СКМ

- Сечение образования одиночного t-кварка в СМ $\sigma_t \sim |V_{tb}|^2$, где V_{tb} элемент матрицы СКМ (смешивания кварков).
- Это дает возможность непосредственно определить величину V_{tb} из измеренного сечения

•
$$|V_{tb}| = \sqrt{\frac{\sigma_{meas}}{\sigma_{theor}(V_{tb}=1)}}$$

• Непрямые измерения V_{tb} в распадах В-мезонов, основанные на предположении об унитарности $(\sum_j |V_{ij}|^2 = 1)$ матрицы СКМ и о количестве поколений кварков, дают $|V_{tb}| = 0,999105 \pm 0,000032$


Корреляция спинов tar t


- В СМ ожидается близкая к нулю поляризация t- и \bar{t} -кварков, однако предсказывается значительная корреляция их спинов
- Коэффициент корреляции спинов:

$$A = \frac{N_{like} - N_{unlike}}{N_{like} + N_{unlike}} = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)} > 0$$

- Отклонение корреляций от предсказаний СМ намек на «новую физику»
- *t*-кварк распадается до адронизации, поэтому корреляция «передается» продуктам его распада
- Заряженные лептоны от распадов *W*-бозонов (от распадов *t*-кварков) несут почти всю спиновую информацию *t*-кварка
- Эта информация может быть получена из измерения их угловых координат ($\Delta \varphi$ и $\Delta \eta$)

Корреляция спинов tar t

- Методом МК моделируются нормированные дифф. сечения для гипотезы коррелированных согласно СМ спинов (x_{spin}) и некоррелированных (x_{nospin}) спинов
- Нормированное сечение для данных фитируется как функция f_{SM} в i-ом бине:

$$x_i = f_{SM} \cdot x_{spin,i} + (1 - f_{SM}) \cdot x_{nospin,i}$$

 f_{SM} – доля «СМ-подобных» корреляций

Заключение

- LHC фабрика *t*-кварков, предоставляет отличную возможность для исследования его свойств, и, следовательно, дает возможность уточнения параметров СМ
- Получены сечения рождения *t*-кварков
- Получены точные значения массы и ширины *t*-кварков
- Исследована зарядовая асимметрия рождения tar t
- Определена величина элемента V_{tb} матрицы СКМ
- Ведутся работы по измерению корреляции спинов tar t