DOES PENTAQUARK θ^+ **EXIST?**

(Viewing from HEPD)

S. I. Manaenkov High Energy Physics Division Seminar Gatchina, February 11, 2020

Contents

- Model by Diakonov, Petrov, and Polyakov
- First Evidences that θ^+ Exists
- Vanishing Pentaquarks
- Coherent Background
- Search for θ^+ in Hadronic Channels
- Pentaquark Production through Kaon Exchange
- Requirements to Suppress Background
- Advantages of Searching θ^+ at PANDA
- Conclusions
- Backup slides

Model by Diakonov, Petrov, and Polyakov

 Anti-decuplet of pentaguarks $M = (1.89 - 0.18 \cdot Y) \text{ GeV}/c^2$, Y = B + S, $Q = T_3 + Y/2$. Mass of N dublet is put equal to 1710 GeV/ c^2 . Quark content: $\theta^+ = uudd\bar{s}$. Quantum numbers: B = 1, $S = 1, Y = 2, T = 0, J^P = \frac{1}{2}^+$ θ⁺(1530) S=1 Model parameters are fixed by T parameters of meson octet, N (1710) S=0 baryon octet and decuplet, and the mass of N(1710). ∑ (1890) S=-1 Then $M_{ heta^+} = 1.53~{
m GeV}/c^2$, $\Gamma_{tot} < 15 \text{ MeV}/c^2$. θ^+ is stable particle when fig-pen-01.eps $\Xi_{3/2}(2070)$ S=-2 $M_{\theta^+} < M_N + M_K$, since $\theta^+ \rightarrow n + K^+$ and $\theta^+ \rightarrow p + K^0$.

First Evidences that θ^+ **Exists**

- First data in 2003 year
- LEPS Collaboration, Phys. Rev. Lett. 91 (2003) 012002. Reaction $\gamma + n \rightarrow \theta^+ + K^- \rightarrow K^+ + K^- + X$ on ${}^{12}C$, Assumed X = n, $0.9 < M_X < 0.98 \text{ GeV}/c^2$. $M_{\theta^+} = (1.54 \pm 0.01) \text{ GeV}/c^2$, $\Gamma_{tot} < 25 \text{ MeV}/c^2$, significance $S/\sqrt{B} = 19.0/\sqrt{17.0} = 4.6\sigma$, but $S/\sqrt{S + B} = 3.2\sigma$.
- DIANA Collaboration, Phys. At. Nucl. 66 (2003) 1715. Reaction $K^+ + Xe \to p + \pi^+ + \pi^- + X$, Subprocess $K^+ + n \to \theta^+ \to p + K^0$, $K_S^0 \to \pi^+ + \pi^-$. $M_{\theta^+} = (1.539 \pm 0.002) \text{ GeV}/c^2$, $\Gamma_{tot} < 9 \text{ MeV}/c^2$, significance $S/\sqrt{B} = 29/\sqrt{44} = 4.4\sigma$.

- CLAS Collaboration, Phys. Rev. Lett. 91 (2003) 252001. Reaction $\gamma+d \to K^+ + K^- + p + n.$
 - $M_{\theta^+} = (1.542 \pm 0.005) \text{ GeV}/c^2$, $\Gamma_{tot} < 21 \text{ MeV}/c^2$, significance $S/\sqrt{B} = 43/\sqrt{54} = (5.2 \pm 0.6)\sigma$.
- SAPHIR Collaboration, Phys. Lett. B572 (2003) 127. Reaction $\gamma + p \rightarrow \bar{K}^0 + \theta^+ \rightarrow \bar{K}^0 + K^+ + n$, oscillation $\bar{K}^0 \rightarrow K_S^0 + K_L^0$, decay $K_S^0 \rightarrow \pi^+ + \pi^-$. $M_{\theta^+} = (1.540 \pm 0.004 \pm 0.002) \text{ GeV}/c^2$, $\Gamma_{tot} < 25 \text{ MeV}/c^2$, significance 4.8σ , $N_{\theta^+} = 63 \pm 13$, $\sigma_{\theta^+} = 300 \text{ nb}$.

First Evidences that θ^+ **Exists**

- Bandwagon effects (after 2003 year)
- Neutrino experiments WA21, WA25, WA59, El80, E632, (CERN and Fermilab data were reanalyzed) Phys. At. Nucl. 67 (2004) 682. Reaction $\nu_{\mu}(\bar{\nu})_{\mu} + T \rightarrow K_{S}^{0} + p + X, K_{S}^{0} \rightarrow \pi^{+} + \pi^{-},$ $T = p, d, Ne - H_{2}$ mix. $M_{\theta^{+}} = (1.533 \pm 0.005) \text{ GeV}/c^{2}, \Gamma_{tot} < 20 \text{ MeV}/c^{2},$ significance 6.7 σ .
- HERMES Collaboration, Phys. Lett. B585 (2004) 213. Reaction $\gamma + d \to K_S^0 + p + X$, X = n, $K_S^0 \to \pi^+ + \pi^-$. $M_{\theta^+} = (1.528 \pm 0.0026 \pm 0.0021) \text{ GeV}/c^2$, $\Gamma_{tot} < 4.3 \text{ MeV}/c^2$, significance $(3.4 \div 6.3)\sigma$.

- Null and Negative Results
- CLAS negative result (no θ^+ signal) CLAS against SAPHIR data for the same reaction $\gamma + p \rightarrow \bar{K}^0 + K^+ + n$ $\sigma_{\theta^+} = \sigma(\gamma + p \rightarrow \theta^+ + \bar{K}^0) < 0.8 \text{ nb}, L = 70pb^{-1},$ $N_{\theta^+} = L\sigma_{\theta^+} = 56000.$ SAPHIR: $\sigma_{\theta^+} = 300 \text{ nb}.$
- Belle null result

 $\begin{array}{l} \mbox{Reaction } K^+ + n \to \theta^+ \to p + K^0, \ K^0_S \to \pi^+ + \pi^-, \\ \sigma(\theta^+) / \sigma(\Lambda(1520)) < 0.02, \ N_{obs}(\Lambda(1520)) = 15519 \pm 412. \\ \mbox{For } M_{\theta^+} = 1540 \ \mbox{MeV}, \ N(\theta^+) = 29 \pm 65, \\ N(\theta^+) < 94 \ \mbox{at } 90\% \ \mbox{CL}. \end{array}$

Vanishing Pentaquarks

- Bandwagon effects of not to observe the θ^+ pentaquark
- HERMES Collaboration, Phys. Lett. B585 (2004) 213. Phys. Rev. D91 (2015) 057101
 - The same reaction $\gamma + d \rightarrow K_S^0 + p + X$, $K_S^0 \rightarrow \pi^+ + \pi^-$. Previous: $M_{\theta^+} = 1.528 \text{ GeV}/c^2$, $\Gamma_{tot} < 4.3 \text{ MeV}/c^2$, significance $(3.4 \div 6.3)\sigma$.

New: $M_{\theta^+} = 1.522 \text{ GeV}/c^2$, $N_{\theta^+} = 68^{+98}_{-31}(stat) \pm 13(sys)$. significance 2σ .

- But LEPS and DIANA insist on the θ^+ observation LEPS 2019: $\gamma + d \rightarrow K^+ + K^- + p + n$ significance 3 σ . DIANA 2018 study angular distribution: significance 7.1 σ .
- None discovery can be made by majority voting

Coherent Background

• Ignorance of coherence in data processing Example: reaction $\gamma + d \rightarrow K^+ + K^- + p + n$. Signal: $\gamma + n \rightarrow \theta^+ + K^- \rightarrow (K^+ + n) + K^-$. Amplitude F_{θ^+} . Proton spectator. First background process: $\gamma + d \rightarrow \phi + p + n \rightarrow (K^+ + K^-) + p + n$. Amplitude F_{ϕ} . Second background process: $\gamma + p \rightarrow \Lambda(1520) + K^+ \rightarrow$ $\rightarrow (p + K^{-}) + K^{+}$. Amplitude $F_{\Lambda^{*}}$. Neutron spectator. The sum of amplitudes describes the reaction cross section $\sigma \propto |F_{ heta^+} + F_{\phi} + F_{\Lambda^*} + F_{NR}|^2$, (NR - Non-Resonance) instead of the sum of subprocess cross sections $\sigma_{\theta^+} + \sigma_{\phi} + \sigma_{\Lambda^*} + \sigma_{NR} \propto |F_{\theta^+}|^2 + |F_{\phi}|^2 + |F_{\Lambda^*}|^2 + |F_{NR}|^2.$ Usually the cross sections of background processes σ_{ϕ} and σ_{Λ^*} are subtracted from the cross section of the process under study (σ). This may provide false peaks.

Search for θ^+ **in Hadronic Channels**

• What does the CLAS negative result mean?

The cross section of θ^+ production by virtual photon is lower than the CLAS threshold of observation.

- This does not mean that θ^+ with small width does not exist, but it was not observed only in photoproduction.
- The most perspective process for searching θ^+ is hadron scattering of elementary particles.

since the largest branchings of θ^+ decay are hadronic: $Br(\theta^+ \to p + K^0)$ and $Br(\theta^+ \to n + K^+)$.

Nuclear targets should be excluded to avoid
 Fermi motion and rescattering (smearing) effects.

Search for θ^+ **in Hadronic Channels**

• Examples of perspective hadronic reactions

 $\pi^- + p \rightarrow \theta^+ + K^-$, $E_{\pi} \ge 1.67$ GeV, for $M_{\theta^+} = 1.53$ GeV. $\bar{p} + p \rightarrow \theta^+ + \bar{\theta}^-$, $E_{\bar{p}} \ge 4.05$ GeV (PANDA).

• Cross section of $\theta^+ + \bar{\theta}^-$ production in $\bar{p} + p$ collision In the simplest model of K^0 exchange the cross section maximum is given by $\sigma_s(\bar{p} + p \rightarrow \theta^+ + \bar{\theta}^-) = 0.5 \cdot (\Gamma_{tot})^2 \ \mu b$,

where the total width of θ^+ is measured in MeV and the beam energy is 5 GeV.

$$\mathcal{L}_{PANDA} = 2 \cdot 10^{32} \text{ cm}^2 s^{-1}$$
, $\dot{N} = L \cdot \sigma = 100 \cdot (\Gamma_{tot})^2 s^{-1}$.

Pentaquark Production through Kaon Exchange

• Kaon Exchange Graph

Pentaquark Production through Kaon Exchange

• Differential and total cross sections

Requirements to Suppress Background

- Ratio R^s_{bg} of signal to background If we put for rough estimate $\Gamma_{tot} = 1$ MeV and the total cross section of $\bar{p}p$ scattering $\sigma^{tot}_{\bar{p}p} = 50$ mb we get $R^s_{bg} = \sigma_s / \sigma^{tot}_{\bar{p}p} = 10^{-5}$.
- The main problem for PANDA experiment is to suppress the background by a factor of about $10^5 \div 10^6.$
- Reaction $\bar{p} + p \to (\bar{p} + \pi^+ + \pi^-) + (p + \pi^+ + \pi^-)$
 - $Br(\theta^+ \to p + K^0) \approx 0.5$, probability of transition $K^0 \to K_S^0$ is 0.5, and $Br(K_S^0 \to \pi^+ + \pi^-) \approx 0.69$.

This gives addition small factor $\approx 1/32$ for R_{bg}^S .

• Demand that the final state should contain only

 $\bar{p} + p + 2\pi^+ + 2\pi^-$ reduces the cross section of background processes significantly ($\sigma_{bg} \ll \sigma_{\bar{p}p}^{tot}$)

Requirements to Suppress Background

- Choice of π⁺π⁻ pairs and cuts for K⁰_S mass The π⁺π⁻ pairs are to be chosen in such a way that the sum of two squares (M_{π⁺π⁻} - M_{K⁰_S})² is minimal, where M_{K⁰_S} is the PDG value. Restriction on maximal values of (M_{π⁺π⁻} - M_{K⁰_S})² reduces background.
 Cuts for decay length
- There are two long living particles K_S^0 in reaction: $\bar{p} + p \rightarrow \theta^+ + \bar{\theta}^- \rightarrow (\bar{p} + \bar{K}^0) + (p + K^0)$, $K^0 \rightarrow K_S^0$. Applying cuts for the minimal distances between the K_S^0 decay vertex position and the $\bar{p}p$ interaction point we can suppress background significantly. • Collinearity cuts
 - Trajectories of K^0 and \bar{K}^0 are to correspond to their three-momenta. These cuts suppress background also.

Advantages of Searching θ^+ at PANDA

- Search in θ^+ Mass Region from 1217 MeV to 1834 MeV $2.22 \ge E_{\bar{p}} \ge 6.23$ GeV (PANDA: $1.5 \ge E_{\bar{p}} \ge 15.0$ GeV) Molecular model: $|P_c^+ \rangle = |\Sigma_c + \bar{D}^* \rangle$,
 - $$\begin{split} |\theta^+> &= \alpha |p+K^0> +\beta |n+K^+>, \\ |\theta^+> &= \alpha |p+K^{*0}> +\beta |n+K^{*+}>, \end{split}$$
 - $\begin{array}{l} \theta^+ \to p + \pi^+ + \pi^-, \, M_{\theta^+} \geq m_p + 2m_{\pi^+} = 1217 \, \, {\rm MeV} \\ \theta^+ \to n + K^+, \, M_{\theta^+} \geq m_n + M_{K^+} = 1433 \, \, {\rm MeV}. \\ \theta^+ \to p + K^{*0}, \, M_{\theta^+} \geq m_p + M_{K^{*0}} = 1834 \, \, {\rm MeV}. \end{array}$
- High statistics experiment:

$$\dot{N}_D = \epsilon_D L \cdot \sigma_s = \epsilon_D \cdot 100 \cdot (\Gamma_{tot})^2 \ s^{-1}$$
, $\epsilon_D \sim 1\%$.

Possibility to establish strangeness

$$\bar{p} + p \to \theta^+ + \bar{\theta}^-$$
, $\theta^+ \to n + K^+$, $\bar{\theta}^- \to \bar{p} + \bar{K}^0$.

Conclusions

- Neither existence nor non-existence of the θ^+ pentaquark is not established now
- Search in wide region of θ^+ mass should be performed
- It is desirable not to use nuclear targets to avoid the Fermi motion and rescattering effect contributions
- It is highly likely that the most perspective reactions for θ^+ production are hadronic ones
- Production rate for the θ^+ pentaquark in the PANDA experiment can be about a few events per second
- Search for the θ^+ pentaquark at PANDA can be realized in wide mass region even below kaon production threshold
- The most serious problem of the PANDA experiment is to find effective requirements to suppress background process contributions

Backup Slides

Backup Slides

• Differential Cross Section for $\theta^+ \overline{\theta}^-$ Production $d\sigma = a^4 [(M_{\theta} - m_N)^2 - t]^2$

$$\frac{d\sigma}{dt} = \frac{g^4 [(M_\theta - m_N)^2 - t]^2}{16\pi s (s - 4m_N^2) (M_K^2 - t)^2}$$

• Total Cross Section for $heta^+ar heta^-$ Production $\sigma_{tot}=$

$$\frac{g^4}{16\pi s(s-4m_N^2)} \left\{ \left[(M_\theta - m_N)^2 - M_K^2 \right]^2 \left[\frac{1}{M_K^2 - t_{min}} - \frac{1}{M_K^2 - t_{max}} \right] \right\}$$

$$+2[(\mathsf{M}_{\theta}-m_{N})^{2}-M_{K}^{2}]\ln\left[\frac{M_{K}^{2}-t_{max}}{M_{K}^{2}-t_{min}}\right]+t_{min}-t_{max}\Big\}.$$

Here $(-t_{max})/(-t_{min})$ is maximal/minimal value of (-t). • Total Width of the Pentaguark Decay $\theta^+ \to N + K$

$$\Gamma_{tot} = \frac{g^2 [(M_{\theta} - m_N)^2 - M_K^2]}{4\pi M_{\theta}^2} P_0 \equiv \frac{g^2 P_0^3}{\pi [(M_{\theta} + m_N)^2 - M_K^2]},$$

where
$$P_0 = \frac{\sqrt{[(M_\theta - m_N)^2 - M_K^2][(M_\theta + m_N)^2 - M_K^2]}}{2M_\theta}$$
.