Possibility of experimental confirmation of 3 + 1 neutrino model with one sterile neutrino

A.P. Serebrov

NRC KI - Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia

Neutrino-4 collaboration

¹NRC "KI" Petersburg Nuclear Physics Institute, Gatchina, Russia ²JSC "SSC Research Institute of Atomic Reactors", Dimitrovgrad, Russia ³Dimitrovgrad Engineering and Technological Institute MEPhI, Dimitrovgrad, Russia

> NRC KI - Petersburg Nuclear Physics Institute 16 September 2021

1

1.The direct observation of effect of oscillation in Neutrino-4 experiment on search for sterile neutrino

- 2. Comparison of results of Neutrino-4 experiment with results of other experiments a) with the results of reactor, gallium anomaly, KATRIN, DANSS and NEOS
 - b) MiniBoone and LSND
 - c) with IceCube
- **3.** Possibility of experimental confirmation of the **3** + **1** neutrino model with one sterile **neutrino**
- a) The structure of 3+1 neutrino model and representation of probabilities of different oscillation
- b) Prediction of the effective mass of electron neutrino from Neutrino-4 experiment
- c) Comparison with experiments on measuring neutrino mass: KATRIN
- d) Comparison with neutrino mass constraints from neutrino less double beta-decay: GERDA
- 4. Sterile Neutrino Parameters Neutrino model with one sterile neutrino
 - a) PMNS matrix for 3 + 1 model
 - b) Neutrino flavors mixing scheme including sterile neutrino
 - c) effective mass hierarchy
- **5.** Cosmology the role of sterile neutrinos during the formation of Universe

The direct observation of effect of oscillation in Neutrino-4 experiment on search for sterile neutrino

A.P. Serebrov, et al. PHYSICAL REVIEW D 104, 032003 (2021)

The period of oscillation for neutrino energy 4 MeV is 1.4 m

A.P.Serebrov, et al. JETP Letters, Volume 109, 2019 Issue 4, pp 213–221.

JETP Letters, Volume 112, 2020 Issue 4, pp 211–225.

arxiv:2003.03199 arXiv:2005.05301v 8

Due to some peculiar characteristics of its construction, reactor SM-3 provides the most favorable conditions to search for neutrino oscillations at short distances. However, SM-3 reactor, as well as other research reactors, is located on the Earth's surface, hence, cosmic background is the major difficulty in considered experiment.

Movable and spectrum sensitive antineutrino detector at SM-3 reactor

internal active shielding external active shielding

 $\overline{\nu}_{e} + p \rightarrow e^{+} + n$

- 3.
- steel and lead 4.
- borated polyethylene 5.
- moveable platform 6.
- feed screw 7.
- 8. step motor
- shielding 9.

Liquid scintillator detector 50 sections 0.235х0.235х0.85м³

Passive shielding - 60 tons

Neutrino channel *coutside* and inside →

Range of measurements is 6 – 12 meters

Detector prototype

Full-scale detector

The correlated signal produced by the cosmic background measured over the whole time (up). The correlated ON-OFF signal over the whole time (down).

The distribution of deviations from average value of correlated events rates background (OFF) and differences (ON-OFF) normalized on their statistical uncertainties.

Energy calibration of the full-scale detector

7

BACKGROUND SPECTRUM

Presence of that structure in the energy spectrum indicates that energy calibration of the detector was the same in all measurements.

Energy resolution of the detector σ =250 keV which does not depend on the energy of a positron.

Comparison of MC spectrum of antineutrino for ²³⁵U with the experimental ON-OFF spectrum

$$\begin{split} \hline N(E_i, L_k) \\ \hline Number of antineutrino events} & \mathbf{Probability of antineutrino disappearance} \\ P(\tilde{\nu}_e \rightarrow \tilde{\nu}_e) = 1 - \sin^2 2\theta_{14} \sin^2(1.27 \frac{\Delta m_{14}^2 [eV^2] L[m]}{E_{\tilde{\nu}} [MeV]}) & (1) = \frac{1}{2} \int_{E_{v}, MeV}^{E_{v+1}} \int_{E_{v}, MeV}^{E_{v+1}}} \int_{E_{v}, MeV}^{E_{v+1}} \int_{E_{v}, MeV$$

The denominator is significantly simplified with a range of measurement distances significantly greater than the characteristic oscillation period:

S(E) - Spectrum

 $\mathcal{E}(E)$ - Detector efficiency

$$R_{ik}^{\text{th}} \approx \frac{1 - \sin^2 2\theta_{14} \sin^2 (1.27\Delta m_{14}^2 L_k / E_i)}{1 - 1/2 \sin^2 2\theta_{14}} \xrightarrow[\theta_{14}=0]{} 1$$
(3)

$$\sum_{i,k} \left[(R_{i,k}^{\exp} - R_{i,k}^{th})^2 / (\Delta R_{i,k}^{\exp})^2 \right] = \Delta \chi^2 (\sin^2 2\theta_{14}, \Delta m_{14}^2)$$
(4)

The results of the analysis of optimal parameters Δm_{14}^2 and $\sin^2 2\theta_{14}$ using $\Delta \chi^2$ method

We observed the oscillation effect at C.L. 2.9 σ in vicinity of :

$$\Delta m_{14}^2 \approx 7.25 \text{eV}^2$$
$$\sin^2 2\theta_{14} \approx 0.36$$

 $\Delta m_{14}^2 = 7.30 \pm 0.13_{st} \pm 1.16_{syst}$

 $sin^2 2\theta_{14} = 0.36 \pm 0.12$

The period of oscillation for neutrino energy 4 MeV is 1.4 m

A.P. Serebrov, et al. PHYSICAL REVIEW D 104, 032003 (2021) A.P.Serebrov, et al. JETP Letters, Volume 109, 2019 Issue 4, pp 213–221. JETP Letters, Volume 112, 2020 Issue 4, pp 211–225. <u>arxiv:2003.03199</u> arXiv:2005.05301v 8

12

A.P.Serebrov, et al. JETP Letters, Volume 109, 2019 Issue 4, pp 213–221

Average 125, 250, 500 keV 1.6 $\Delta m^2 = 7.2 \text{ eV}^2$, $\sin^2(2\theta) = 0.39$ $\gamma^2/DoF = 15.61/17 (0.92)$ 0.55 GoF 1σ 2σ 3σ Unity γ^2 /DoF 24.59/19 (1.29) GoF 0.17 B 1.4 N(L, E)/N(L,E)_{av} 6 $\Delta m^2_{14}, eV^2$ 1.2 5 1.0 0.8 0.6 -0.5 sin²(20₁₄) 0.4 0.2 0.3 0.6 0.7 0.8 0.9 1.5 2.0 2.5 1.0 L/E

125, 250, 500 keV. σ=±250 energy resolution. 1st cycle. Δm = 7.2eV², sin²2θ = 0.39. 2.5σ CL

A.P. Serebrov, et al. PHYSICAL REVIEW D 104, 032003 (2021)

Best fit oscillation parameters $\Delta m_{14}^2, \sin^2 2\theta_{14}$ 7.2 eV², 0.39(2.5 σ) 7.3 eV², 0.36(2.9 σ)

 χ^2 /d.o.f. (Reduced χ^2) fit w/ and w/o oscillation

 $\begin{array}{l} \textbf{15.61/17(0.92)} \ 24.59/19 \ (1.29) \\ \textbf{20.61/17(1.21)} \ 31.90/19 \ (1.68) \end{array}$

Goodness of fit w/ and w/o oscillation

0.55 0.17 0.24 0.03

There is a maximum at zero, from here the process of oscillations begins

It should be noted that the experimental points should be fitted with such a sinusoidal dependence, which has a maximum at the origin, since the process of oscillations starts from the source. This significantly reduces the set of sinusoids available for fitting. FIG. shows the complete curve of the oscillation process starting from the reactor.

FIG. 47. Complete curve of the oscillation process starting from the reactor core center.

RESULT OF EXPERIMENT NEUTRINO-4

$$\Delta m_{14}^2 = 7.30 \pm 0.13_{st} \pm 1.16_{syst} = 7.30 \pm 1.17$$

 $sin^2 2\theta_{14} = 0.36 \pm 0.12(2.9\sigma)$

Monte Carlo based statistical analysis gave an estimation of the confidence level at 2.7 o.

FIG. 54. *T* distribution for MC based approach to the statistical analysis (blue line) and χ^2 with 2 degrees of freedom function, which is claimed by Wilks's theorem.

Comparison of results of Neutrino-4 experiment with results of other experiments

Mainz 95% C.L.
 Troitsk 95% C.L.

- Prospect 95% C.L.

Neutrino-4 2σ
 KATRIN 95% C.L.
 Projected KATRIN final sensitivity 95% C.L.
 0νββ NH 90% C.L.
 0νββ IH 90% C.L.

Comparison of results of Neutrino-4 experiment with results of other experiments

The results of the analysis of optimal parameters Δm_{14}^2 and $\sin^2 2\theta_{14}$ using $\Delta \chi^2$ method

We observed the oscillation effect at C.L. 2.9 σ in vicinity of :

$$\Delta m_{14}^2 \approx 7.25 \text{eV}^2$$
$$\sin^2 2\theta_{14} \approx 0.36$$

Comparison of the results of Neutrino-4 experiment with the results of reactor, gallium anomaly and results of the KATRIN and GERDA experiments and results of BEST experiment

Results from the Baksan Experiment on Sterile Transitions (BEST)

The source was delivered to the Baksan Neutrino Observatory (BNO) on July 5, 2019 and was placed into the two-zone target at 14:02 that same day and this is our chosen reference time for the source strength. The source was manufactured by irradiating 4 kg of 50Cr-enriched metal for 100 d in a reactor at the State Scientic **Center Research Institute of Atomic Reactors, Dimitrovgrad, Russia.** The activity (A) at the reference time is 3.4140.008 MCi. The 51Cr isotope emitse's at 4 energies; 747 keV (81.63%), 427 keV (8.95%), 752 keV (8.49%) and 432 keV (0.93%).

Comparison of results of Neutrino-4 experiment with results of IceCube experiment

$$\Delta m_{14}^2 = 4.47^{+3.53}_{-2.08}$$

$$sin^2(2\theta_{24}) = 0.10^{+0.102}_{-0.07}$$

FIG. 4. Frequentist analysis result. The 90% and 99% C.L. contours, assuming Wilks's theorem, shown as dashed and solid bold blue lines, respectively. The green and yellow band shows the region where 68% and 95% of the pseudoexperiment 99% C.L. observations lie; the dashed white line corresponds to the median. Other muon-neutrino disappearance measurements at 99% C.L. are shown in black [25–30,123,124]; where results were not available at 99% C.L., methods of Ref. [11] were applied using public data releases. Finally, the star marks the analysis best-fit point location.

PHYSICAL REVIEW LETTERS 125, 141801 (2020)

Possibility of experimental confirmation of the 3 + 1 neutrino model with one sterile neutrino

THE STRUCTURE OF 3+1 NEUTRINO MODEL AND REPRESENTATION OF PROBABILITIES OF VARIOUS OSCILLATIONS

$$\begin{bmatrix} v_e \\ v_\mu \\ v_\tau \\ v_s \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \sin^2(\theta_{14})$$

$$\begin{bmatrix} U_{e4} |^2 = \sin^2(\theta_{14}) \\ U_{\mu 4} |^2 = \sin^2(\theta_{24}) \cdot \cos^2(\theta_{14}) \\ U_{\tau 4} |^2 = \sin^2(\theta_{34}) \cdot \cos^2(\theta_{24}) \cdot \cos^2(\theta_{14})$$

$$P_{\nu_e\nu_e} = 1 - 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \sin^2\left(\frac{\Delta m_{14}^2 L}{4E_{\nu_e}}\right) = 1 - \sin^2 2\theta_{ee} \sin^2\left(\frac{\Delta m_{14}^2 L}{4E_{\nu_e}}\right)$$
$$P_{\nu_\mu\nu_\mu} = 1 - 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \sin^2\left(\frac{\Delta m_{14}^2 L}{4E_{\nu_\mu}}\right) = 1 - \sin^2 2\theta_{\mu\mu} \sin^2\left(\frac{\Delta m_{14}^2 L}{4E_{\nu_\mu}}\right)$$

$$P_{\nu_{\mu}\nu_{e}} = 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}\left(\frac{\Delta m_{14}^{2}L}{4E_{\nu_{e}}}\right) = \sin^{2}2\theta_{\mu e}\sin^{2}\left(\frac{\Delta m_{14}^{2}L}{4E_{\nu_{e}}}\right)$$

25

The relations of oscillations parameters required for comparative analysis of experimental results are:

 $\sin^{2} 2\theta_{ee} \equiv \sin^{2} 2\theta_{14}$ $\sin^{2} 2\theta_{\mu\mu} = 4\sin^{2} \theta_{24}\cos^{2} \theta_{14}(1 - \sin^{2} \theta_{24}\cos^{2} \theta_{14}) \approx \sin^{2} 2\theta_{24}$ $\sin^{2} 2\theta_{\mu e} = 4\sin^{2} \theta_{14}\sin^{2} \theta_{24}\cos^{2} \theta_{14} \approx \frac{1}{4}\sin^{2} 2\theta_{14}\sin^{2} 2\theta_{24}$

The first important conclusion of the 3 + 1 model is that the oscillation frequency in all processes should be the same, i.e. it is determined by the value Δm_{14}^2

The second important relation for experimental verification of the 3 + 1 model.

$$\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{14} \sin^2 2\theta_{24}$$

This relationship can be interpreted in fairly simple way. The appearance of electron neutrinos in muon neutrino beam: this is a second-order process, i.e. transition of muon neutrino, and then the transition of sterile neutrino into electron neutrino.

COMPARISON OF NEUTRINO-4 WITH ICECUBE, MINIBOONE AND LSND

A.P. Serebrov *, R.M. Samoilov JETP Letters, Volume 112, 2020 Issue 4, pp 211–225 <u>arxiv:2003.03199</u>

$$\Delta m_{14}^2 = 4.47^{+3.53}_{-2.08} \quad \sin^2(2\theta_{24}) = 0.10^{+0.102}_{-0.07} \qquad \text{ICECUBE}$$

Prediction of the effective mass of electron neutrino from Neutrino-4 experiment and comparison with experiments on measuring neutrino mass: KATRIN and GERDA

 $m_{4\nu_e}^{eff} = \sqrt{\sum m_i^2 |U_{ei}|^2}; \quad \sin^2 2\theta_{14} \approx 4|U_{14}|^2; \qquad \sum m_\nu = m_1 + m_2 + m_3 \approx 0.54 \div 0.11 \text{eV} \\ \Delta m_{14}^2 \approx m_4^2 \approx 7.25 \text{ eV}^2, \quad m_1^2, m_2^2, m_3^2 \ll m_4^2 \\ m_4 = (2.70 \pm 0.22) \text{eV} \qquad \sin^2 2\theta_{14} \approx 0.34 \pm 0.08 (4.3\sigma) \\ m_{4\nu_e}^{eff} \approx \sqrt{m_4^2 |U_{e4}|^2} \approx \frac{1}{2} \sqrt{m_4^2 \sin^2 2\theta_{14}}. \\ m_{4\nu_e}^{eff} = (0.82 \pm 0.18) \text{eV} \qquad m_{4\nu_e}^2 = 0.68 \pm 0.29 \\ \end{array}$

Y

The majorana mass is determined in the double β-decay experiments by the ratio

$$m(0\nu\beta\beta) = /\sum U_{ei}^2 m_i /$$

$$m(0\nu\beta\beta) \approx m_4 U_{14}^2 \quad m(0\nu\beta\beta) = (0.25 \pm 0.09) \text{eV}$$

Karlsruhe Tritium Neutrino (KATRIN) experiment

First direct neutrino-mass measurement with sub-eV sensitivity

arXiv:2105.08533v1 [hep-ex] 18 May 2021

THE PHENOMENOLOGY OF NEUTRINO OSCILLATIONS

The best fit to the spectral data yields $m_{
u_e}^2 = 0.26 \pm 0.34$, resulting in an upper limit of $m_{
u_e} < 0.9 \ \mathrm{eV} \ (90\%)$

By combining this result with the first neutrino mass campaign, we find an upper limit of $m_{\nu_e} < 0.8 \text{ eV} (90\%)$

A+Ayait

What does KATRIN measure?

Signature of light sterile neutrino

 \rightarrow See Reactor and Geo ν session on 25 June

 \rightarrow See sterile v session on 2 July

eV-scale sterile neutrino search

High Δm_{41} region:

- ✓ Improve exclusion with respect to DANSS, PROSPECT, and STEREO
- ✓ Exclude parameter space of Reactor Anomaly (RAA)

Low Δm_{41} region:

- ✓ Improve MAINZ and TROITSK limit
- ✓ The NEUTRINO-4 hint at the edge of exclusion limit

$$R_{\beta}(E, m_{\nu}) = \frac{G_F^2 \cos^2 \theta_C}{2\pi^3} |\mathcal{M}|^2 F(E, Z+1) \\ \times (E+m_e) \sqrt{(E+m_e)^2 - m_e^2} \\ \times \sum_i \varsigma_f \sqrt{(E_0 - E - V_i)^2 - m_{\nu}^2} \Theta(E_0 - E - V_i - m_{\nu})$$

 $R_{\beta}^{s}(E, m'_{\nu}, m_{4}) = (1 - |U_{e4}|^{2})R_{\beta}(E, m'_{\nu}) + |U_{e4}|^{2}R_{\beta}(E, m_{4})$

TABLE I. Discretized final-state probability distribution $P(E_i)$ for ${}^{3}\text{HeT}^{+}$ (${}^{3}\text{HeH}^{+}$) following the β decay of a free T₂ (HT) molecule within the sudden approximation. The mean excitation energies E_i for both isotopes are given relative to the rovibronic ground state of ${}^{3}\text{HeT}^{+}$ and the recoil energy for ${}^{3}\text{HeT}^{+}$. The spectrum extends to 240 eV after which an atomic distribution may be used (see text for details).

0.033 (0.049) 0.0069(0.0000) 36.459(36.467) 1.6434(1.5166) 88.498(88.483) 0.0757(0.0866) 0.134 (0.147) 0.0053(0.0000) 38.463(38.467) 0.0989(0.5561) 99.967(90.962) 0.1236(0.1276) 0.432 (0.477) 0.0533(0.0000) 39.498(38.467) 0.0489(0.5561) 99.982(92.973) 0.1089(0.1102) 0.442 (0.447) 0.0457(0.0000) 41.506(4.0544) 0.1122(0.2375) 99.891(98.779) 0.0776(0.0779) 0.566 (0.477) 0.1469(0.0000) 42.488(4.2494) 0.3325(0.3381) 100.981(109.980) 0.0778(0.0779) 0.589 (0.747) 0.3877(0.0000) 45.504(43.486) 0.3457(0.3388) 100.981(109.980) 0.0778(0.0779) 0.589 (0.751) 1.512(1.2129) 64.811(44.494) 0.2771(0.2368) 106.985(106.985) 0.05328(0.0529) 1.433 (1.162) 1.0112(0.6216) 47.483(47.472) 0.2481(0.2486) 0.494(10.4484) 0.397(0.4785) 1.249 (1.200) 2.4464(5.6477) 0.5446(5.0477) 0.1538(0.6371 0.337(0.0431) 1.445 (1.454,446,441) 0.9197(0.2206) 11.987(114.987) 0.0378(0.0378) 1.458 ($E_i(eV)$	$P(E_i)(\%)$	$E_i(eV)$	$P(E_i)(\%)$	$E_i(eV)$	$P(E_i)(\%)$
$\begin{array}{c} 0.124(0.147) & 0.0046(0.000) & 37.445(37.457) & 0.037(0.0546) & 89.495(89.495) & 0.0696(0.0715) \\ 0.247(0.247) & 0.0230(0.000) & 38.463(38.467) & 0.4395(0.5551) & 99.97(80.962) & 0.1236(0.1276) \\ 0.351(0.347) & 0.0353(0.0000) & 40.506(40.504) & 0.4124(0.4280) & 94.882(94.981) & 0.0696(0.0073) \\ 0.556(0.547) & 0.2030(0.0000) & 41.486(41.520) & 0.4122(0.3205) & 99.892(96.981) & 0.0696(0.0073) \\ 0.656(0.647) & 0.1646(0.0000) & 42.486(42.494) & 0.3925(0.3786) & 99.81(98.797) & 0.0778(0.0779) \\ 0.656(0.647) & 0.1646(0.0000) & 42.486(42.494) & 0.3925(0.3786) & 99.81(98.797) & 0.0778(0.0779) \\ 0.650(0.876) & 0.3808(0.252) & 44.511(44.474) & 0.1316(0.122) & 102.983(109.289) & 0.0638(0.0638) \\ 0.937(0.955) & 0.6580(0.514) & 45.444(54.494) & 0.2711(0.2066) & 10.4984(104.894) & 0.0578(0.0589) \\ 1.048(1.087) & 1.1214(1.2129) & 46.481(46.494) & 0.2713(0.2538) & 106.986(108.986) & 0.04483(0.0484) \\ 1.249(1.260) & 2.4406(0.6313) & 45.513(48.452) & 0.4412(0.2236) & 110.986(110.986) & 0.0444(0.0445) \\ 1.359(1.344) & 3.2337(3.041) & 49.488(49.445) & 0.1937(0.2230) & 112.987(112.986) & 0.0448(0.0445) \\ 1.452(1.452) & 4.0864(9.5173) & 50.462(50.472) & 0.1938(0.1989) & 114.987(114.987) & 0.0358(0.0326) \\ 1.657(1.656) & 6.6270(6.5989) & 2.2466(52.412) & 0.1537(0.1690) & 115.986(119.988) & 0.0322(0.0322) \\ 1.544(1.452) & 4.0864(9.5173) & 50.502(55.512) & 0.1537(0.1690) & 115.986(129.889) & 0.0322(0.0321) \\ 1.544(1.452) & 4.0864(9.5173) & 50.502(55.512) & 0.1537(0.1693) & 114.987(114.987) & 0.0358(0.0326) \\ 1.534(1.347) & 6.556((7.1664) & 55.526(56.531) & 0.1537(0.1690) & 115.986(129.989) & 0.0232(0.0322) \\ 1.534(1.347) & 6.556((5.512) & 5.536(55.512) & 0.1537(0.1632) & 12.989(129.899) & 0.0232(0.0322) \\ 1.534(1.347) & 6.556((5.502) & 5.0373) & 5.0486(129.989) & 0.0232(0.0322) \\ 1.534(1.347) & 6.556((5.507) & 0.0465(0.6132) & 12.989(129.899) & 0.0234(0.0226) \\ 2.444(2.160) & 1.3498(1.298) & 5.0353(5.5330) & 1.3590(138.990(138.990) & 0.0136(0.0172) \\ 3.567(3.560) & 0.0000(0.001) & 7.$	0.053(0.049)	0.0069(0.0000)	36,459(36,467)	1.6434(1.5166)	88.498(88.493)	0.0757(0.0806)
$\begin{array}{c} 0.227(\ 0.247) \\ 0.351(\ 0.471) \\ 0.053(\ 0.000) \\ 0.412(\ 0.447) \\ 0.055(\ 0.000) \\ 0.412(\ 0.447) \\ 0.047(\ 0.0000) \\ 0.450(\ 0.450(\ 0.0501) \\ 0.4124(\ 0.4280) \\ 0.4282(\ 9.481) \\ 0.482(\ 9.481) \\ 0.0996(\ 0.0973) \\ 0.566(\ 0.471) \\ 0.2033(\ 0.000) \\ 0.4148(\ 4.450(\ 0.4122(\ 0.4152(\ 0.305) \\ 9.482(\ 9.681) \\ 0.0976(\ 0.0770) \\ 0.0776(\ 0.0770) \\ 0.0485(\ 0.0787) \\ 0.0776(\ 0.0770) \\ 0.0485(\ 0.0770) \\ 0.0485(\ 0.0485) \\ 0.0478(\ 0.0485) \\ 0.04$	0.124(0.147)	0.0046(0.0000)	37.445(37.457)	0.9037(0.9546)	89.495(89.498)	0.0696(0.0715)
$\begin{array}{c} 0.351(\ 0.347) & 0.0553(\ 0.000) & 39.492(\ 39.485) & 0.3978(\ 0.4422) & 22.983(\ 29.797) & 0.1980(\ 0.1102) \\ 0.442(\ 0.447) & 0.0467(\ 0.0000) & 41.696(\ 1.502) & 0.4124(\ 0.4250) & 94.982(\ 94.981) & 0.0966(\ 0.0973) \\ 0.556(\ 0.547) & 0.1649(\ 0.0000) & 42.496(\ 42.494) & 0.3925(\ 0.3795) & 95.982(\ 96.981) & 0.076(\ 0.0776(\ 0.0779) \\ 0.779(\ 0.777) & 0.877(\ 0.0000) & 42.496(\ 42.494) & 0.3925(\ 0.3795) & 95.982(\ 96.981) & 0.076(\ 0.0776(\ 0.0779) \\ 0.850(\ 0.876) & 0.3806(\ 0.2522) & 44.511(\ 44.474) & 0.3186(\ 0.3122) & 102.983(\ 102.982) & 0.0363(\ 0.0583) \\ 0.937(\ 0.955) & 0.6809(\ 0.5814) & 44.514(\ 44.474) & 0.3186(\ 0.3122) & 102.983(\ 102.982) & 0.0583(\ 0.0583) \\ 1.048(\ 1.087) & 1.1214(\ 1.2129) & 46.481(\ 44.474) & 0.2173(\ 0.2206) & 110.984(\ 104.984) & 0.04578(\ 0.0583) \\ 1.048(\ 1.087) & 1.1214(\ 1.2129) & 46.481(\ 44.549) & 0.2713(\ 0.2383) & 106.985(\ 106.985) & 0.05428(\ 0.0582) \\ 1.349(\ 1.220) & 2.4406(\ 0.313) & 44.513(\ 44.522) & 0.2412(\ 0.2236) & 110.986(\ 110.986) & 0.0444(\ 0.0410) \\ 1.451(\ 1.422) & 4.0864(\ 9.5173) & 50.462(\ 50.472) & 0.1980(\ 116.987(\ 116.987) & 0.0378(\ 0.378) \\ 1.552(\ 1.585) & 6.8745(\ 5.7372) & 51.501(\ 51.513) & 0.1760(\ 11808) & 114.987(\ 116.987) & 0.0378(\ 0.378) \\ 1.552(\ 1.585) & 6.8745(\ 7.1064) & 5.508(\ 52.504) & 0.1376(\ 0.1808) & 114.987(\ 116.987) & 0.0326(\ 0.0236) \\ 1.647(\ 1.643) & 6.2479(\ 5.988(\ 4.2046) & 5.508(\ 52.504) & 0.1576(\ 0.1629) & 112.988(\ 118.988(\ 118.988) & 0.0822(\ 0.0231) \\ 1.940(\ 1.942) & 5.4588(\ 4.1076) & 5.508(\ 52.551) & 0.1576(\ 0.1629) & 112.988(\ 118.988(\ 118.988) & 0.0822(\ 0.0231) \\ 1.940(\ 1.942) & 5.4588(\ 4.1076) & 5.508(\ 52.551) & 0.1576(\ 0.1629) & 112.988(\ 118.989) & 0.0248(\ 0.0230) \\ 1.834(\ 1.842) & 1.349(\ 1.0465) & 5.508(\ 52.555) & 0.3377(\ 0.1989(\ 112.989) & 0.0248(\ 0.0239) \\ 1.944(\ 2.044) & 3.723(\ 1.3994(\ 55.508(\ 55.504) & 5.508(\ 55.508) & 5.529(\ 55.503) & 0.3577(\ 0.1989(\ 112.989) & 0.0248(\ 0.0239) \\ 1.944(\ 2.044) & 3.723(\ 1.3996(\ 1.55506) & 5.509(\ 55.508) & 5.508(\ 55.$	0.247(0.247)	0.0233(0.0000)	38,463(38,467)	0.4989(0.5951)	90.967(90.962)	0.1236(0.1276)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.351(0.347)	0.0553(0.0000)	39,499(39,485)	0.3978(0.4492)	92,983(92,979)	0.1080(0.1102)
$\begin{array}{c} 0.556(0.547) & 0.2033(0.000) & 14.498(41.502) & 0.4152(0.3005) & 96.982(9.8.91) & 0.0864(0.0867) \\ 0.665(0.647) & 0.1649(0.0000) & 42.496(42.494) & 0.3925(0.3705) & 98.981(98.97) & 0.0776(0.0779) \\ 0.870(0.877) & 0.3877(0.0000) & 43.504(43.486) & 0.3457(0.3306) & 100.981(100.980) & 0.0736(0.0707) \\ 0.850(0.876) & 0.3808(0.222) & 44.511(44.474) & 0.3186(0.3122) & 102.983(102.982) & 0.0353(0.0583) \\ 1.048(1.087) & 1.1214(1.2129) & 46.481(46.494) & 0.2713(0.2508) & 100.981(100.986) & 0.0453(0.0484) \\ 1.249(1.260) & 2.406(0.3113) & 48.513(48.452) & 0.2412(0.2236) & 110.986(110.986) & 0.0443(0.0445) \\ 1.348(1.1042) & 4.0864(9.5173) & 50.4642(50.472) & 0.1987(0.1238) & 106.985(116.986) & 0.0443(0.0445) \\ 1.451(1.442) & 4.0864(9.5173) & 50.4642(50.472) & 0.1986(0.1989) & 11.4987(114.987) & 0.0378(0.0378) \\ 1.657(1.663) & 6.2779(6.9898) & 52.2406(52.401) & 0.1576(0.1600) & 118.988(118.988) & 0.0325(0.0324) \\ 1.657(1.663) & 6.2779(6.9898) & 55.508(55.512) & 0.1547(0.1602) & 118.988(118.988) & 0.0325(0.0324) \\ 1.745(1.739) & 5.1412(5.7803) & 53.491(53.494) & 0.1541(0.1637) & 12.988(122.988) & 0.0322(0.0324) \\ 1.844(1.244) & 3.7231(3.384) & 56.526(56.531) & 0.1557(0.1632) & 12.988(122.988) & 0.0322(0.0221) \\ 1.940(1.942) & 5.458(4.1076) & 55.508(55.512) & 0.1557(0.1632) & 12.988(122.988) & 0.0326(0.0225) \\ 2.044(2.044) & 3.7231(3.384) & 56.526(56.531) & 0.1896(0.532) & 12.989(122.989) & 0.0230(0.0222) \\ 2.144(2.101) & 2.4473(2.7572) & 57.518(57.520) & 0.2427(0.2266) & 12.989(122.989) & 0.0230(0.0222) \\ 2.444(2.270) & 1.699(1.2274) & 58.529(52.533) & 126.99(126.989) & 0.0230(0.0223) \\ 2.444(2.270) & 1.699(1.0274) & 58.529(52.533) & 126.99(126.989) & 0.0230(0.0223) \\ 2.50(2.509) & 1.6947(1.4798) & 60.505(60.501) & 0.4714(0.4855) & 13.499(134.990) & 0.0128(0.0276) \\ 2.57(2.576) & 1.0094(0.0283) & 66.530(60.551) & 0.3357(0.3266) & 13.999(138.990) & 0.0128(0.0276) \\ 2.57(2.576) & 1.0094(0.229) & 62.518(5.5507) & 0.4055(0.5503) & 14.999(128.999) & 0.0230(0.0293) \\ 3.57(3.2577) & 0.2906(0.2117) & 63.503(6.5.504) & 0.538$	0.442(0.447)	0.0457(0.0000)	40.506(40.504)	0.4124(0.4280)	94,982(94,981)	0.0966(0.0973)
$\begin{array}{c} 0.665(0.627) & 0.1649(0.0000) & 42.498(42.494) & 0.3925(0.3795) & 98.981(98.979) & 0.0776(0.0779) \\ 0.789(0.747) & 0.3877(0.0000) & 43.504(43.486) & 0.3457(0.3808) & 100.981(100.980) & 0.0780(0.0779) \\ 0.850(0.576) & 0.3806(0.222) & 44.511(44.474) & 0.3186(0.3122) & 102.983(102.982) & 0.0336(0.0638) \\ 0.937(0.955) & 0.6809(0.5814) & 45.494(45.495) & 0.2710(0.2206) & 104.984(104.944) & 0.0378(0.0587) \\ 1.143(1.162) & 1.0112(0.6216) & 47.483(47.472) & 0.2481(0.2238) & 100.598(105.985) & 0.0528(0.0529) \\ 1.143(1.162) & 1.0112(0.6216) & 47.483(47.472) & 0.2481(0.2236) & 110.966(110.986) & 0.0444(0.0445) \\ 1.369(1.344) & 3.2337(3.0441) & 49.498(49.445) & 0.1907(0.2236) & 110.966(110.986) & 0.0444(0.0445) \\ 1.552(1.585) & 6.8745(5.772) & 51.501(51.513) & 0.1760(0.1808) & 116.987(116.987) & 0.0378(0.0376) \\ 1.651(1.663) & 6.6279(0.5988) & 52.496(52.491) & 0.1576(0.1609) & 118.988(112.988) & 0.0322(0.0324) \\ 1.645(1.1637) & 6.142(5.7803) & 53.494(53.444) & 0.1541(0.1627) & 12.988(120.988) & 0.0302(0.0326) \\ 1.834(1.847) & 6.5561(7.1044) & 54.502(45.507) & 0.1485(0.1632) & 12.988(129.988) & 0.0322(0.0324) \\ 1.940(1.1942) & 5.4584(1.076) & 55.508(5.55.13) & 0.1895(0.2336) & 132.999(128.989) & 0.0282(0.0281) \\ 1.944(1.2944) & 3.7231(3.3984) & 66.526(56.531) & 0.1895(0.2336) & 132.999(128.989) & 0.0246(0.0245) \\ 2.444(2.044) & 3.7231(3.3984) & 56.526(56.531) & 0.4387(0.3366) & 132.999(128.989) & 0.0230(0.0222) \\ 2.444(2.206) & 1.4696(1.2274) & 58.526(56.531) & 0.4395(1.032.996(1.28.989) & 0.0230(0.0223) \\ 2.244(2.206) & 1.6989(1.2274) & 58.526(56.531) & 0.4395(0.3396(1.39.990(1.38.990) & 0.0216(0.0215) \\ 2.344(2.346) & 1.1369(1.0046) & 59.518(59.507) & 0.4045(0.4455) & 134.990(124.989) & 0.0216(0.0215) \\ 2.544(2.206) & 1.4094(0.5351) & 65.504(5.501) & 0.4744(0.4855) & 134.990(134.990) & 0.01216(0.0215) \\ 2.544(2.276) & 1.0984(0.2983) & 6.5504(5.501) & 0.4744(0.4855) & 134.990(134.990) & 0.01216(0.0215) \\ 2.544(2.276) & 1.0696(0.2774) & 5.548(5.500) & 0.0376(0.0331) & 134.990(134.990) & 0.01216(0.0215) \\ 2.547(3.277)$	0.556(0.547)	0.2033(0.0000)	41.498(41.502)	0.4152(0.3905)	96,982(96,981)	0.0864(0.0867)
$\begin{array}{c} 0.759(\ 0.747) \\ 0.357(\ 0.000) \\ 0.850(\ 0.876) \\ 0.950(\ 0.851) \\ 0.850(\ 0.850) \\ 0.950(\ 0.851) \\ 0.950(\ 0.851) \\ 0.950(\ 0.851) \\ 0.950(\ 0.851) \\ 0.950(\ 0.851) \\ 0.950(\ 0.851) \\ 0.950(\ 0.851) \\ 0.950(\ 0.851) \\ 0.950(\ 0.851) \\ 0.950(\ 0.950) \\ 0.950(\ 0.951) \\ 0.950(\ 0.950) \\$	0.665(0.647)	0.1649(0.0000)	42.498(42.494)	0.3925(0.3795)	98,981(98,979)	0.0776(0.0779)
$\begin{array}{c} 0.886(0.876) \\ 0.876() \\ 0.876() \\ 0.876() \\ 0.808(0.2852) \\ 1.048(1.028) \\ 0.0677(0.955) \\ 0.6690(0.5814) \\ 0.6814(4.474) \\ 0.5116(0.3122) \\ 0.0271(0.2906) \\ 1.04.81(0.484) \\ 0.0710(0.2906) \\ 1.04.81(0.484) \\ 0.0710(0.2906) \\ 1.04.81(0.484) \\ 0.0710(0.2906) \\ 1.04.81(0.484) \\ 0.0678(10.586) \\ 0.0048(10.586) \\ 0.0483(0.0838) \\ 0.0483(0.0838) \\ 1.249(1.260) \\ 2.4400(0.6313) \\ 4.060(0.6313) \\ 4.513(4.452) \\ 0.4412(0.2236) \\ 1.10.986(110.586) \\ 0.0448(10.586) \\ 0.0448(10.0451) \\ 1.359(1.344) \\ 3.2337(3.0441) \\ 4.9498(49.445) \\ 0.1970(0.2201) \\ 1.12.987(112.986) \\ 0.0409(0.0411) \\ 1.451(1.482) \\ 4.064(9.5173) \\ 5.0.462(5.0472) \\ 0.1938(0.1999) \\ 1.14.987(112.986) \\ 0.0490(0.0510) \\ 1.657(1.663) \\ 6.6279(6.9989) \\ 52.496(52.491) \\ 0.1576(0.1699) \\ 1.16.987(116.987) \\ 0.0378(10.059) \\ 1.6587(1.663) \\ 6.6279(6.9989) \\ 52.496(52.491) \\ 0.1576(0.1699) \\ 1.18.988(119.883) \\ 0.0322(0.032) \\ 1.834(1.547) \\ 6.556(17.1664) \\ 54.502(54.512) \\ 0.1577(0.1699) \\ 1.18.98(119.883) \\ 0.0322(0.032) \\ 1.834(1.547) \\ 6.556(17.1664) \\ 54.502(54.512) \\ 0.1567(0.1963) \\ 1.24.982(12.988) \\ 0.0232(0.032) \\ 1.834(1.847) \\ 6.556(17.1664) \\ 55.168(5.512) \\ 0.1567(0.1963) \\ 1.24.989(124.989) \\ 0.0236(0.032) \\ 1.834(1.847) \\ 6.556(17.1664) \\ 55.168(5.5512) \\ 0.1567(0.1963) \\ 1.24.989(124.989) \\ 0.0236(0.032) \\ 1.844(2.104) \\ 3.773(1.396(1.0046) \\ 55.168(5.550) \\ 0.547(0.1963) \\ 1.24.989(126.989) \\ 0.0246(0.0245) \\ 2.244(2.204) \\ 1.369(1.0246) \\ 55.108(5.507) \\ 0.495(0.2530) \\ 1.36.99(130.990) \\ 0.0216(0.0215) \\ 2.344(2.346) \\ 1.1369(1.0046) \\ 55.136(5.506) \\ 0.501(6.506) \\ 0.503(0.5550) \\ 1.539(0.3590) \\ 0.0180(0.075) \\ 2.590(2.527) \\ 2.590(2.501) \\ 6.547(1.5780) \\ 0.009(10.029) \\ 0.0180(0.0276) \\ 0.138(90136.990) \\ 0.0190(0.0206) \\ 0.138(90136.990) \\ 0.0190(0.0206) \\ 0.138(90136.990) \\ 0.0190(0.0206) \\ 0.138(90136.990) \\ 0.0190(0.0206) \\ 0.138(90136.990) \\ 0.0190(0.0206) \\ 0.138(90136.990) \\ 0.0190(0.0206) \\ 0.139(0.0256) \\ 0.530(0.557) \\ 0.530(0.559) \\ 0.530(0.559) \\ 0.530(0.559) \\ 0.530(0.559) \\ 0.530(0.559) \\ 0.530(0.559) \\ 0.530(0.5$	0.759(0.747)	0.3877(0.0000)	43 504(43 486)	0.3457(0.3308)	100.981(100.980)	0.0703(0.0707)
$\begin{array}{c} 0.937(\ 0.955) & 0.6809(0.5814) & 45.494(\ 45.455) & 0.2701(0.2906) & 104.984(104.987) & 0.03578(0.0586) \\ 1.048(\ 1.087) & 1.1214(1.2129) & 46.481(\ 46.444) & 0.2713(0.2538) & 106.986(108.986) & 0.0432(0.0524) \\ 1.249(\ 1.260) & 2.4406(0.6313) & 48.513(\ 45.452) & 0.2412(0.2236) & 110.986(110.986) & 0.0444(0.0445) \\ 1.359(\ 1.344) & 3.2337(3.0441) & 49.496(\ 44.445) & 0.197(0.2201) & 112.987(112.986) & 0.0444(0.0445) \\ 1.452(\ 1.452) & 4.0864(9.5173) & 50.462(\ 50.472) & 0.1938(0.1989) & 114.987(116.987) & 0.0350(0.0350) \\ 1.657(\ 1.663) & 6.6746(5.7372) & 51.501(\ 51.513) & 0.1760(0.1808) & 116.987(116.987) & 0.0350(0.0350) \\ 1.657(\ 1.663) & 6.6746(5.7372) & 51.501(\ 51.513) & 0.1757(0.1669) & 116.987(116.987) & 0.0350(0.0350) \\ 1.657(\ 1.663) & 6.6279(6.9898) & 52.496(\ 52.491) & 0.1575(0.1669) & 114.987(116.988) & 0.0322(0.0224) \\ 1.745(\ 1.739) & 5.1412(5.7803) & 53.491(\ 53.494) & 0.1541(0.1627) & 120.988(129.988) & 0.0320(0.0224) \\ 1.834(1.847) & 6.5561(7.1664) & 6.5.266(\ 55.512) & 0.1557(0.1663) & 124.989(126.989) & 0.0246(0.0245) \\ 2.144(\ 2.150) & 2.5473(2.7572) & 57.518(\ 57.520) & 0.2427(0.3266) & 128.989(126.989) & 0.0230(0.0222) \\ 2.244(\ 2.270) & 1.6959(1.2274) & 58.529(\ 55.551) & 0.1357(0.1965) & 130.989(130.989) & 0.0216(0.0215) \\ 2.344(\ 2.346) & 1.1369(1.0046) & 59.518(\ 59.507) & 0.4045(0.4486) & 136.990(138.990) & 0.01216(0.0215) \\ 2.544(\ 2.257) & 1.2694(0.4838) & 6.516(\ 65.507) & 0.4045(0.4589) & 134.990(138.990) & 0.01216(0.0215) \\ 2.576(\ 2.576) & 0.0042(0.0128) & 65.514(\ 65.507) & 0.744(0.4895) & 134.990(138.990) & 0.0160(0.0129) \\ 3.507(\ 3.576) & 0.0623(0.0446) & 65.514(\ 65.507) & 0.744(0.4895) & 134.990(138.990) & 0.0160(0.0129) \\ 3.507(\ 3.576) & 0.0623(0.0446) & 65.514(\ 65.507) & 0.744(0.4898) & 157.967(139.576) & 0.0225(0.0227) \\ 3.757(\ 3.756) & 0.0623(0.0446) & 65.514(\ 65.507) & 0.744(0.4898) & 157.967(139.597) & 0.0226(0.0229) \\ 3.507(\ 3.577) & 0.508(0.0116) & 71.473(71.475) & 0.4661(0.4557) & 114.9925(14.965) & 0.0256(0.0274) \\ 3.559(\ 3.559(0.5507) & 0.336(0.$	0.850(0.876)	0.3808(0.2252)	44 511(44 474)	0.3186(0.3122)	102.983(102.982)	0.0636(0.0638)
$\begin{array}{c} 0.361 (0.367) & 1.2214 (1.2129) & 42.481 (4.6494) & 0.2713 (0.2533) & 106.985 (106.985) & 0.0528 (0.0829) \\ 1.143 (1.162) & 1.0412 (0.2216) & 47.483 (47.472) & 0.2481 (0.2438) & 106.985 (106.985) & 0.0483 (0.0484) \\ 1.249 (1.260) & 2.4406 (0.6313) & 48.513 (48.452) & 0.2412 (0.2236) & 119.986 (101.986) & 0.0448 (0.0443) \\ 1.451 (1.452) & 4.0864 (9.5173) & 50.462 (50.472) & 0.1997 (0.2201) & 112.987 (112.986) & 0.04090 (0.0410) \\ 1.451 (1.452) & 4.0864 (9.5173) & 50.462 (50.472) & 0.1998 (0.1998) & 114.987 (114.987) & 0.0376 (0.0376) \\ 1.657 (1.663) & 6.6279 (0.9898) & 52.496 (52.491) & 0.1576 (0.1699) & 114.988 (118.988) & 0.0322 (0.0324) \\ 1.745 (1.739) & 5.1412 (5.7803) & 53.491 (53.494) & 0.1576 (0.1632) & 122.988 (120.988) & 0.0320 (0.0322) \\ 1.843 (1.847) & 6.5561 (7.1064) & 64.502 (54.507) & 0.1485 (0.1632) & 122.988 (122.988) & 0.0228 (0.0283) \\ 1.940 (1.1942) & 5.4588 (4.1076) & 55.508 (55.512) & 0.157 (0.1663) & 124.989 (124.989) & 0.0226 (0.0225) \\ 2.044 (2.044) & 3.7231 (3.3984) & 55.526 (55.512) & 0.1597 (0.1663) & 124.989 (124.989) & 0.0226 (0.0225) \\ 2.144 (2.170) & 1.6959 (1.2274) & 55.526 (56.531) & 0.1895 (0.2333) & 126.989 (128.989) & 0.0223 (0.0222) \\ 2.444 (2.270) & 1.6959 (1.2274) & 56.526 (56.531) & 0.0334 (0.3656) & 130.989 (130.989) & 0.0226 (0.0215) \\ 2.344 (2.346) & 1.1389 (1.0046) & 59.518 (59.507) & 0.4095 (0.4490) & 132.990 (134.990) & 0.0118 (0.1079) \\ 3.090 & 1.0372 (0.4222) & 62.510 (62.504) & 0.5134 (5.093 (136.980) & 0.0138 (0.0179) \\ 3.090 & 1.0094 (0.3831) & 61.505 (61.506) & 0.5034 (0.5065) & 136.990 (136.990) & 0.0138 (0.0179) \\ 3.090 & 1.030 (0.5732 (0.4226) & 62.510 (65.507) & 0.5424 (0.563) & 134.990 (134.996) & 0.0126 (0.0217) \\ 3.090 & 1.036 (0.028) & 64.512 (64.496) & 0.5658 (0.6180) & 145.964 (145.964) & 0.0278 (0.0277) \\ 3.775 (3.756) & 0.023 (0.0446) & 65.504 (65.507) & 0.5424 (0.5633) & 165.970 (165.970) & 0.0126 (0.0179) \\ 3.507 (3.577) & 0.00015 (0.0009) & 64.892 (84.88) & 0.7664 (0.6353) & 165.970 (165.970) & 0.0126 (0.0127) \\ 3.577 (3.575) & 0.023 (0.04$	0.037(0.055)	0.6809(0.5814)	45 494(45 495)	0.2701(0.2906)	104 984(104 984)	0.0578(0.0580)
$ \begin{array}{c} 1.343 (1.162) & 1.0112 (0.6216 \\ 1.448 (1.249 (1.260) & 2.4406 (0.6313) & 45.313 (48.472 \\ 1.249 (1.260) & 2.4406 (0.6313) & 45.513 (48.452 \\ 0.2412 (0.2236) & 110.986 (110.986) & 0.0443 (0.0445 \\ 1.359 (1.344) & 3.237 (3.0441) & 49.498 (4.945) & 0.0197 (0.2211) & 112.987 (112.986) & 0.0490 (0.0410 \\ 1.451 (1.452) & 4.0864 (9.5173) & 50.462 (50.472) & 0.1938 (0.1989) & 114.987 (114.987) & 0.0378 (0.0376) \\ 1.552 (1.585) & 6.8745 (5.7372) & 51.501 (51.513) & 0.1760 (0.1808) & 116.987 (116.987) & 0.0325 (0.0324) \\ 1.667 (1.663) & 6.6279 (6.9898) & 52.496 (52.491) & 0.1575 (0.1609) & 118.988 (118.988) & 0.0325 (0.0322) \\ 1.745 (1.739) & 5.1412 (5.7803) & 53.491 (53.494) & 0.1547 (0.1063) & 124.998 (122.988 (122.988) & 0.0228 (0.0281) \\ 1.940 (1.942) & 5.4588 (4.1076) & 55.508 (55.512) & 0.1557 (0.1063) & 124.998 (124.989) & 0.0228 (0.0281) \\ 2.044 (2.044) & 3.7231 (3.3984) & 56.526 (56.531) & 0.1996 (0.2333) & 126.999 (124.989) & 0.0226 (0.0282) \\ 2.144 (2.150) & 2.5473 (2.7572) & 57.518 (57.520) & 0.2427 (0.3266) & 129.999 (126.989) & 0.02216 (0.0215) \\ 2.344 (2.346) & 1.369 (1.0046) & 59.518 (59.577) & 0.095 (0.4490) & 123.990 (132.990) & 0.0230 (0.022) \\ 2.510 (2.509) & 1.6947 (1.4798) & 60.505 (60.501) & 0.4714 (0.4895) & 134.990 (136.990) & 0.0186 (0.0179) \\ 3.067 (3.057) & 1.6947 (1.4798) & 60.505 (60.501) & 0.4714 (0.4895) & 134.990 (136.990) & 0.0186 (0.0179) \\ 3.267 (3.257) & 0.206 (0.2117) & 65.303 (63.500) & 0.442 (0.559) & 138.990 (136.990) & 0.0186 (0.0179) \\ 3.267 (3.257) & 0.2086 (0.2117) & 65.501 (65.507) & 0.7094 (0.5659) & 143.992 (136.990) & 0.0186 (0.0179) \\ 3.267 (3.257) & 0.2086 (0.2117) & 65.501 (65.507) & 0.7094 (0.5690) & 143.992 (136.990) & 0.0186 (0.0199) \\ 3.507 (3.576) & 0.0003 (0.0009) & 64.512 (4.466) & 0.5617 (0.7003) & 149.965 (149.965) & 0.0225 (0.0225) \\ 4.578 (4.257) & 0.0086 (0.0064) & 67.504 (67.497) & 0.704 (0.6698) & 15.796 (145.990) & 0.0126 (0.0248) \\ 4.537 (4.558) & 0.$	1.048(1.087)	1 1214(1 2120)	46 481(46 494)	0.2713(0.2538)	106.985(106.985)	0.0528(0.0520)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 143(1 162)	1.0112(0.6216)	47.483(47.472)	0.2481(0.2438)	108.986(108.986)	0.0483(0.0484)
$\begin{array}{c} 1.356(1.344) \\ 1.353(1.344) \\ 1.353(1.344) \\ 1.353(1.344) \\ 1.451(1.452) \\ 1.452(1.452) \\ 1.453(1.452) \\ 1.455(1.552) \\ 1.552(1.553) \\ 1.552(1.554) \\ 1.552(1.554) \\ 1.552(1.554) \\ 1.552(1.555) \\ 1.555(1.556) \\ 1.553(1.513) \\ 1.01760(1.1080) \\ 1.16.987(112.986) \\ 1.0497(1.2021) \\ 1.12.987(112.986) \\ 1.0497(1.2021) \\ 1.12.987(112.986) \\ 1.0382(1.0.986) \\ 1.0497(1.0221) \\ 1.1457(1.16.987) \\ 1.0352(0.0320) \\ 1.657(1.663) \\ 1.647(1.643) \\ 1.645(1.575) \\ 1.645(1.575$	1.240(1.260)	2 4406(0 6313)	48 513(48 452)	0.2402(0.2400)	110 986(110 986)	0.0444(0.0445)
	1 350(1 344)	3 9337(3 0441)	40.010(40.402)	0.1007(0.2200)	112 087(112 086)	0.0409(0.0410)
$\begin{array}{c} 1.552 (1.585) & 6.8745 (5.752) & 51.501 (51.513) & 0.1250 (112.07) & 10.1351 (116.987) & 0.0350 (0.0350) \\ 1.657 (1.663) & 6.6279 (6.9898) & 52.496 (52.491) & 0.1375 (0.1609) & 118.988 (118.988) & 0.0325 (0.0324) \\ 1.745 (1.739) & 5.1412 (5.763) & 53.491 (5.3494) & 0.1541 (0.1627) & 120.988 (120.988) & 0.0326 (0.0302) \\ 1.834 (1.847) & 6.5561 (7.1064) & 54.502 (54.507) & 0.1485 (0.1632) & 122.988 (122.988) & 0.0283 (0.0322) \\ 2.044 (2.044) & 3.7231 (3.3984) & 65.526 (5.512) & 0.1557 (0.1963) & 124.989 (124.989) & 0.0243 (0.022) \\ 2.144 (2.150) & 2.5475 (2.7572) & 57.518 (57.520) & 0.2427 (0.3266) & 128.989 (126.589) & 0.0236 (0.022) \\ 2.244 (2.270) & 1.6959 (1.2274) & 58.529 (58.535) & 0.3357 (0.3956) & 130.989 (130.989) & 0.0216 (0.0215) \\ 2.344 (2.346) & 1.1360 (1.0046) & 59.518 (5.506) & 0.5034 (0.5056) & 136.990 (136.990) & 0.0120 (0.0202) \\ 2.510 (2.509) & 1.6947 (1.4798) & 60.505 (60.501) & 0.4714 (0.4895) & 134.990 (134.990) & 0.0116 (0.109) \\ 2.762 (2.756) & 1.0094 (0.8381) & 61.505 (61.506) & 0.5034 (0.5065) & 136.990 (138.990) & 0.0180 (0.0179) \\ 3.009 & 0.009 & 0.5732 (0.4292) & 62.501 (62.504) & 0.5132 (0.5320) & 138.990 (138.990) & 0.0180 (0.0179) \\ 3.577 (3.756) & 0.0623 (0.0446) & 65.504 (65.496) & 0.6617 (0.7003) & 14.962 (141.962) & 0.0311 (0.309) \\ 5.132 (5.076) & 0.0134 (0.0028) & 66.510 (66.507) & 0.7944 (0.6898) & 157.967 (157.968) & 0.0225 (0.0227) \\ 3.577 (3.756) & 0.0003 (0.0002) & 69.488 & 0.7164 (0.6457) & 161.969 (61.969) & 0.0185 (0.0158) \\ 5.647 (5.658) & 0.0000 (0.0001) & 74.478 (7.4477) & 0.7244 (0.6398) & 157.977 (157.968) & 0.0225 (0.0223) \\ 5.132 (5.076) & 0.0015 (0.0009) & 68.492 (68.488) & 0.7664 (0.6457) & 161.969 (61.969) & 0.0185 (0.0158) \\ 5.594 (7.558) & 0.0000 (0.0001) & 74.478 (7.4477) & 0.2210 (0.237) & 16.9771 (169.971) & 0.0154 (0.1054) \\ 19.500 (19.80) & 0.0000 (0.0001) & 74.487 (7.448) & 0.4563 (0.5835) & 165.977 (1.57.968) & 0.0025 (0.0225) \\ 2.5292 (0.2657 (0.5577) & 75.446 (7.548) & 0.3680 (0.3577) & 177.973 (7.7973) & 0.0130 (0.133) \\ 24.573 (2.549) & 0$	1.451(1.459)	4 0864(0 5173)	50 462(50 472)	0.1938(0.1989)	114 987(114 987)	0.0378(0.0378)
$\begin{array}{c} 1.6361 (.1636) & 6.6376 (6.1612) & 0.1616 (5.1616) & 0.1376 (0.1609) & 118.988 (1218.988) & 0.0032 (0.0324) \\ 1.745 (1.739) & 5.1412 (5.7803) & 53.491 (53.494) & 0.1451 (0.1627) & 112.988 (122.988) & 0.0032 (0.0324) \\ 1.834 (1.847) & 6.5561 (7.1064) & 54.502 (54.507) & 0.1485 (0.1632) & 122.988 (122.988) & 0.0026 (0.0241) \\ 1.940 (1.942) & 5.4588 (4.1076) & 55.508 (55.512) & 0.1557 (0.1632) & 124.989 (124.989) & 0.0263 (0.0226) \\ 2.044 (2.044) & 3.7231 (3.3984) & 56.526 (55.531) & 0.1495 (0.2533) & 124.989 (126.989) & 0.0246 (0.0245) \\ 2.144 (2.150) & 2.5473 (2.7757) & 57.518 (57.520) & 0.2427 (0.3266) & 128.989 (126.989) & 0.0230 (0.0229) \\ 2.244 (2.270) & 1.6959 (1.2274) & 58.529 (58.535) & 0.3357 (0.3956) & 130.989 (130.989) & 0.0216 (0.0215) \\ 2.344 (2.346) & 1.1369 (1.0046) & 59.518 (59.507) & 0.4095 (0.4490) & 132.990 (134.990) & 0.0191 (0.0190) \\ 2.762 (2.756) & 1.0094 (0.3381) & 61.505 (61.506) & 0.5034 (0.5055) & 138.990 (136.990) & 0.0180 (0.0179) \\ 3.009 & 0.573 (0.4292) & 22.501 (62.504) & 0.5152 (0.5320) & 138.990 (136.990) & 0.0180 (0.0179) \\ 3.007 (3.506) & 0.1316 (0.0985) & 64.512 (64.496) & 0.8553 (0.6180) & 144.965 (143.964) & 0.0278 (0.0274) \\ 4.083 (4.082) & 0.0422 (0.0288) & 66.510 (65.507) & 0.7094 (0.6969) & 153.966 (153.967) & 0.0226 (0.0244) \\ 4.083 (4.082) & 0.0420 (0.0288) & 66.510 (65.507) & 0.7040 (0.6989) & 153.966 (153.967) & 0.0226 (0.0224) \\ 4.579 (4.579) & 0.008 (0.0054) & 67.501 (67.497) & 0.7404 (0.6898) & 157.967 (157.968) & 0.0220 (0.0233) \\ 5.547 (5.558) & 0.0000 (0.0002) & 69.489 (63.488) & 0.6687 (0.5835) & 165.970 (165.970) & 0.0168 (0.0185) \\ 5.647 (5.558) & 0.0000 (0.0002) & 69.489 (63.488) & 0.7663 (0.5835) & 165.970 (165.970) & 0.0168 (0.0185) \\ 5.647 (5.558) & 0.0000 (0.0005) & 67.501 (67.477) & 0.7404 (0.6898) & 157.967 (157.968) & 0.0024 (0.0233) \\ 5.132 (5.076) & 0.0013 (0.0009) & 68.492 (63.488) & 0.7663 (0.5835) & 165.970 (165.970) & 0.0168 (0.0185) \\ 5.647 (5.558) & 0.0000 (0.0005) & 67.501 (67.487) & 0.7404 (0.6898) & 157.967 (157.9773) & 0.0138 (0.01$	1 559(1 585)	6 8745(5 7372)	51 501(51 513)	0.1760(0.1808)	116 087(116 987)	0.0350(0.0350)
$ \begin{array}{c} 1.01(1.039) & 0.011(0.0596) & 0.0110(0.0597) & 0.0140(0.0597) & 0.0140(0.0597) & 0.0012(0.0302) \\ 1.834(1.847) & 6.5561(7.1064) & 54.502(54.507) & 0.1445(0.1627) & 120.988(122.988) & 0.0222(0.0281) \\ 1.940(1.942) & 5.4588(4.1076) & 55.508(55.512) & 0.1557(0.1963) & 124.989(124.989) & 0.0223(0.0262) \\ 2.044(2.044) & 3.7231(3.3984) & 56.520(56.531) & 0.0495(0.2533) & 126.989(126.989) & 0.0246(0.0245) \\ 2.144(2.150) & 2.5473(2.7572) & 57.518(57.520) & 0.2427(0.3266) & 128.989(128.989) & 0.0230(0.0229) \\ 2.244(2.270) & 1.6959(1.2274) & 58.525(56.5351) & 0.0495(0.4490) & 132.990(134.990) & 0.0191(0.0190) \\ 2.344(2.346) & 1.1369(1.0046) & 59.518(59.507) & 0.4095(0.4490) & 132.990(134.990) & 0.0191(0.0190) \\ 3.009(3.009) & 0.5732(0.4292) & 62.501(62.504) & 0.5534(0.5055) & 136.990(136.990) & 0.0180(0.0179) \\ 3.009(3.009) & 0.5732(0.4292) & 62.501(62.504) & 0.5542(0.505) & 138.990(138.990) & 0.0169(0.0163) \\ 3.257(3.257) & 0.2806(0.2117) & 66.507(65.506) & 0.5442(0.5660) & 144.962(141.962) & 0.0311(0.0390) \\ 3.507(3.506) & 0.1316(0.0985) & 64.512(64.496) & 0.6583(0.6180) & 145.966(153.9677) & 0.0225(0.0227) \\ 3.577(3.556) & 0.0623(0.0446) & 65.504(65.496) & 0.6617(0.7003) & 149.965(149.965) & 0.0226(0.0245) \\ 4.083(4.082) & 0.0420(0.0288) & 66.510(66.507) & 0.7904(0.6969) & 153.966(153.9677) & 0.0225(0.0225) \\ 5.547(5.658) & 0.0009(0.0002) & 69.489(69.488) & 0.7644(0.6457) & 169.971(169.971) & 0.0154(0.0144) \\ 19.500(19.73) & 0.0000(0.0001) & 70.486(73.487) & 0.5620(0.5037) & 169.971(169.971) & 0.0154(0.0144) \\ 19.500(19.73) & 0.0000(0.0001) & 70.486(73.487) & 0.3680(0.3547) & 177.973(175.792) & 0.0141(0.0142) \\ 2.0696(2.0454) & 0.0013(0.0137) & 74.348(73.487) & 0.3630(0.3547) & 177.973(18.975) & 0.0038(0.0033) \\ 21.658(21.615) & 0.0113(0.0618) & 73.486(73.487) & 0.3049(0.3003) & 181.973(181.973) & 0.0120(0.0120) \\ 22.677(22.590) & 0.0556(0.2137) & 74.443(74.447) & 0.2210(0.2437) & 183.974(185.974) & 0.0114(0.0142) \\ 23.598(23.568) & 0.2567(0.5577) & 75.446(75.465) & 0.1761(0.1862) & 193.976(193.975) & 0.0038($	1.657(1.662)	6.6270(6.0908)	52 406(52 401)	0.1575(0.1600)	118 088(118 088)	0.0325(0.0324)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.007(1.003)	5 1412(5 7803)	53 401(53 404)	0.1541(0.1627)	120 088(120 088)	0.0302(0.0324)
$ \begin{array}{c} 1.531 \\ 1.540 \\ 1.541 \\ 1.540 \\ 1.542 \\ 1.5488 \\ (1.1076 \\ 1.5428 \\ 1.5488 \\ (1.1076 \\ 1.5508 \\ 1.5488 \\ (1.1076 \\ 1.5508 \\ 1.5488 \\ (1.1076 \\ 1.5488 \\ 1.510 \\ 1.5488 \\ 1.510 \\ 1.548 \\ 1.510 \\ 1.5488 \\ 1.510 \\ 1.550 \\ 1.5488 \\ 1.510 \\ 1.550 \\ 1.5488 \\ 1.550 \\ 1.5488 \\ 1.550 \\ 1$	1.994(1.947)	6 5561(7 1064)	54 502(54 507)	0.1485(0.1632)	120.000(120.000)	0.0302(0.0302)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.040(1.042)	5.4588(4.1076)	55 508(55 512)	0.1557(0.1063)	124.080(124.080)	0.0262(0.0261)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 044(2 044)	3 7231(3 3084)	56 526(56 531)	0.1895(0.2533)	126 989(126 989)	0.0246(0.0245)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.044(2.044)	2 5479(9 7579)	57 518(57 520)	0.2427(0.3266)	128 080(128 080)	0.0230(0.0230)
$\begin{array}{c} 1.339(1.2.16) & 1.039(1.2.17) & 0.0.501 & 0.0.501 & 0.000(1.0.20) & 0.0210(0.0212) \\ 2.510(2.509) & 1.6947(1.4798) & 60.505(6.0.501) & 0.4714(0.4895) & 132.990(132.990) & 0.0103(0.0202) \\ 2.510(2.509) & 1.6947(1.4798) & 60.505(6.0.501) & 0.4714(0.4895) & 134.990(132.990) & 0.0180(0.0179) \\ 3.009(3.009) & 0.5732(0.4292) & 62.501(62.504) & 0.5152(0.5320) & 138.990(138.990) & 0.0169(0.0188) \\ 3.257(3.257) & 0.2806(0.2117) & 63.503(63.500) & 0.5442(0.5690) & 141.962(141.962) & 0.0311(0.0309) \\ 3.507(3.506) & 0.1316(0.0985) & 64.512(64.496) & 0.6859(0.6180) & 145.964(145.964) & 0.0278(0.0277) \\ 3.757(3.756) & 0.0623(0.0446) & 65.504(65.496) & 0.6617(0.7003) & 149.965(149.965) & 0.0225(0.0225) \\ 4.579(4.579) & 0.0080(0.0054) & 67.501(67.497) & 0.7094(0.6969) & 153.966(153.967) & 0.0225(0.0225) \\ 4.579(4.579) & 0.0080(0.002) & 69.492(68.488) & 0.7164(0.6457) & 161.969(161.969) & 0.0185(0.0185) \\ 5.447(5.658) & 0.0000(0.0002) & 69.492(68.488) & 0.7164(0.6457) & 161.969(161.969) & 0.0185(0.0185) \\ 5.47(5.658) & 0.0000(0.0002) & 69.498(69.488) & 0.663(0.5835) & 165.970(156.970) & 0.0186(0.0169) \\ 18.500(18.773) & 0.0000(0.0011) & 70.486(70.487) & 0.5620(0.5037) & 169.971(169.971) & 0.0154(0.0154) \\ 19.500(18.773) & 0.0000(0.0012) & 71.478(72.485) & 0.3680(0.3547) & 177.973(77.973) & 0.0130(0.0130) \\ 21.658(21.615) & 0.0113(0.0618) & 73.486(73.487) & 0.3049(0.3003) & 181.973(181.973) & 0.0120(0.0120) \\ 22.592(2.509) & 0.0656(0.2137) & 74.443(74.447) & 0.2210(0.2437) & 185.974(185.974) & 0.0111(0.0111) \\ 23.598(23.568) & 0.2567(0.5577) & 75.446(576.465) & 0.1761(0.1862) & 193.975(193.975) & 0.0038(0.0088) \\ 25.550(2.5.532) & 1.4804(1.7838) & 77.430(77.428) & 0.1530(0.1723) & 197.976(197.976) & 0.0088(0.0089) \\ 25.592(2.517) & 2.3583(2.3800) & 78.512(78.518) & 0.1216(0.1238) & 209.978(199.975) & 0.0036(0.0095) \\ 25.550(2.5.532) & 1.4804(1.7838) & 77.430(77.428) & 0.1530(0.1723) & 197.976(197.976) & 0.0088(0.0089) \\ 25.592(2.517) & 2.3583(2.3800) & 78.512(78.518) & 0.1216(0.1238) & 209.978(199.978) & 0.0066(0.0059) \\ $	2.144(2.100)	1 6050(1 9974)	58 520(58 525)	0.3357(0.3956)	130 989(130 989)	0.0216(0.0215)
$\begin{array}{c} 2.510(2.509) & 1.6947(1.4798) & 60.505(6.501) & 0.4714(0.4895) & 134.990(136.990) & 0.0191(0.0190) \\ 2.762(2.756) & 1.0094(0.8381) & 61.505(61.506) & 0.5034(0.5065) & 136.990(136.990) & 0.0180(0.0179) \\ 3.009(3.009) & 0.5732(0.4292) & 62.501(62.504) & 0.5152(0.5320) & 138.990(138.990) & 0.0169(0.0168) \\ 3.257(3.257) & 0.2806(0.2117) & 63.503(63.500) & 0.5442(0.5630) & 141.962(141.962) & 0.0311(0.0309) \\ 3.507(3.506) & 0.1316(0.0985) & 64.512(64.496) & 0.5859(0.6180) & 145.964(145.964) & 0.0278(0.0277) \\ 3.757(3.756) & 0.0623(0.0446) & 65.504(65.496) & 0.6617(0.7003) & 149.965(149.965) & 0.0226(0.0249) \\ 4.083(4.082) & 0.0420(0.0288) & 66.510(66.507) & 0.7094(0.6969) & 153.966(153.967) & 0.0225(0.0225) \\ 4.579(4.579) & 0.0080(0.0054) & 67.501(67.497) & 0.7404(0.6898) & 157.967(157.968) & 0.0204(0.0203) \\ 5.132(5.076) & 0.0015(0.0009) & 68.492(68.488) & 0.7164(0.6457) & 161.969(161.969) & 0.0185(0.0185) \\ 5.647(5.658) & 0.0000(0.0002) & 69.489(69.488) & 0.6563(0.5385) & 165.970(165.970) & 0.0169(0.0169) \\ 18.500(18.773) & 0.0000(0.0001) & 70.486(70.487) & 0.5620(0.5037) & 169.971(169.971) & 0.0154(0.0154) \\ 19.500(19.680) & 0.0001(0.0016) & 77.473(71.475) & 0.4691(0.4318) & 173.972(173.972) & 0.0141(0.0142) \\ 20.696(20.645) & 0.0012(0.0125) & 72.478(72.485) & 0.3680(0.3547) & 177.973(177.973) & 0.0130(0.0130) \\ 21.658(21.615) & 0.0113(0.0618) & 73.486(73.487) & 0.3210(0.2437) & 185.974(185.974) & 0.0111(0.0112) \\ 23.598(22.568) & 0.2567(0.5507) & 75.446(75.469) & 0.1928(0.2029) & 189.975(189.975) & 0.01030(0.0130) \\ 24.573(24.549) & 0.7149(1.1046) & 76.465(76.465) & 0.1761(0.1862) & 193.976(193.975) & 0.0085(0.0089) \\ 25.550(25.532) & 1.4804(1.7838) & 77.430(77.428) & 0.1330(0.153) & 127.977(205.977) & 0.0077(0.0077) \\ 28.493(28.491) & 3.0307(2.5894) & 80.504(80.522) & 0.1215(0.1238) & 209.978(209.978) & 0.0072(0.0077) \\ 25.492(25.573) & 1.4804(1.7838) & 77.430(77.428) & 0.1330(0.1597) & 205.977(205.977) & 0.0068(0.0067) \\ 30.464(30.471) & 1.8980(1.6225) & 82.523(82.504) & 0.1384(0.1355) & 217.979(213.978)$	2.244(2.246)	1 1369(1 0046)	59 518(59 507)	0.4095(0.4490)	132,990(132,990)	0.0203(0.0202)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.510(2.509)	1.6947(1.4798)	60.505(60.501)	0.4714(0.4895)	134,990(134,990)	0.0191(0.0190)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.762(2.756)	1.0094(0.8381)	61.505(61.506)	0.5034(0.5065)	136.990(136.990)	0.0180(0.0179)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 009(3 009)	0.5732(0.4292)	62.501(62.504)	0.5152(0.5320)	138,990(138,990)	0.0169(0.0168)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.257(3.257)	0.2806(0.2117)	63.503(63.500)	0.5442(0.5690)	141.962(141.962)	0.0311(0.0309)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.507(3.506)	0.1316(0.0985)	64.512(64.496)	0.5859(0.6180)	145.964(145.964)	0.0278(0.0277)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.757(3.756)	0.0623(0.0446)	65,504(65,496)	0.6617(0.7003)	149.965(149.965)	0.0250(0.0249)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.083(4.082)	0.0420(0.0288)	66.510(66.507)	0.7094(0.6969)	153.966(153.967)	0.0225(0.0225)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.579(4.579)	0.0080(0.0054)	67.501(67.497)	0.7404(0.6898)	157.967(157.968)	0.0204(0.0203)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.132(5.076)	0.0015(0.0009)	68,492(68,488)	0.7164(0.6457)	161.969(161.969)	0.0185(0.0185)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.647(5.658)	0.0000(0.0002)	69.489(69.488)	0.6563(0.5835)	165.970(165.970)	0.0169(0.0169)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.500(18.773)	0.0000(0.0001)	70.486(70.487)	0.5620(0.5037)	169.971(169.971)	0.0154(0.0154)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.500(19.680)	0.0000(0.0016)	71.473(71.475)	0.4691(0.4318)	173.972(173.972)	0.0141(0.0142)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.696(20.645)	0.0012(0.0125)	72.478(72.485)	0.3680(0.3547)	177.973(177.973)	0.0130(0.0130)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.658(21.615)	0.0113(0.0618)	73.486(73.487)	0.3049(0.3003)	181.973(181.973)	0.0120(0.0120)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.627(22.590)	0.0656(0.2137)	74.443(74.447)	0.2210(0.2437)	185.974(185.974)	0.0111(0.0111)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.598(23.568)	0.2567(0.5507)	75.446(75.469)	0.1928(0.2029)	189.975(189.975)	0.0103(0.0103)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.573(24.549)	0.7149(1.1046)	76.465(76.465)	0.1761(0.1862)	193.976(193.975)	0.0095(0.0095)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.550 25.532)	1.4804(1.7838)	77.430(77.428)	0.1530(0.1723)	197.976(197.976)	0.0089(0.0089)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.529(26.517)	2.3583(2.3800)	78.512(78.518)	0.1215(0.1236)	201.977(201.977)	0.0083(0.0083)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.510(27.503)	2.9715(2.6793)	79.464(79.474)	0.1390(0.1597)	205.977(205.977)	0.0077(0.0077)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.493(28.491)	3.0307(2.5894)	80.504(80.522)	0.1216(0.1238)	209.978(209.978)	0.0072(0.0072)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.478(29.480)	2.5527(2.1803)	81.510(81.515)	0.1422(0.1459)	213.979(213.978)	0.0068(0.0067)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.464(30.471)	1.8080(1.6225)	82.523(82.504)	0.1384(0.1356)	217.979(217.979)	0.0064(0.0063)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.455(31.470)	1.1070(1.1150)	83.505(83.503)	0.1368(0.1325)	221.979(221.979)	0.0060(0.0059)
33.557(33.539) 1.0637(1.2964) 85.490(85.493) 0.1153(0.1082) 229.980(229.980) 0.0053(0.0053) 34.534(34.519) 1.9095(1.8714) 86.491(86.499) 0.1076(0.1036) 233.981(233.980) 0.0050(0.0050) 35.492(35.490) 2.2178(1.9702) 87.498(87.480) 0.0921(0.0912) 237.981(237.981) 0.0047(0.0047)	32.490(32.507)	0.7377(0.9290)	84.499(84.497)	0.1316(0.1266)	225.980(225.980)	0.0056(0.0056)
34.534(34.519) 1.9095(1.8714) 86.491(86.499) 0.1076(0.1036) 233.981(233.980) 0.0050(0.0050) 35.492(35.490) 2.2178(1.9702) 87.498(87.480) 0.0921(0.0912) 237.981(237.981) 0.0047(0.0047)	33.557(33.539)	1.0637(1.2964)	85.490(85.493)	0.1153(0.1082)	229.980(229.980)	0.0053(0.0053)
35.492(35.490) 2.2178(1.9702) 87.498(87.480) 0.0921(0.0912) 237.981(237.981) 0.0047(0.0047)	34.534(34.519)	1.9095(1.8714)	86.491(86.499)	0.1076(0.1036)	233.981(233.980)	0.0050(0.0050)
	35.492(35.490)	2.2178(1.9702)	87.498(87.480)	0.0921(0.0912)	237.981(237.981)	0.0047(0.0047)

What should be seen *KATRIN* taking into account sterile neutrino with parameters:

 $m_4 = (2.70 \pm 0.22) \text{eV}$

 $sin^2 2\theta_{14} \approx 0.34 \pm 0.08 (4.3\sigma)$

COMPARISON OF NEUTRINO-4 MASS PREDICTION WITH MEASUREMENT OF NEUTRINO MASS

	Neutrino-4	KATRIN	$GERDA m(0\nu\beta\beta)$
$m_{\nu_e}^{eff} = \sqrt{\sum} m_i^2 U_{ei} ^2$ $\Delta m_{14}^2 \approx m_4^2$ Effective mass and mass squared: $m_{\nu_e}^{eff}$, m_{ν}^2	$m_{4 u_e}^{eff} = 0.82 \pm 0.18$ $\left(m_{4 u_e}^{eff} ight)^2 = 0.68 \pm 0.29$ $m_1^2, m_2^2, m_3^2 \ll m_4^2$	$m_{3\nu_e}^{eff} < 0.8 \text{ eV} (90\%)$ $m_{3\nu_e}^{eff2} = 0.26 \pm 0.34$ $m_{4\nu_e}^{eff2} = ?$	
Maiorana mass $m(0\nu\beta\beta)$	m(0 uetaeta) = (0.25 ± 0.09)eV		$m_{\beta\beta} < [0.080 - 0.182] eV$

Comparison with neutrino mass constraints from experiments for neutrino less double beta-decay search

This expression for the model 3 + 1 and with $m_{1,m_{2,m_{3} \ll m_{4}}}$ assumption can be simplified:

$$m_{ee} = \left| \sum_{i} m_{i} U_{ei}^{2} \right| = \begin{cases} \left| m_{0} c_{12}^{2} c_{13}^{2} + \sqrt{\Delta m_{21}^{2} + m_{0}^{2}} s_{12}^{2} c_{13}^{2} e^{2i(\eta_{2} - \eta_{1})} + \sqrt{\Delta m_{32}^{2} + \Delta m_{21}^{2} + m_{0}^{2}} s_{13}^{2} e^{-2i(\delta_{\rm CP} + \eta_{1})} \right| & \text{in NO}, \\ m_{0} s_{13}^{2} + \sqrt{m_{0}^{2} - \Delta m_{32}^{2}} s_{12}^{2} c_{13}^{2} e^{2i(\eta_{2} + \delta_{\rm CP})} + \sqrt{m_{0}^{2} - \Delta m_{32}^{2} - \Delta m_{21}^{2}} c_{12}^{2} c_{13}^{2} e^{2i(\eta_{1} + \delta_{\rm CP})} \right| & \text{in IO}, \end{cases}$$

The numerical for this with Neutrino-4 and other experiments average result is shown below.

$$m(0\nu\beta\beta) = (0.25 \pm 0.09) \text{eV}$$

our estimation
$$m(0\nu\beta\beta) \approx m_4 U_{14}^2$$
$$m(0\nu\beta\beta) < [0.080-0.182] \text{eV}$$

experiments

The best restrictions on Majorana mass were obtained in GERDA experiment . In these experiments, the half-life of the isotope is measured, which depends on Majorana mass as follows: $1/T_{1/2}^{0\nu} = g_A^4 G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_a^2}$

The upper limit for the lower limit - the upper limit for the Majorana mass: Lower limit for $T_{1/2}/0\nu > 1.8 \times 10^{26}$ years (90% CL) Upper limit for $m\beta\beta < [80-182]$ meV Neutrino model with one sterile neutrino

Sterile Neutrino Parameters

$$\Delta m_{14}^2 = 7.30 \pm 0.13_{st} \pm 1.16_{syst} = 7.30 \pm 1.17$$

sin² 2\theta = 0.36 \pm 0.12_{stat}(2.9\sigma)

$$m_4 = (2.70 \pm 0.22) \text{eV}$$

$$sin^2 2\theta_{14} \approx 0.34 \pm 0.08 (4.3\sigma)$$

$$m^{eff}_{4\nu_e} = (0.82 \pm 0.18) eV$$

$$m^{eff}_{4\nu_{\mu}} = (0.41 \pm 0.26) eV$$

$$m^{eff}_{4\nu_\tau} \leq 0.60 eV$$

Neutrino flavors mixing scheme including sterile neutrino and effective mass hierarchy

A.P. Serebrov *, R.M. Samoilov JETP Letters, Volume 112, 2020 Issue 4, pp 211–225 arxiv:2003.03199

PMNS matrix for 3 + 1 model

A.P. Serebrov , Lomonosov Conference. 17-40. 20.08.2021

Cosmology – the role of sterile neutrinos during the formation of Universe and the pace of its expansion

Neutrinos of different masses can affect the early Universe or be responsible for the baryon asymmetry of the Universe and Dark Matter. However, a sterile neutrino with a low mass and a small mixing angle can exist without any significant influence on the formation of the structure of the Universe. Due to the superweak interaction, such sterile neutrinos do not thermalize in the primary plasma and leave it at an early stage. Moreover, leaving the primary plasma at an early stage, they reduce its gravitational mass, which accelerates the expansion of the Universe.

Conclusion

1.The direct observation of sterile neutrino oscillation in Neutrino-4 experiment

2. Possibility of experimental confirmation of the 3 + 1 neutrino model with one sterile neutrino

3. COMPARISON OF NEUTRINO-4 MASS PREDICTION WITH MEASUREMENT OF NEUTRINO MASS

COMPARISON OF NEUTRINO-4 MASS PREDICTION WITH MEASUREMENT OF NEUTRINO MASS

4. Neutrino flavors mixing scheme including sterile neutrino and effective mass hierarchy

5. PMNS matrix for 3 + 1 model

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$U_{PMNS}^{(3+1)} = \begin{bmatrix} 0.409^{+0.036}_{-0.060} & 0.634^{+0.022}_{-0.065} & 0.657^{+0.044}_{-0.014} & 0.15^{+0.0}_{-0.014} \\ 0.392^{+0.025}_{-0.025} & 0.547^{+0.056}_{-0.014} & 0.740^{+0.012}_{-0.014} & 0.2222 \end{bmatrix}$
--	---

Thus, the analysis performed provides quite interesting generalizations and indication of the possibility of the validity of the 3 + 1 neutrino model with one sterile neutrino.