Исследование структуры экзотических ядер на установке с активной мишенью ИКАР методом упругого рассеяния в инверсной кинематике

1. Экзотически ядра

2. Экспериментальный метод и анализ результатов измерений

- идея эксперимента:
 - ионизационная камера ИКАР как активная мишень
- основные этапы обработки данных
- анализ сечений в рамках теории Глаубера
- 3. Результаты

Размеры и форма -

основные характеристики атомных ядер

Ядра вблизи долины стабильности

 $N/Z = 0.98 + 0.015 \cdot A^{2/3}$

$$\rho_m(r) = \frac{\rho_0}{1 + \operatorname{Exp}(\frac{r - R_0}{\delta})}$$

 $ho_0 \simeq 0.17$ нуклон/фм³ R $\approx 1.2 \cdot A^{1/3}$ фм $\delta \sim 0.5$ фм ($\Delta r \approx 2.2$ фм) для всех ядер

Ядра с гало – новый феномен в изучении структуры ядра

Распределение ядерной материи

Ядра с большим избытком нейтронов:

нейтронное гало

¹¹Li

Стабильные ядра:

нейтроны и протоны распределены равномерно

Ядерное "гало" и ядра Борромео

Halo nuclei are examples of 'Borromean' systems, only bound with three interactions... remove any one and the other two fall apart....

<u>Условия образования гало</u>: – энергия отделения $S_n \le 1$ МэВ – низкий орбитальный момент валентного нейтрона: l = 0, 1 Проявление гало:

– значительный рост сечения σ_R или σ_I

 узкое импульсное распределение продуктов реакции при фрагментации

– величина сечения выбивания одного нейтрона

Упругое рассеяние протонов на ядрах при энергии 1 ГэВ

надежный метод изучения распределения ядерной материи (G.D. Alkhazov, S.L. Belostotski, A.A. Vorobyov, Phys. Rep. 42 (1978) 89)

пучки радиоактивных изотопов ⇒ изучение экзотических ядер

Исследование структуры легких экзотических ядер методом упругого рассеяния протонов в области малых углов

$$R_{\rm m} = [(A_{\rm c} \cdot R_{\rm c}^2 + A_{\rm v} \cdot R_{\rm v}^2)/A]^{1/2}$$

В серии экспериментов в инверсной кинематике измерены дифференциальные сечения упругого рассеяния протонов в диапазоне переданных импульсов 0,002< |t| <0,05 (ГэВ/с)² на ядрах:

> ⁴He, ⁶He, ⁸He ⁶Li, ⁸Li, ⁹Li, ¹¹Li ¹²Be, ¹⁴Be, ⁷Be, ⁸B ¹²C, ¹⁴C, ¹⁵C, ¹⁶C, ¹⁷C

и найдены параметры распределения ядерной материи $R_{\rm m},~R_{\rm c},~R_{\rm v}$

Пучок

Экспериментальная установка

Трековый детектор: РС 1–4 (пропорциональные камеры)

Идентификация пучковых частиц: S1–S3, Veto

(пластиковые сцинтилляторы)

Магнит ALADIN + измерение координаты и заряда (по ΔE) $\} \Rightarrow \Delta E$, ToF, триггер

 $\Rightarrow \theta_{\rm S}$

} ⇒ <mark>выделение</mark> упругого канала

Экспериментальная установка

Ионизационная камера ИКАР

Мишень + детектор протонов отдачи

Упругое рассеяние в ИКАРе

Энергия протона отдачи, оставляемая в ИК

Расчёт выполнен для событий упругого рассеяния ядер ⁸Не с энергией 0,7 ГэВ/нуклон в предположении, что пучок ядер ⁸Не идёт по осевой линии ионизационной камеры.

Сигналы с анодов ИКАРа

Мишень.

 давление H₂:
 10 атм

 толщина окон:
 0,5 мм Ве

 толщина мишени:
 3·10²² протого

 интенсивность пучка:
 ≤ 10⁴ сек⁻¹

10 атм 0,5 мм Ве 3·10²² протонов/см² (6 модулей) ≤ 10⁴ сек⁻¹

Энергетическая калибровка ИК и чистота газа

Чистота газа

Измерение дифференциальных сечений

$$\frac{d\sigma}{dt} = \varepsilon \cdot \frac{\Delta N}{\Delta t \cdot M \cdot n \cdot \Delta L}$$

- 1. Энергетическая и временная (объем)
калибровки ИКАРа \Rightarrow $\sigma_{A(B)} = 40-60$ кэВ
 ΔZ (FWHM) = 1 мм
- 2. Выстройка и калибровка трекового детектора, полученное разрешение для плоских углов ΔΘ_{x,y} = 0.4–1.0 мрад (определяется многократным кулоновским рассеянием)
- 3. Калибровка дрейфовой камеры и сцинтилляционной стенки и разработка алгоритма идентификации частиц
- 4. Отбор событий упругого рассеяния

Угловое разрешение трекового детектора

Угловое разрешение трекового детектора, *p*-Li рассеяние

Корреляция ИКАР - пропкамеры

*p*¹⁵С рассеяние

Калибровка объёма

 $\Delta Z (FWHM) = 1 \text{ MM}$

Определение положения точки взаимодействия

и толщины мишени

Отбор полезных событий

Отбор полезных событий. Режекция событий развала

Корреляция ИКАР - ПК Вычитание фона случайных совпадений

Эффективность (потери при отборе событий)

Суммарная погрешность абсолютной нормировки составляет 2,5–3%

Дифференциальные сечения упругого p-Li рассеяния

Анализ сечений по Глауберу

На входе:

- амплитуды элементарных pp- и pn-взаимодействий
- распределение ядерной материи

рN-амплитуда «сворачивается» с плотностью распределения ядерной материи

Глауберовская амплитуда

Феноменологические плотности для описания распределения ядерной материи:

- SF: Symmetrized Fermi distibution
- **GH**: "Gaussian with halo" $F(t) = (1 + \alpha z^2) Exp(z), z = t R_m^2/6$
- **GG**: 2 Gaussians
- **GO**: Gaussian + 1p harmonic oscillator

Все модели – с двумя свободными параметрами; две последние позволяют различать "кор" и "гало"

$$<\!\!R^2_{\text{folded}}\!\!> = <\!\!R^2_{\text{unfolded}}\!\!> + <\!\!r^2_{\text{nucleon}}\!>$$

Конфигурации ядер в анализе

Ядро	кор	валентные
⁶ He	⁴ He	<u>нуклоны</u> 2n
⁸ He	⁴ He	<u>4n</u>
⁶ Li	⁴ He	<i>p</i> + <i>n</i>
⁸ Li	⁷ Li	1 <i>n</i>
⁹ Li	⁷ Li	2 <i>n</i>
¹¹ Li	⁹ Li	2 <i>n</i>
⁷ Be	⁴ He	2p+n
¹² Be	¹⁰ Be	2 <i>n</i>
14 Be	¹² Be	2 <i>n</i>
DC	¹⁰ Be	4 <i>n</i>
⁸ B	⁷ Be	1 <i>p</i>
¹⁵ C	¹⁴ C	1 <i>n</i>
¹⁶ C	¹⁴ C	2 <i>n</i>
¹⁷ C	¹⁶ C	1 <i>n</i>

Чувствительность к форме распределения

Результаты для ⁶Li

Парамет-	201	Результаты анализа данных			
ризация	$\chi^{2/1}N_{df}$	A _n	Параметры плотности		к _т , фм
SF	44,9/40	0,97 (2)	$R_0 = 1,78 \ (47)$	<i>a</i> = 0,55 (8)	2,45 (4)
GH	45,0/40	0,97 (2)	$R_{\rm m} = 2,44~(6)$	$\alpha = 0,03~(6)$	2,44 (6)
GG	44,9/40	0,97 (2)	$R_{\rm c} = 2,19 \ (13)$	$R_{\rm v} = 2,89 \ (38)$	2,44 (6)
GO	44,9/40	0,98 (1)	$R_{\rm c} = 2,02 \ (11)$	$R_{\rm v} = 3,11 \ (26)$	2,44 (6)

 $R_{\rm m} = (2,44 \pm 0,07) ф {
m M}$ $R_{\rm m} = [(A_{\rm c} \cdot R_{\rm c}^2 + A_{\rm v} \cdot R_{\rm v}^2)/A]^{1/2}$

 $R_{\rm c} = 2,11 (17) ф M$ $R_{\rm v} = 3,00 (34) ф M$

Распределение ядерной материи для ⁶Li и ¹¹Li

Результат для ¹¹Li

в предположении ¹¹Li = ⁹Li-core + 2 валентных нейтрона для моделей GG и GO получаем:

 $R_{halo} = 6.05 \pm 0.32 \text{ fm}$ $R_{core} = 2.53 \pm 0.04 \text{ fm}$

для сравнения: $R_{Li}^9 = 2.44 \pm 0.06 \text{ fm}$

Результаты для всех ядер

	Ядро	Упругое рассеяние протонов				<i>R</i> _m , фм.
		<i>R</i> _m , фм	<i>R</i> _c , фм	R _v , фм	<i>δ</i> _{np} , фм	Сечение реакции
	⁴ He	1,49 (3)	_	_	0,06 (6)	1,57 (4)
	⁶ He	2,45 (10)	1,88 (12)	3,31 (28)	0,74 (14)	2,50 (5)
	⁸ He	2,53 (8)	1,55 (15)	3,22 (14)	0,83 (10)	2,52 (3)
	⁶ Li	2,44 (7)	2,11 (17)	3,00 (34)	-0,02 (15)	2,36 (3)
	⁸ Li	2,50 (6)	2,48 (7)	2,58 (48)	0,46 (12)	2,39 (6)
	⁹ Li	2,44 (6)	2,20 (6)	3,12 (28)	0,48 (11)	2,34 (6)
	¹¹ Li	3,71 (20)	2,53 (3)	6,85 (58)	1,72 (26)	3,50 (9)
	⁷ Be	2,42 (4)	1,86 (14)	3,01 (19)	-0,23 (10)	2,31 (2) 2,36 (6)
	¹² Be	2,71 (6)	2,36 (6)	4,00 (28)	0,47 (9)	2,59 (6)
	¹⁴ Be	3,25 (11)	2,77 (6)	5,28 (43)	1,12 (15)	3,10 (15)
	⁸ B	2,58 (6)	2,25 (3)	4,24 (25)	-0,51 (9)	2,38 (4) 2,61 (8)
	¹² C	2,34 (5)	_	-	0,00 (10)	2,35 (2)
	¹⁴ C	2,42 (5)	_	_	0,07 (9)	2,33 (7)
	¹⁵ C	2,59 (5)	2,41 (5)	4,36 (38)	0,36 (9)	2,54 (4)
	¹⁶ C	2,70 (6)	2,41 (5)	4,20 (26)	0,46 (10)	2,74 (3)
	17C	2,68 (5)	2,57 (5)	4,05 (47)	0,39 (9)	2,76 (3)

С.к.р. протонов:

$$R_{\rm p} = (R_{\rm ch}^2 - r_{\rm p}^2)^{1/2}$$

С.к.р. нейтронов:
 $R_{\rm n} = [(A \cdot R_{\rm m}^2 - Z \cdot R_{\rm p}^2) / N]^{1/2}$

Размер нейтронной шубы: $\delta_{\rm np} = R_{\rm n} - R_{\rm p}$

Результаты. Конфигурация (кор + 2*n*)

Ядро	S _{2n} , МэВ	$\kappa = R_{\rm v}/R_{\rm c}$	$\delta_{ m np}$, фм
¹¹ Li	0,369	2,7 (3)	1,72 (26)
⁶ He	0,973	1,8 (3)	0,74 (14)
¹⁴ Be	1,336	1,9 (2)	1,13 (15)
¹² Be	3,670	1,7 (2)	0,47 (9)
¹⁶ C	5,470	1,7 (1)	0,46 (10)
⁹ Li	6,097	1,4 (2)	0,42 (11)

Результаты. Сравнение ядер ¹⁵С и ¹⁷С

Ядро	<i>S</i> _n , МэВ	$\kappa = R_{\rm v}/R_{\rm c}$	$\delta_{ m np}$, фм
¹⁵ C	1,218	1,8 (2)	0,36 (9)
¹⁷ C	0,728	1,6 (2)	0,39 (9)

Сравнение распределения материи в ядрах ⁷Ве и ⁸В

Заключение

•Измерены абсолютные дифференциальные сечения упругого рассеяния протонов на ядрах ^{4,6,8}He, ^{6,8,9,11}Li, ^{7,12,14}Be, ⁸B и ^{12,14,15,16,17}С при энергии около 0,7 ГэВ в диапазоне переданных импульсов 0,002 < |t| < 0,05 (ГэВ/с)² с точностью 3%

•Измеренные сечения позволили получить:

- радиусы ядерной материи;
- форму распределения материи в ядрах.

•Получены:

- значения радиусов материи для указанных изотопов;
- показано, что все исследованные нейтронно-избыточные ядра (кроме ¹⁴C) имеют значительную нейтронную шубу $\delta_{np} = (0,4-1,7) \, \phi$ м, а у нейтронно-дефицитного ядра ⁷Ве небольшой избыток протонов на поверхности: $\delta_{np} = -0,23 \, (10) \, \phi$ м;
- подтверждено наличие выраженного нейтронного гало в ядрах ⁶He, ¹¹Li, ¹⁴Be и протонного гало в ядре ⁸B. Наибольшее гало у ядра ¹¹Li : $\kappa = 2,7$ (3).
- в протонно-избыточном ядре ⁸В обнаружено протонное гало с *κ* = 1,9 (1). Сделана оценка с.к.р. протонного распределения в ядре ⁸В. Найденная структура ядра важна для вычисления скорости идущей на Солнце реакции ⁷Ве (*p*, γ)⁸В, являющейся одним из источников солнечных нейтрино.

Результаты опубликованы

⁶He, ⁸He, ⁴He: Phys.Rev.Lett. 78 (1997) 2313 Nucl.Phys. A712, (2002) 247 A712, (2002) 269

Li isotopes: Nucl.Phys. A766 (2006) 1

¹²Be, ¹⁴Be: Nucl.Phys. A875 (2012) 8

⁷Be, ⁸B: Phys.Let B780 (2018) 200–204 Nucl.Phys. A989 (2019) 40

^{12,14-17}C: Nucl.Phys. A1008 (2021) 122154

IKAR Collaboration

Г.Д. Алхазов, М.Н. Андроненко, А.А. Воробьев, Г.Е. Гаврилов, А.В. Добровольский, А.А. Жданов, А.Г. Инглесси, Н.Б. Исаев, О.А. Киселев, Б.Г. Комков, Г.А. Королев, А.А. Лободенко, Ф.В. Мороз, В.А. Мыльников, Г.Е. Петров, Д.М. Селиверстов, Л.О. Сергеев, Н.А. Тимофеев, А.В. Ханзадеев, В.И. Яцюра

F. Aksouh, A. Bauchet, A. Bleile, T. Beha, K.-H. Behr, A. Brühnle, K.Burkhsrdt,
D. Cortina-Gil, P. Egelhof, C. Fischer, S. Fritz, H. Geissel, M. Gorska, C. Gross,
M. Hellström, S. Ilieva, H. Irnich, R. Kanungo, G. Kraus, M. Matoš, G. Münzenberg,
S.R. Neumaier, F. Nickel, C. Nociforo, Yu.A. Litvinov, T. Schäfer,
C. Scheidenberger, A. Shrivastava, W. Schwab, H. Simon, P. Singer,
K. Sümmerer, T. Suzuki, H. Weick, M. Winkler

M. Mutterer, J.P. Theobald

О.В. Бочкарев, В.А. Волков, В.Н. Прибора, Л.В. Чулков

Петербургский институт ядерной физики, Гатчина Gesellschaft für Schwerionenforschung, Darmstadt, Germany Institut für Kernphysik, TU Darmstadt, Darmstadt, Germany Курчатовский институт, Москва

