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Electron-lon Collider: goals

Electron-lon Collider in USA is the project of a new collider of polarized
electrons and ions on the base of RHIC@BNL (eRHIC).

* To provide continuity of the U.S. high-energy nuclear physics program after
2025-2030, when RHIC and JLab@12 GeV will complete their programs.

 To unite RHIC and JLab users and attract the international community.

e To have a facility to test new concepts and technologies in accelerator
physics.

* To answer a central question of nuclear physics on the nature of visible
matter around us: How do quarks and gluon form nucleons and nuclei?

e To expand kinematic boundaries and precision of planned measurements:
EIC should be a discovery and precision machine and a world-leading facility
to study Quantum Chromodynamics (QCD).



EIC: fundamental problems

Quark-
- Antiquark-
Pair

* Proton mass puzzle: current quarks of the QCD
Lagrangian carry ~10% of the proton mass. What is
the role of quark-anquark quantum fluctuations and

gluons?
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* Proton spin puzzle: quarks carry ~30% of the proton spin. What is the role
of gluons and parton orbital motion”? How are quarks and gluons distributed in

coordinate and momentum space?
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EIC: fundamental problems (2)

e Gluon density in nuclei at high
energies: How does nuclear matter effect

the gluon density? Does gluon saturation
take place at high gluon density and what
are its properties?
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e Nature of hadronization and confinement: How do fast color changes

interact with nuclear medium?

o® «§°€'. - important for heavy ion physics
° = - EIC allows us to control the photon energy
and the size of nuclear matter



EIC: “QCD microscope”

* The cleanest way to study microscopic structure of hadrons is to use deep
inelastic scattering (DIS):
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* Main characteristics and advantages:

- point-like probe — clean theoretical description and interpretation

- control over parton kinematics
- possibility to study semi-inclusive and exclusive (elastic) final states — 3D parton

structure.



Main EIC parameters: energy

* Center of mass energy Vs ~20-140 GeV— wide coverage in Q2 and x.

Non-perturbative

* EIC covers non-perturbative,
perturbative and transition
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Luminosity

Main EIC parameters: luminosity

* High luminosity 1033-34 cm-2s-! — precision measurement of semi-inclusive

and exclusive processes.

X 10® /ecm?*/sec

20
10 llll‘lll 1 T lllllll | | Illlll[ 1 1L " W |
1019

o Meinz Jlab6é
10 z B Jlab12GeV

- Bates{ext)
10 B B SLACSD
1018 ELFE
1015 B Beomn
10 14

. Eiectron lon Collider
10 B Bates(int) o A 0 G |
10 12
o . co.MPAss -
om HERMES W SMC HERA
10?

IILIJJI 1 .__0 llLLlJ L 1 1llllll 1 1 | O &
1 10 :

10
CM Energy (GeV)

Luminosity (10‘33 cm'zs"]

e-N Luminosity [cm2 s1]

8 8 & 8 B

o
e

(=]

103

10

1032

JLEIC

| Maxdpfiedd T —
R 6T
o BA4T —
AR RN 12T —
A ‘g 100k G ‘—\ AN __
..f - '.\ \ ' - K
\\_. \\\-
@1 100010 G _ ..‘_‘_ 0
e H .
40 60 B0 100 120

CM Energy (GeV)

eRHIC

A
Tomography (p/A
IntegAal Landscape QCD at Extreme Parton
- of Nuclei Densities - Saturation |
I | |
0 50 100 150

e-N Center-of-Mass Energy [V(Z/A) GeV]

10

e-N Annual Integrated Luminosity [fb-1]



Main EIC parameters: polarization

* High degree of polarization ~70% of beams of electrons, protons, light nuclei
(D, He-3) — polarized DIS, 3D parton distributions from semi-inclusive (TMDs)
and exclusive processes (GPDs).

10°L  Current polarized DIS data:
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Current polarized BNL-RHIC pp data:
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e Wide region of Q2 and small x in polarized DIS — determination of the gluon
contribution AG to the proton spin.



Main EIC parameters: nuclei

* Acceleration of light (D, He-3) and heavy (U, Pb) nuclei — for the first time
nuclear DIS at a collider — quark and gluon nuclear densities at small x,
search for possible saturation of the gluon density.
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Key experiments: gluon polarization

e Proton spin in QCD:
Orbital angular

1 1 momentum of partons:
— =AY+ AG + Lq —+ Lg unknown, access via GPD
2 2 and TMD calculations in

/ lattice QCD
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Quark polarization:
measured well with fixed targets

Gluon polarizarion: RHIC spin
) physics, large uncertainty due to
1 Z /dx(Aq(x) + AG(z)) ~ 30% small-x region contribution
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— “spin crisis”.
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Key experiments: gluon polarization (2)

e Measurement of proton spin-dependent structure function g1P(x,Q2) and
extraction of Ag(x) using scaling violations:
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Key experiments: 3D parton distributions

e Determination of 3D parton distributions requires two IY

scales: large Q2 for parton localization and small (t, kT) for |

distances O(fm). P, 0~
A

e Examples: hard exclusive processes, hybrid between s — 3 -

inclusive and elastic scattering 0 SN

DVCS: Q2 >> |t DVEM: Q2 >> |t| EHMP: Q2 >> |t|

Deeply virtual Compton

scattering (DVCS) Deeply virtual meson production (DVMP)

* Fourier transformation w/respect momentum transfer t gives br-dependence.
12



Key experiments: 3D parton distributions (2)

e Cross sections are expressed in terms of generalized parton distributions
(GPDs), encoding QCD tomography of the target.

e GPDs are important for resolution of the proton “spin crisis”:

1 1
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e GPDs contain information on sheer forces experienced by partons in proton/
nuclei and also possible non-nucleonic degrees of freedom in nuclei.
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Key experiments: nuclear gluon distribution

e Nuclear gluon distribution ga(x,u2) = density of gluons in nuclei as function of
momentum fraction x at resolution y, necessary input for phenomenology of
hard processes with nuclei at high energies (RHIC, LHC).
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Key experiments: nuclear gluon distribution (2)

e High and variable energies at EIC will allow one to measure the nuclear

structure functions F2a(x,Q2) and FLa(x,Q2) in a wide range of x, Q2 - “first-day
measurement”
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* Longitudinal structure function FLA(X Q2) directly probes ga(x,u?).
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Nuclear gluon density from J/y
photoproduction on nuclei at the LHC

e Before EIC, new constraints on ga(x,u2) at small x were obtained by
analyzing the data on coherent photoproduction J/y on nuclei in Pb-Pb

ultreperipheral collisions (UPCSs), Guzey zhalov, Kryshen, Strikman, 2012-2017

* The cross section is proportional to the gluon density squared — the ratio
of cross sections of the nucleus/proton = factor of nuclear modification/
suppression of ga(x,2).
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Key experiments: gluon saturation

e As the collision energy increases (x decreases)
the gluon density increases due to gluon

radiation (DGLAP, BFKL): zz

» At some point, radiation is compensated by
recombination — saturation
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Key experiments: gluon saturation (2)

* The regime of gluon saturation was theoretically predicted in the color glass
condensate (CGC) framework.

e Despite may successful phenomenological applications at RHIC and LHC,
there is no convincing evidence of onset of this new regime of low-x QCD.

* At EIC, it is proposed to look for saturation by studying inclusive, diffractive
and exclusive DIS. 3
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Realization of EIC at BNL
EIC @ BNL

The design aims at the construction of an Electron-lon-Collider (eRHIC)
leveraging the existing RHIC accelerator complex and its infrastructure.
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Realization of EIC at BNL (2)
How RHIC is transformed into an EIC
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EIC Detector
BNL: EIC-sPHENIX [#%

* Pre-conceptual designs from
JLab and BNL

 Option at BNL: sPHENIX —
ePHENIX

Possibility of a second,
possibly differently optimized
detector in existing Hall 2

Ongoing studies: optimizing inclusive, semi-inclusive and exclusive DIS

measurements: Particle tracking, Electromagnetic calorimetry, hadronic calorimetry,
particle identification technologies: for flavor separation/heavy-light quarks, jets, Interaction
region design and integration with the EIC detector, background studies, synchrotron
radiation issues near and far from the IR, beam-gas interactions....

Additionally: Electron and proton beam polarimetry, precision polarimetry measurements

Various preliminary concepts for EIC detector exist, design optimization on-going



EIC Detector (2)

Current EIC detector concepts
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A U.S-based EIC: status

e 2007 NSAC Long Range Plan: recommendation to
develop a conceptual of the accelerator and detector

guided by the physics program

e 2010: 10-week INT program (Seattle, USA) “Gluons and
quark sea at high energies”, arXiv:1108.1713

e 2013: EIC White Paper, arxiv:1212.1701, EPJ A52 (2016) 268

e 2015 NSAC Long Range Plan:

“‘We recommend a high-energy high-luminosity
polarized EIC as the highest priority for new facility
construction following the completion of FRIB.”

LONG RANGE PLAN
for NUCLEAR SCIENCE

e 2017 assessment of NAS: Full support. (3

AN ABREEEVIENT UF
IR CRASER FIL SOTRON KON

“An EIC is timely and has the support of the nuclear science community. The I o e A
science that it will achieve is unique and world leading...”

e Dec. 2019, CD-0 “Approve Mission Need”: DOE
selects BNL for building EIC.
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Activity Name

2019 | 2020 2021

NSAC Long Range Plan

2022 2023 2024 2025 2026 2027 2028

NAS Study

CDO — assumed

CD1 (Down-select)

~
4
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CD2/CD3

NSAC LRP — assumed

EIC construction

A

2030

EIC physics case _

EICUG formation

EICUG meetings

Request of Information

EIC Physics/Detector
study

Call for Detectors/
Collaboration Formation

Design of Detectors
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Size Detectors

Detector/IR TDRs,
Detector/IR Construction

I— 2030 3
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EIC: organization

e EIC working groups at BNL, https://wiki.bnl.gov/eic/ and JLab, https://
eic.jlab.org/wiki/index.php/Main_Page

e Electron-lon Collider User Group since 2016: > 950 scientists from > 189
institutes and universities, http://www.eicug.org/web/ : Steering Committee,
Institutional Board, Speaker’'s Committee

e Yearly POETIC (Physics Opportunities at an Electron-lon Collider)
conferences.

* EIC talks at all major particle and nuclear physics conferences.

e EIC Yellow Report for EIC Physics and Detectors, 2020:
- quantify measurements for EIC physics (existing and new)
- study detector concepts based on those physics measurements
- series of workshops
- final document Jan - Apr 2021
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Summary

* High-energy and high-luminosity polarized EIC is viewed as a key facility to
study fundamental questions of QCD.

* The main aim of the EIC physics program is to understand the microscopic
nature of the visible matter in the language of quarks and gluons of QCD.

* In particular, it is planned to study:
* the spin- and 3D-structure of the proton
* the role of nuclear matter in the distribution of quarks and gluons
* propagation of color charges (hadronization)
 possible onset of a new regime of high-density saturated gluonic matter.

EIC has full support of the U.S. nuclear physics community. Next steps is to
prepare the EIC Yellow Report and obtain CD1 (design choice).
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