Particle and AstroParticle physics in China.

Status and perspectives. Part II

Based on a talk of Yifang Wang at 20th Lomonosov Conf., Aug. 19, 2021

By Oleg Fedin

JinPing underground Laboratory

Ann. Rev. Nucl. Part. Sci. 67(2017) 231

http://jinping.hep.tsinghua.edu.cn/

It is currently the largest underground laboratory in the world 7280 m² (Gran Sasso National Laboratory LNGS Italy 6000 m2

Cheng J-P, et al. 2017. Annu. Rev: Nucl. Part. Sci. 67:231–51

Семинар ОФВЭ

CJPL-II Radioactivity Background Control

- GeTHU: low level high purity germanium (HPGe) gamma spectrometer
- Ge crystal h=59.8 mm&D=59.9 mm.
- The cryostat is made of ultra-low background aluminum (ULB AI).
- All the raw material used during construction of CJPL-II were investigated by GeTHU.

CJPL-I low background facility

GeTHU-I

GeTHU-II

Experiments at JinPing laboratory

CDEX - China Dark Matter Experiment

- Searching for light DM by P-type Point-Contact Germanium detectors
- Formed in 2009, 11 institutions and ~70 people
- PandaX Particle and Astrophysical Xenon Experiments
 - Collaboration started in 2009 (includes ~40 people) 7 institutions
 - is a series of experimental projects that utilizes of a dual-phase xenon time projection chamber (TPC) detector
 - > to search for dark matter particles
 - ▹ to detect ¹³⁶Xe neutrinoless double beta decay
 - The collaboration has now entered into the multi-ton stage of the project, PandaX-4T.
- JUNA Jinping Underground Experiment for Nuclear Astrophysics
 - > direct measurement of (α, γ) , (α, n) reactions in hydrostatic helium burning and (p, γ) , (p, α) reactions in hydrostatic hydrogen burning.

CDEX - China Dark Matter Experiment

- DM detection w/Ge prepared since 2003 and started in 2005 in Y2L (5g) –Yang Yang Underground Lab in South Korea;
- CDEX-1: Development of PPC Ge detector, bkg understanding, since 2011;
- CDEX-10: Performances of Ge array detect (or immersed in LN2, since 2016;
- CDEX-10X: Home-made Ge detector and Ge crystal growth;
- Toward future ton-scale DM experiment

CDEX-1A&B: 1kg PPC Ge x 2

CDEX-10: ~10kg PPC Ge array

CDEX10X moving to a 1725m3 LN2 tank (φ 13x13m) located in the pit; Construction of LN2 tank kicked off in Nov. 2018 and done end of 2019;

Семинар ОФВЭ

62 мм

CDEX results

- run-1 to run-2: change of shielding.
- 0.25 0.85 keV: most important region for low mass WIMP
- χ2 test, (mean, RMS) consistent with null profile.

- exclude DAMA phase-1 and CoGeNT at > 99.99%, 98% C.L.
- data consistent with null-hypothesis.
- other results (e. g. dark photon search, Axion search) will be available soon.

modulation amplitudes consistent with

PandaX - Particle and Astrophysical Xenon Experiments

□ PandaX-I:

- > Operated before November 2014;
- > 120 kg of xenon (of which 54 kg served as a fiducial mass) to probe the lowmass regime (<10 GeV) and verify dark matter signals reported by other detector experiments.
- > the first dark matter experiment in China to use more than 100 kg of xenon in its detector

□ PandaX-II :

- > operated between Oct. 2014 and June 2019.
- half-ton scale dual-phase time projection chamber (TPC)
 in 2016 and 2017, PandaX-II produced the world leading constraints to dark matter-nucleon interactions.

□ PandaX-4T:

- > is expected start to operate in 2021
- > 6-ton of total Xenon and 4-ton sensitive target
- > aims is to improve the dark matter sensitivity by one order of magnitude in comparison to PandaX-II
- □ PandaX-III searches for the possible neutrinoless double beta decay with 200 kg to one ton of 90% enriched ¹³⁶Xe in a high pressure (10 bar) gaseous Xenon TPC.

Operation Principle of Dual-Phase LXe TPC

Signal:

- Nuclear recoil from WIMP collision
- Gives ionisation, scintillation and phonons.

 $Xe^* \xrightarrow{+Xe} Xe_2^* \rightarrow 2Xe + hv.$

РМТ

РИТ

- S2

S1

GXe

ЬXе

pos HV

neg HV

mplitude

mplitude

S1

Background:

Nuclear Recoil

Electronic Recoil

Time

Time

- Other nuclear recoils
- Electron recoils

S2

- All systems of Panda-X are designed for >500 kg active mass
- Easy transition from 125 kg to 500 kg:
 - Lengthen PTFE panels (and shaping rings)
 - Adjust overflow point
 - Increase HV
 - Fill more Lxe
- Everything else stays the same.

 $(S_2/S_1)_{WIMP} << (S_2/S_1)_{\gamma}$

Семинар ОФВЭ

PandaX-1a

PandaX-II results

WIMP Search

SI exclusion limits:

- 2.1x10⁻⁴⁶ cm² for 40 GeV
- $1.4x10^{-45} \text{ cm}^2 \text{ for } 400 \text{ GeV}$

The upper limits on the solar axion coupling constant g_{Ae} (90% C.L.)

The upper limits on the neutrino magnetic moment (90% C.L.)

A cut-away of the TPC

- A symmetrical TPC will be placed in the vessel with the cathode in the middle and two anode planes on the two ends (100kV)
- 90% enriched ¹³⁶Xe with 1% TMA (trimethylamine (CH₃)₃N) mixture
- Vessel Oxygen-Free High Conductivity (OFHC) copper
- Readout Micro-MEsh Gaseous Structure or Micromegas
- 200 kg prototype:
 - ✓ Energy resolution of 3% (FWHM) at the Q-Value of 2.458 MeV.
 - ✓ Signal efficiency of 35%.
 - ✓ Background rate of 10⁻⁴ c/keV/kg/yr
 - ✓ $T_{1/2}$ ~10²⁶ year after 3 year of operation $m_{\beta\beta}$ = 65-165 meV
- Water shield for PandaX III + future DM detector
- Ton scale experiment:
 - ✓ Energy resolution of 1%
 - ✓ Background rate of 10⁻⁵ c/keV/kg/yr
 - ✓ $T_{1/2}$ ~10²⁷ year after 3 year of operation $m_{\beta\beta}$ = 20-50 meV

JUNA - Jinping Underground Experiment for Nuclear Astrophysics

Schematic drawing of low background highly sensitive fast neutron detector. 1) LN2 cold trap; 2) Copper tube; 3) high power ¹³C target; 4) Liquid scintillator; 5) ³He detectors; 6) PMTs.

reaction	physics	current (keV)	current uncertainty(%)	ref.	JUNA (keV)	expected uncertainty (%)
$^{12}C(\alpha,\gamma)^{16}O$	Massive star	890	60	[30]	380	test
$^{13}C(\alpha,n)^{16}O$	s-process neutron source	279	60	[31]	200	20
$^{25}Mg(p,\gamma)^{26}Al$	Galaxy ²⁶ Al source	92	20	[26]	58	15
$^{19}\mathrm{F}(p,\alpha_{\gamma})^{16}\mathrm{O}$	Fluorine overabundance	189	80	[32]	100	10

LHAASO - Large High Altitude Air Shower Observatory

- 4410 meters of altitude in the Sichuan province (Daocheng)
- 5195 ED electromagnetic particle detectors (1,3 km²)
- 1171 MD muon detectors
- 78000m² WCDA (Water Cherenkov Detector Array)
- 18 WFCTA The wide field of view Cherenkov telescope array
- Construction completed
- Data taking started

12/10/21

Семинар ОФВЭ

LHAASO

- Construction completed, data taking started
- The LHAASO has the features of large field of view, all weather, low energy threshold, and high sensitivity.
- Among the known gamma-ray sources, there are 103 sources of > 100 GeV and 187 sources of > 50 GeV existed in the field of view of LHAASO.
- Great results obtained:
 - > Highest γ -rays from the Milky Way : 1.4 PeV
 - > 12 identified γ -ray sources up to ~1 PeV \rightarrow PeVatrons in the Milky Way

AMS02 Results

□ **Positron excess** respect to pure secondary production (PAMELA, AMS-02)

□ Two hypotheses

- Dark Matter (DM)
- annihilation Nearby Pulsar Wind Nebulae (PWN)

□ How to distinguish among them?

 An important contribution to our understanding can be obtained by high energy (calorimetric) measurement of the e⁺+e⁻ flux

Cosmic-Rays in Space

- 3D crystal calorimeter for dark matter searches and cosmic-rays (7500 LYSO crystals)
- Acceptance & energy range × 10
- Selected for the Chinese Space Station, to be launched in ~2027
- In collaboration with Italy, Sweden, Switzerland, ...

	ΧΟ(λ)	ΔE/E for e	e/p sep	GF m²sr
HERD (2020)	55(3)	1%	10 ⁻⁶	3.1
Fermi (2008)	10	12%	10 ⁻³	0.9
AMS02 (2011)	17	2%	10 ⁻⁶	0.12
DAMPE (2015)	31	1%	10 ⁻⁴	0.3
CREAM (2015)	20(1.5)			

Expected e⁺+e⁻ flux in 5 years

Семинар ОФВЭ

X-ray astronomy in Space

11.5 m × 8.78 m × 4.74m

- Insight-HXMT satellite was launched on June 15, 2017
- Important results:
 - No EW signal during GW events
 - FRB 200428 originated from Magnetar SGRJ1935+2154
 - Highest magnetic field in the Universe
- eXTP is the next generation telescope for "Enhanced X-ray Timing and Polarization Mission"
- A leading flagship observatory for black holes, neutron stars and extreme physics
- A large international collaboration

CSNS - Chine Spallation Neutron Source

- China Spallation Neutron Source (CSNS) is the first spallation neutron source, also the largest proton accelerator ever built in China.
- It mainly supports multidisciplinary research based on neutron scattering, but also other research based on proton beams, muon beams and white neutron beams.
- It is based on a high-power proton accelerator complex, with100kwt Phase-I, and 500 kW at Phase-II

CSNS - Timeline

CSNS will be built in two phases: 100 kW at CSNS-I and 500 kW at CSNS-II. Total budget: ~2.3B CNY (or 350M USD)

CSNS - Facility

The Basic Parameters of CSNS				
Name	CSNS-I	CSNS-II		
Beam power(kW)	100	500		
Repetition rate(Hz)	25	25		
Target number	1	1		
Average current(µA)	62.5	312		
Proton energy(GeV)	1.6	1.6		
Linac energy(Mev)	80	250		

D+P, LH2	C,LH2	• • • D, Water
(20K)	(20K)	(300K)

Back-streaming neutrons

Back-streaming neutrons (Back-n) from the CSNS target into the RTBT (Ring to Target Beam Transport):

- Very intense, harmful to the devices in RTBT, should be carefully treated (collimation and bending/neutron stopper)
- Good energy spectrum and time structure, exploited as white neutron source (first its kind in the world)

谢谢你的关注