First observation of diffraction in proton-lead collisions at the LHC with the CMS detector

Dmitry Sosnov

Petersburg Nuclear Physics Institute NRC KI, Gatchina, Russia

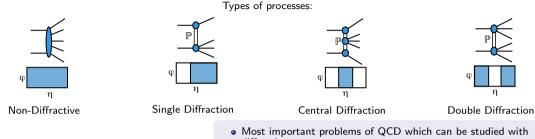
PNPI High Energy Physics Division seminar, October 20, 2020

The talk is based on recent preliminary CMS results:

CMS collaboration, First measurement of the forward rapidity gap distribution in pPb collisions at $\sqrt{s_{\rm NN}} = 8.16~{\rm TeV}$

CMS-PAS-HIN-18-019, CERN, June 2020

And also on two talks, presented at:


• The 5th International Conference on Particle Physics and Astrophysics, Moscow, 07.10.2020

• LXX International Conference "NUCLEUS — 2020", Saint Petersburg, 17.10.2020

Introduction

Physics relevance

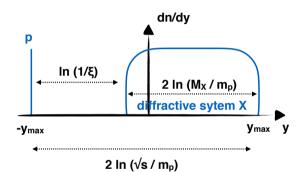
- Diffractive collisions are defined as special inelastic collisions in which no quantum numbers are exchanged between colliding particles
- A diffractive process is characterized by a Rapidity Gap, which is caused by t-channel pomeron(s) exchange (and also by *t*-channel γ -exchange)

- Most important problems of QCD which can be studied with diffraction.
 - Nature of the pomeron in QCD
 - Small-x problem and "saturation" of parton densities
 - Color transparency
- Cross sections of inelastic diffractive processes are very sensitive to nonlinear saturation effects, especially for nuclei.
- Diffraction of hadrons on nuclear targets at very high energies is also relevant for cosmic-ray physics.
- The latest measurements on diffraction in pA were done by HELIOS with $\sqrt{s} = 27$ GeV Z. Phys. C 49 (1991) 355

n

Introduction

Rapidity Gap in diffractive process


For process $p + p \rightarrow h + X$

•
$$M_X = \sum_i m_i; \ \xi_X = \frac{M_X^2}{s} = 1 - \left(\frac{p_{z,cms}}{p_{z,cms}^{max}}\right)$$

• Maximum Rapidity Gap size: $\Delta \eta \sim -ln(\xi_X)$

Maximum Rapidity Gap size

- For proton-proton collision at $\sqrt{s} = 13$ TeV:
 - *y_{max}* = 9.5
- For proton-lead collision at $\sqrt{s_{NN}} = 8$ TeV:
 - $y_{max,p} = 9.5$,
 - $y_{max,Pb} = 8.6$,

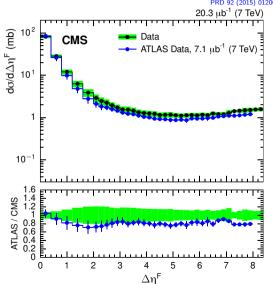
Introduction

HELIOS results (Z. Phys. C 49 (1991) 355)

[qm] 30 511 C SD 卢 20 -10 8 6 5 this experiment Refs. (21-23) 4 3 10 100 Mass Number A

Main HELIOS results

- $\bullet\,$ The cross-section of single diffraction is proportional to the nuclear radius, $\sigma_{SD}\sim A^{1/3}$
- This suggests that diffractive dissociation of nuclei is a peripheral process, predominantly involving nucleons on the rim of the nucleus.

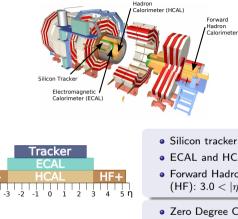

First observation of diffraction in pPb collisions at the LHC with the CMS detector

5 / 26

PRD 92 (2015) 012003

Prior measurements at the LHC in pp collisions

- Rapidity Gap the rapidity regions free of final state particles
- Forward Rapidity Gap (FRG) distribution is one of the most inclusive way to study diffraction
- Until now only pp diffraction at LHC is observed
- FRG was studied with pp collisions data by ATLAS EPJC 72 (2012) 1926, CMS PRD 92 (2015) 012003



CMS Detector

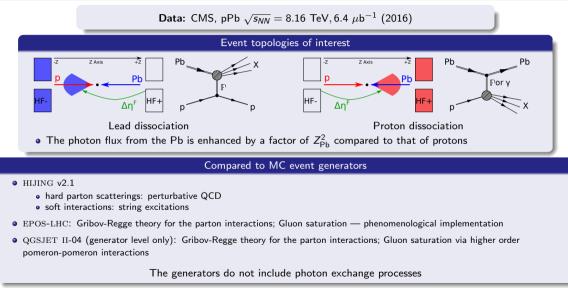
CMS Detector

HE.

- Silicon tracker: $|\eta| < 2.5$
- ECAL and HCAL: $|\eta| < 3.0$
- Forward Hadron Calorimeter (HF): $3.0 < |\eta| < 5.2$
- Zero Degree Calorimeter (ZDC): $|\eta| > 8.5$

Calorimetry + tracking = Particle Flow (PF) objects

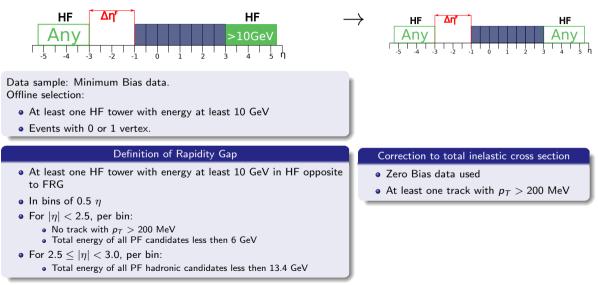
Triggers


- Minimum Bias (MB): Requires the presence of proton and lead beams and an energy of HF Tower more then approximately 7 GeV in either of the HF calorimeters
- Zero Bias (ZB): Requires the presence of proton and lead beams in the CMS detector
- Analysis made on Minimum Bias and Zero Bias used for the cross section corrections

HF Towers

• HF has fine segmentation by η and ϕ into 432 HE Towers

Data and event topologies

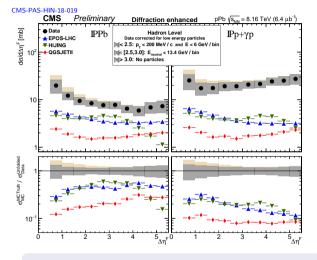


Dmitry Sosnov, NRC KI — PNPI

First observation of diffraction in pPb collisions at the LHC with the CMS detector

Selection of events with Forward Rapidity Gaps (FRG)

"Diffraction enhanced" subsample: extending over HF region adjacent to FRG

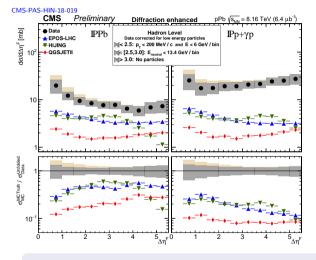

To extend FRG over the HF region (3.0 $< |\eta| < 5.2$):

- Data: weighting the original $d\sigma/d\Delta \eta^F$ spectra by the probability for the corresponding HF calorimeter to have no signal
- MC: No detectable particles at the HF acceptance

Weighting procedure

- We want to find the fraction of events without energy deposition at HF
- For the low energy part we normalize HF distribution of non-colliding bunch events to the leftmost part at full distribution
- This we do for each FRG bin separately on the ZeroBias data

Hadron-level FRG cross section at diffractive enhanced subsample for $|\eta| < 3.0$


Those generators do not include photon exchange processes.

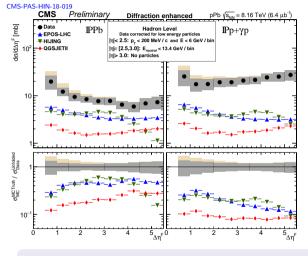
The Monte Carlo spectra are normalized to the total visible cross section of the data.

PPb topology

- For the PPb topology case, (γ-exchange contribution should be negligible), predictions of EPOS-LHC is about a factor of 2 and QGSJET II a factor of 4 are below the data
- However for both of those generators the shape of the $\frac{d\sigma}{d\Delta\eta^F}$ spectrum is similar to that of the data
- The rapidity spectrum from the $\rm HIJING$ generator falls at large $\Delta\eta^F$ in contradiction to the data

Hadron-level FRG cross section at diffractive enhanced subsample for $|\eta| < 3.0$

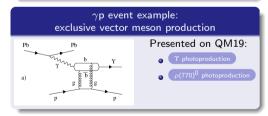
The Monte Carlo spectra are normalized to the total visible cross section of the data.


$\ensuremath{\mathbb{P}p}$ topology

- For the Pp case all the generators are more than a factor of 5 below the data
- This suggests a very strong contribution from γp events which is not yet implemented in the considered event generators

Those generators do not include photon exchange processes.

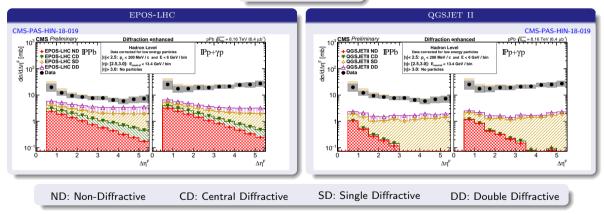
Hadron-level FRG cross section at diffractive enhanced subsample for $|\eta| < 3.0$



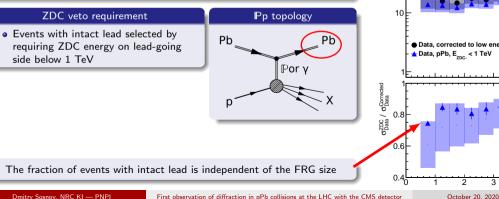
Those generators do not include photon exchange processes.

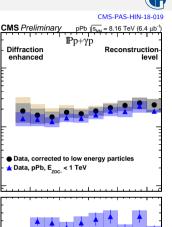
The Monte Carlo spectra are normalized to the total visible cross section of the data.

$\ensuremath{\mathbb{P}p}$ topology


- For the Pp case all the generators are more than a factor of 5 below the data
- This suggests a very strong contribution from γp events which is not yet implemented in the considered event generators

Contributions of different processes as predicted by EPOS-LHC and QGSJET II




- Transition to diffractive enhanced sample suppressed contribution of non-diffractive processes.
- The considered event generators do not fully describe the data.

Fraction of events with intact lead

Zero Degree Calorimeter

- ZDC calorimeters are located 140 m away from the CMS interaction point
- Consist of tungsten absorber and quartz fibers
- Allows to exclude events with neutrons produced due to a lead break-up (Pp topology only)

Λ

⁵∆n

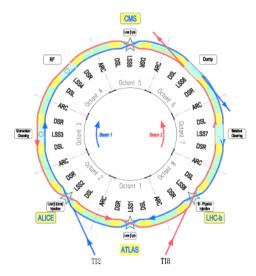
13 / 26

łσ/d∆η^F [mb]

10²

Summary

- Forward rapidity gap distribution $\frac{d\sigma}{d\Delta\eta^F}$ from proton-lead collisions at the LHC ($\sqrt{s_{NN}} = 8.16$ TeV) have been measured for the first time for both pomeron-lead and pomeron-proton topologies
- For the IPPb topology case, where the γ -exchange contribution should be negligible:
 - Predictions of EPOS-LHC is about a factor of 2 and QGSJET II a factor of 4 are below the data
 - However for both of those generators the shape of the $\frac{d\sigma}{d\Delta p^F}$ spectrum is similar to that of the data
 - The rapidity spectrum from the HIJING generator falls at large $\Delta\eta^F$ in contradiction to the data
- For the IPp case:
 - All used generators are more than a factor of 5 below the data
 - \bullet This suggests a very strong contribution from γp events which is not yet implemented in the considered event generators
 - The fraction of events with intact lead is independent of the FRG size
- These data may be of significant help in modeling ultrahigh-energy cosmic ray air showers

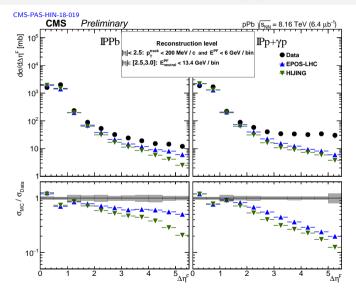

Thank you!

Backup slides

Backup

LHC beams and collision modes

LHC beams


- Beam 1 circulates clockwise
- Beam 2 goes counter-clockwise

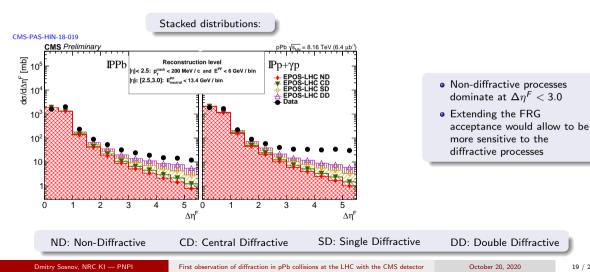
Collision modes

- During data taking beam direction was reversed.
- Pbp: beam 1 protons, beam 2 lead ions
- pPb: beam 1 lead ions, beam 2 protons

FRG cross section for detector level

FRG cross section at detector level for $|\eta| < 3.0$

The Monte Carlo spectra are normalized to the total visible cross section of the


• For both topologies (IPPb and IPp) the spectra fall by a factor of over 50 between $\Delta \eta^F = 0$ and $\Delta \eta^F = 2$

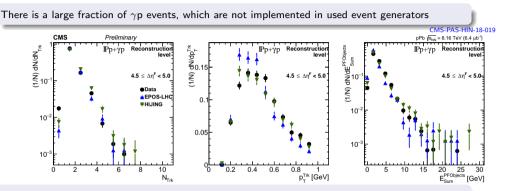
data.

- For Δη^F > 2 the spectra flatten off for both topologies
- The predictions of EPOS-LHC are closer to the data than those of HIJING
- For the IPp MC predictions are significantly below the data in the region $\Delta \eta^F > 2$ due to γp events

FRG cross section at detector level for $|\eta| < 3.0$

Contributions of different processes predicted by EPOS-LHC

Hadron level


All our corrections correspond to following hadron level definition:

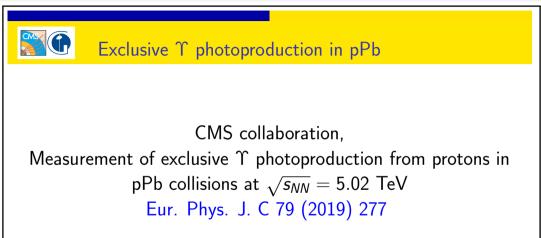
- Inelastic collision events
- FRG in the central region (the same as detector level):
 - $\bullet\,$ In bins of 0.5 $\eta\,$
 - For $|\eta| < 2.5$, per bin:
 - No charged particles with $p_T > 200 \text{ MeV}$
 - The total energy of all particles should not exceed 6 GeV
 - For 2.5 $\leq |\eta| <$ 3.0, per bin:
 - $\bullet\,$ The total energy of neutral hadrons should not exceed 13.4 GeV
- No detectable particles at the HF acceptance on the side of FRG

Hadron level

Comparison of ${\rm I\!Pp}$ and $\gamma {\rm p}$ events

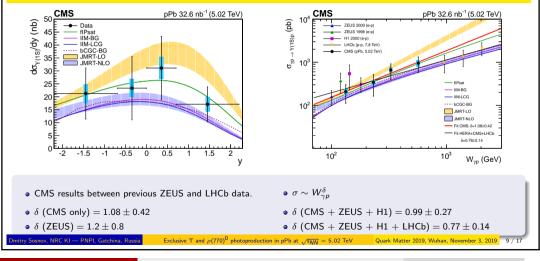
- To test the appropriateness of using these generators for the unfolding, distribution of:
 - Number of tracks,
 - p_T distribution of tracks
 - Sum of energy of all PF candidates
 - in a bin was studied
- For each $\Delta \eta^F$ bin, the distributions are in a good agreement.

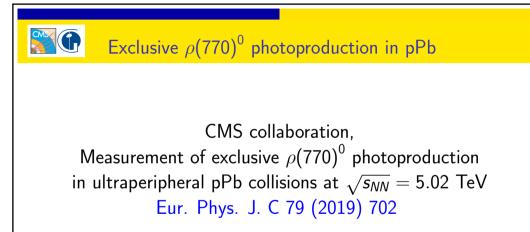
First observation of diffraction in pPb collisions at the LHC with the CMS detector



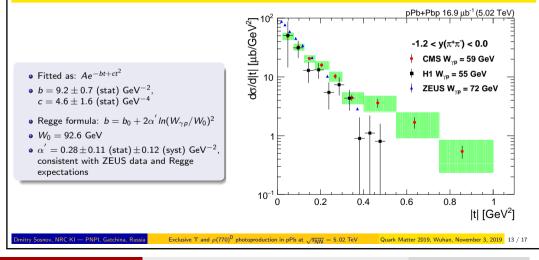
Unfolding

The unfolding was performed:


- Using the D'Agostini iteration method with early stopping (in RooUnfold)
- Number of iterations: 2
- Number of iterations was chosen by minimum of the average global correlation coefficient


Result: comparison with predictions and other data

Dmitry Sosnov, NRC KI - PNPI


First observation of diffraction in pPb collisions at the LHC with the CMS detector

Results for $d\sigma/d|t|$

First observation of diffraction in pPb collisions at the LHC with the CMS detector