Леонид Григоренко

Лаборатория ядерных реакций им. Г.Н. Флерова, ОИЯИ, Дубна

Исследования экзотических ядер на установке ACCULINNA-2. Перспективы ядерной физики низких энергии в РФ.

Семинар ПИЯФ, Гатчина, 22 сентября 2022

Леонид Григоренко

Лаборатория ядерных реакций им. Г.Н. Флерова, ОИЯИ, Дубна

Статус и перспективы исследора, ий с пучками радиоактивных изотогоз СлЯР ОИЯИ

Leonid Grigorenko

Flerov Laboratory of Nuclear Reactions, JINR, Dubna

Тяжелейшие изотопы водорода⁶Н и⁷Н в экспериментах на устанорке и CULINNA-2

Seminar PNPI, Gatchina, April 29, 2021

Flerov Laboratory of Nuclear Reactions, JINR

Flerov Laboratory of Nuclear Reactions, JINR

Физика радиоактивных изотопов (РИ) – магистральное направление развития современной ядерной физики

JINR Flerov Lab research agenda

From ACCULINNA to ACCULINNA-2

K4-K10 complex at FLNR

1 11 11 11 11 11 11 11 11 11 11 11 Cannananan TUT 201 **Injection line used** as ACCULINNA electron ring fragment separator

Fragment separator ACCULINNA for light exotic nuclei studies

Fragment separator ACCULINNA for light exotic nuclei studies

0.003

Mom. resolution

H/V RIB size, mm

A.A.Korsheninnikov, PRL 82 (1999) 3581.
A.A.Korsheninnikov, PRL 87 (2001) 092501.
S.V. Stepantsov et al., PLB 542 (2002) 35.
M.S. Golovkov et al., PLB 566 (2003) 70.
G.V. Rogachev et al. PRC 67 (2003) 041603(R).
M.S. Golovkov et al., PRL 93 (2004) 262501.
M.S. Golovkov et al., PLB 588 (2004) 163.
M.S. Golovkov et al., PRC 76 (2007) 021605(R).
M.S. Golovkov et al., PLB 672 (2009) 22.
L.V. Grigorenko et. al., PLB 677 (2009) 30.
S.I. Sidorchuk et al., PLB 708 (2012) 202502.
A.S. Fomichev et al., PRL 109 (2012) 202502.

Instrumentation development

DAQ – MBS, like GSI

Truly unique item: cryogenic tritium gas system

Two units move to the neutron-rich region in (t,p) reaction

PH WI W2 WPI Z

Background free experiments, easy variation of target thickness

Available only in military laboratories

Nice example of military technology conversion for fundamental science conversion

Competitive light nuclei RIB program at FLNR

Competitive light nuclei RIB program at FLNR

Competitive light nuclei RIB program at FLNR

⁵H studied in the ³H(t,p)⁵H reaction

A.A. Korsheninnikov, 2001, ⁶He(p,2p)⁵H Discovery of ⁵H at FLNR

M.S. Golovkov, 2004, Pioneering correlation studies

A.A. Korsheninnikov et al., PRL 87 (2001) 92501.
M.S.Golovkov et al., PLB 566 (2003) 70.
M.S.Golovkov et al., PRL 93 (2004) 262501.
S.V. Stepantsov et al., NPA 738 (2004) 436.
M.S.Golovkov et al., PRC 72 (2005) 064612.

- Poor population of ground state. However, correlations provide enough selectivity: quantum amplification
- ⁵H ground state position is finally established; the excited state is established as 3/2⁺-5/2⁺ degenerate mixture

¹⁰He studied in the ⁸He(t,p)¹⁰He reaction

"Conundrum nucleis" second double magic in nuclide chart

Discovered by Korsheninnikov et al. in 1994 in RIKEN giving E_{τ} =1.2 MeV

M.S. Golovkov *et al.,* PLB **672** (2009) 22 S.I. Sidorchuk *et al.,* PRL **108** (2012) 202502

Three-body correlations were studied in ⁵H basing on outstanding statistics. Can be something useful done with really exotic systems and limited statistics?

New ground state energy for ¹⁰He: E_{τ} =2.0-2.5 MeV Shell structure breakdown in ¹⁰He

Publicity for ¹⁰He work

McGRAW-HILL YEARBOOK OF SCIENCE & TECHNOLOGY

2013

Comprehensive coverage of recent events and research as compiled by the staff of the McGraw-Hill Encyclopedia of Science & Technology

New York Chicago San Francisco Lisbon London Madrid Mexico City

Milan New Delhi San Juan Seoul Singapore Sydney Toronto

The study of exotic nuclei at the edges of nuclear stability is one of the most important developments in modern nuclear physics Unusual forms of nuclear dynamics often arise here. One of the most prominent phenomena encountered is shell breakdownthe deviation from the expected shell structure in these exotic nuclei. On the one hand, in the nuclear shell model, helium-10 (10He) is a "double-magic" nucleus with Z = 2 and N = 8. On the other hand, it has an enormous neutron excess; its neutron number (N)to proton number (Z) ratio equals 4, which brings it to the edge of nuclear matter asymmetry. Thus, the ¹⁰He nucleus is an important system for the development of our understanding of nuclei located far from the beta stability valley and even beyond the neutron and proton drip lines. Here we present new insights into the basic properties of this nucleus, illuminating its shell structure and indicating its strong deviation from the simple shell population picture.

Shell structure in nuclei. For more than 100 years the periodic table of elements has provided a basis uical laws. The ex-

nnected with the

cal atomic shells. "N versus Z." can

riodic table in the

gned to treat syssemi-integer spin.

Figure 4. Evolution of excitation energy for the first 2^+ and 1^- states for N = 8 isotone. Shell population is schematically shown on top of the panel. Shaded rectangles indicate the uncertainty of the ¹⁰He level positions due to their width.

ACCULINNA-2 predecessors and ideology

Single achromatic spectrometers

Acculinna-2 layout (letter of intent, 2012)

Acculinna-2 layout (letter of intent, 2012)

ACCULINNA-2 Construction (2014-2017)

Experimental campaign 2018-2021

Characteristics of RIBs at ACCULINNA-2

Ион	Е	Первичный	Мишень+	$\pm \Delta p$	I _{эксперимент}	I _{pacчer}	Чистота	$X \times Y,$
	МэВ/н	пучок	Клин	%	ион/с/пмкА	ион/с/пмкА	%	мм (ПШПВ)
⁸ He	27.3			3.25	$5.4 \cdot 10^{4}$	$5.8 \cdot 10^4$	95.4	14.2×10.2
⁹ Li	25.2	¹¹ B	${ m Be}(1{ m mm})+$	2.00	$2.3 \cdot 10^6$	$2.9\cdot 10^6$	97.9	13.9×11.1
¹¹ Li	17.2	33.6 МэВ/н	Ве(1 мм)	3.25	$1.4 \cdot 10^{2}$	$1.2\cdot 10^2$	1.5	12.9×11.3
$^{12}\mathrm{Be}$	15.1			3.25	$9.0 \cdot 10^{3}$	$1.8 \cdot 10^{3}$	23.3	16.6×12.9
¹⁰ Be*	45.0	^{15}N	${ m Be}(1{ m mm})+$	1.25	$2.3 \cdot 10^6$	$9.0 \cdot 10^5$	78.4	17.7×13.4
		49.3 МэВ/н	Ве(1 мм)					
${}^{27}{ m S}^{**}$	28.2	$^{32}\mathrm{S}$	${ m Be}(0.5 \ { m mm})+$		$1.6 \cdot 10^{1}$	$3.5 \cdot 10^1$	0.002	
^{26}P	26.7	52.7 МэВ/н	Ве(0.5 мм)	0.75	$8.5\cdot 10^1$	$3.2\cdot 10^2$	0.012	
25 Si	25.0				$2.9 \cdot 10^3$	$2.3 \cdot 10^3$	0.56	_

Two- and four-neutron radioactivity search prospects

L.V. Grigorenko, I.G. Mukha, C. Scheidenberger, and M.V. Zhukov, PRC **84** (2011) 021303(R)

Energy conditions for true 4n decay

Five-body (Core+3N)-N (Core+2N)-2N (Core+N)-3N $N_1 - N_2$

Long-living true four-neutron decay states are most probable.

Nearest candidates for 4n radioactive decay: ⁷H, ¹⁸Be, ²⁸O

2n radioactivity in ²⁶O?

PHYSICAL REVIEW LETTERS PRL 116, 102503 (2016)

Nucleus ²⁶O: A Barely Unbound System beyond the Drip Line

Y. Kondo,¹ T. Nakamura,¹ R. Tanaka,¹ R. Minakata,¹ S. Ogoshi,¹ N. A. Orr,² N. L. Achouri,² T. Aumann,^{3,4} H. Baba,⁵ F. Delaunay,² P. Doornenbal,⁵ N. Fukuda,⁵ J. Gibelin,² J. W. Hwang,⁶ N. Inabe,⁵ T. Isobe,⁵ D. Kameda,⁵ D. Kanno,¹ S. Kim,⁶ N. Kobayashi,¹ T. Kobayashi,⁷ T. Kubo,⁵ S. Leblond,² J. Lee,⁵ F. M. Marqués,² T. Motobayashi,⁵ D. Murai,⁸ T. Murakami,⁹ K. Muto,⁷ T. Nakashima,¹ N. Nakatsuka,⁹ A. Navin,¹⁰ S. Nishi,¹ H. Otsu,⁵ H. Sato,⁵ Y. Satou,⁶ Y. Shimizu,⁵ H. Suzuki,⁵ K. Takahashi,⁷ H. Takeda,⁵ S. Takeuchi,⁵ Y. Togano,^{4,1} A. G. Tuff,¹¹ M. Vandebrouck,¹² and K. Yoneda⁵

 $E_{T} = 18(7)$ keV is quite large

What can be interesting in ⁷H?

⁷H is the heaviest conceivable hydrogen isotope. The largest A/Z = 7 ratio is closer to the neutron matter than whatever we can imagine in the world of nuclides.

Special stability to ⁷H is expected to be granted by the closed p_{3/2} neutron subshell. Nothing heavier is expected. Questions of shell evolution in conditions of extreme proton deficiency

The ⁷H g.s. is expected to decay only via the unique "true" five-body core+4n decay channel or simultaneous emission of four neutrons:

(i) The ⁷H g.s. may be extremely long-lived for its decay energy. Candidate for 4n-radioactivity. Radioactivity-scale lifetimes for ET < 100-300 keV.

(iii) Even at ET = 2 MeV the 7 H g.s. width can be as small as 0.1-10 keV.

(iv) Specific correlations of fragments can be expected for the "true" five-body core+4n decay.

ACCULINNA-2 F5 setup for ⁷H experiment

⁷H studied in the ²H(⁸He, ³He)⁷H reaction

PHYSICAL REVIEW LETTERS 124, 022502 (2020)

Evidence for the First Excited State of ⁷H

A. A. Bezbakh,^{1,2} V. Chudoba,^{1,2,*} S. A. Krupko,^{1,3} S. G. Belogurov,^{1,4} D. Biare,¹ A. S. Fomichev,^{1,5} E. M. Gazeeva,¹
A. V. Gorshkov,¹ L. V. Grigorenko,^{1,4,6} G. Kaminski,^{1,7} O. A. Kiselev,⁸ D. A. Kostyleva,^{8,9} M. Yu. Kozlov,¹⁰ B. Mauyey,^{1,11}
I. Mukha,⁸ I. A. Muzalevskii,^{1,2} E. Yu. Nikolskii,^{6,1} Yu. L. Parfenova,¹ W. Piatek,^{1,7} A. M. Quynh,^{1,12} V. N. Schetinin,¹⁰
A. Serikov,¹ S. I. Sidorchuk,¹ P. G. Sharov,^{1,2} R. S. Slepnev,¹ S. V. Stepantsov,¹ A. Swiercz,^{1,13} P. Szymkiewicz,^{1,13}
G. M. Ter-Akopian,^{1,5} R. Wolski,^{1,14} B. Zalewski,^{1,7} and M. V. Zhukov¹⁵

- Excited state at 6.5 MeV
- Indication of g.s. at 1.8 MeV (5 events)
- May be something at 12 MeV

⁷H studied in the ²H(⁸He, ³He)⁷H reaction. Second run.

PHYSICAL REVIEW C 103, 044313 (2021)

Resonant states in ⁷H: Experimental studies of the ²H(⁸He, ³He) reaction

I. A. Muzalevskii[®],^{1,2,*} A. A. Bezbakh,^{1,2} E. Yu. Nikolskii,^{3,1} V. Chudoba,^{1,2} S. A. Krupko,¹ S. G. Belogurov,^{1,4} D. Biare,¹ A. S. Fomichev,^{1,5} E. M. Gazeeva,¹ A. V. Gorshkov,¹ L. V. Grigorenko,^{1,4,3} G. Kaminski,^{1,6} O. Kiselev,⁷ D. A. Kostyleva,^{7,8} M. Yu. Kozlov,⁹ B. Mauyey,^{1,10} I. Mukha,⁷ Yu. L. Parfenova,¹ W. Piatek,^{1,6} A. M. Quynh,^{1,11} V. N. Schetinin,⁹ A. Serikov,¹ S. I. Sidorchuk,¹ P. G. Sharov,^{1,2} N. B. Shulgina,^{3,12} R. S. Slepnev,¹ S. V. Stepantsov,¹ A. Swiercz,^{1,13} P. Szymkiewicz,^{1,13} G. M. Ter-Akopian,^{1,5} R. Wolski,^{1,14} B. Zalewski,^{1,6} and M. V. Zhukov¹⁵

⁸He beam 26 AMeV, 10⁵ pps 2019, 3 weeks

"Comming out party" for the neutron wall

⁷H data and spectrum

Channel identification

- Reliable identification of both ³He recoils and ³H fragments
- Special treatment of 20 micron silicon detectors for ³He telescope
- Careful event by event analysis of all candidates for ⁷H low-lying states

Empty target measurements

- Empty target events are located mainly outside the energy ranges of interest
- Only the hypothetical 11 MeV state can be contaminated by the empty targer background
- Reaction cm angle cutoff θ_{cm} < 18 dgr is expected to provide the ⁷H spectrum free from empty target background

Energy resolution and calibration ²H(¹⁰Be,³He)⁹Li reaction

- Complete MC simulations of setup
- Higher energy resolution than in the previous experiments (less than 1 MeV) is obtained

Independent MM calibration with ¹⁰Be beam
 MC simulations validated by the comparison
 ⁹Li data

E_T	$2.2 { m MeV}$		$5.5 { m MeV}$		$11 { m MeV}$		$14 { m MeV}$	
10°	0.95	2.2	0.73	2.3	0.48	2.5	0.38	2.8
20°	1.10	1.6	0.93	1.8	0.64	2.2	0.52	2.6
30°	1.13	1.2	0.99	1.3	0.77	1.8	0.69	2.0

Energy and angular resolutions

Additional evidence: ⁷H g.s. CMS angular distributions

- First experiment second diffraction maximum is populated for the ⁷H g.s.
- Second experiement was planned to populate the forward peak for the ⁷H g.s.
- Indeed, the «hole» in the data from 9 to 14 degrees observed in the second data

Theoretical FRESCO calculations

 Standard calculation – diffraction minimum is sitting on top of the maximum in the data.

To fit the position of diffraction
minimum the non-standard calculation
conditions should be used:
(i) extreme peripheral transfer
(ii) large absorption

Interpretation: observations consistent with expected very "fragile" character of the ⁷H g.s. and very small g.s. population cross section.
Additional evidence: ⁷H g.s. energy and angular distributions of tritons

 Theoretically these types of correlations are related

- Experimentally they are obtained in largely independent way
- Simple idea 5-body phase volume

$$\frac{dW}{d\varepsilon} = \sqrt{\varepsilon (1-\varepsilon)^7}, \quad \varepsilon = \frac{7E_{3H}}{4E_T}$$

TABLE II. Mean values of the ε and θ_{3H-7H} variables for the distributions of Figs. 13 and 14.

Value	flat	1.5	2.0	2.5	3.0	Exp.
ε	0.464	0.337	0.295	0.272	0.252	0.306
$\theta_{\rm 3H\text{-}7H}$	3.38	2.19	2.49	2.78	3.02	2.69

Both patterns are consistent with correlated emission of tritons expected for true five-body decay

Both patterns are inconsistent with uncorrelated emission of tritons or background character of events

⁶H data and spectrum

Large statistics, but large backgrounds

Background-subtracted, efficiency corrected

Reasonable confirmation from the t-α-n coincidence data

⁷H and ⁶H studies summary

Analogies in the excitation

⁷H and ⁶H discussion

Information about ⁶H ground state seem to be reliable 6 H ground state at 2.6-2.7 MeV is excluded with cross section limit 5 µb/sr compared to 100-200 µb/sr for 4.5-6.5 MeV prescription.

Cross section for ⁶H ground state at 4.5-6.5 MeV is large and consistent with assumption about direct transfer of deuteron.

Information about ⁷H ground state has very limited statistics

Could the 5.5 MeV peak be ⁷H ground state? No

 ^7H ground state at 2.2 MeV has extremely small (for one-nucleon direct transfer) cross section 24 $\mu\text{b/sr}$

Observation of the 5.5 MeV ⁷H state is quite reliable, but the cross section is still extremely small (for one-nucleon transfer) 30 μb/sr

Equal populations for 2.2 and 5.5 MeV states is likely to indicate deep structural difference between ⁸He (expected [(p_{3/2})⁴]₀ and ⁷H

There is deep inconsistency in populations of ⁶H and ⁷H

⁶H seem to be something expected, but ⁷H does not seem to be as trivial as «proton hole in ⁸He»

Interesting physics, not yet understood

⁷He studied in the ²H(⁸He, p)⁷He reaction

Prospective developments at ACCULINNA-2 for 2023-2025 campaign

> In middle 2021 U-400M is stopped for reparation and upgrade. Operation restarts in the beginning 2023

2021-2022: программа развития инструментов

Velocity filter "RF-kicker"

Frequency range (MHz)	14.5 – 20.5	
Peak voltage (KV)/ Gap (mm)	120/ 70	
Length(mm)/Width (mm) of electrodes	700/120	
Cylinder Internal diameter (mm)	1400	
Stem diameter (mm)	120	
Length of coaxial line from beam axis (mm)	1830	
Current at junction (A)	990	
Current in short-cut (A)	1200	
RF power (Watts)	15 000	
Reactance Q	>10000	
Df (RF tuning) (MHz)	0.66	

Zero-angle spectrometer "sweeper-magnet"

Hodoscope construction of large area silicons and GADAST modules

Neutron wall development

total 253 plastics 0

Existing stilbene neutron wall extension to 64 modules

Plans for «simplified» hexagonal plastic neutron wall with larger efficiency

Cryogenic tritium target

- 10^{14} Bq (1000 cm³) T₂ >10²¹ n/cm²
- 30 K for gas, 10 K for solid state
- Zero emission of T₂
- Ø25 mm, 0.8-4 mm cells
- SS foil windows 8 mkm each with double volume

If certification of facility goes as planned the next experimental campaign at ACCULINNA-2 is with tritium target

ACCULINNA-2 scientific program for 2023-2025 campaign

"User facility" aspect of ACCULINNA-2

Invitation to contribute this scientific program

Experimental prospects at ACC-2

Tritium «campaign»

¹⁰He studies with decisive precision in ⁸He(t,p) reaction

¹³Li studies in ¹¹Li(t,p) reaction

¹⁶Be studies in ¹⁴Be(t,p) reaction

Example: ⁶Be studied in the ⁶Li(p,n)⁶Be -> α +p+p reaction

Isovector Soft Dipole mode in ⁶Be

⁶Li \mathbf{k}_{Li} ⁶Be \mathbf{k}_2 $-\mathbf{k}_x$ p_2 \mathbf{X} \mathbf{k}_x Cryogenic *p* target ⁶Be \mathbf{k}_2 $-\mathbf{k}_x$ p_2 \mathbf{X} \mathbf{k}_x ⁶Be c.m. α $-\mathbf{k}_y$ ⁶Be c.m. 10 cmTelescopes ¹H(⁶Li, ⁶Be)n

A.S.Fomichev et al., PLB **708** (2012) 6.

- Large cross section above 2⁺ and no resonance
- AL=1 identification some kind of dipole response
- No particle stable g.s. can not be built on spatially extended WF
- Built on the spatially extended ⁶Li g.s.

Experimental prospects at ACC-2

2p radioactivity

2p radioactivity search in new isotope ²⁶S Search for 2p radioactive decay of the first excited state of ¹⁷Ne

Transitional dynamics studies for the 2p decay of ¹⁵Ne

Experimental prospects at ACC-2

Soft excitation modes and "isobaric symmetry" reactions with ³He target

⁶He IVSDM studies in ⁶Li(t,³He) reaction ⁶H IVSDM studies in ⁶He(t,³He) reaction

⁷B IVSDM studies in ⁷Be(³He,t) reaction ¹⁷Na IVSDM studies in ¹⁷Ne(³He,t) reaction Low-energy nuclear physics in Russia

Крупные научные/прикладные проекты в РФ

- Комплекс сверхпроводящих колец на встречных пучках тяжёлых ионов NICA («Комплекс NICA»)
- Международный центр нейтронных исследований на базе высокопоточного исследовательского реактора ПИК (МЦНИ ПИК)
- Токамак с сильным магнитным полем (Игнитор)
- Ускорительный комплекс со встречными электрон-позитронными пучками (Супер Чарм-Тау фабрика)
- Международный центр исследований экстремальных световых полей (ЦИЭС)
- Рентгеновский источник синхротронного излучения четвертого поколения (СКИФ)
- > Радиографический центр (Снежинск)
- Тяжелоионный ускорительно-накопительный комплекс для тестирования электроники (Саров)

САНКТ-ПЕТЕРБУРГСКИЙ ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР РОССИЙСКОЙ АКАДЕМИИ НАУК

«ДОРОЖНАЯ КАРТА» В ОБЛАСТИ ЯДЕРНОЙ ФИЗИКИ

Редактор Л.В. Григоренко

Москва 2021

Состояние дел в ядерной физике низких энергий

Авторский коллектив:

Лаборатория ядерных реакций им. Г.Н. Флёрова, Объединенный институт ядерных исследований: Л.В. Григоренко, А.С. Деникин, С.Н. Дмитриев, А.В. Карпов, С.А. Крупко, Ю.Ц. Оганесян, С.И. Сидорчук, А.С. Фомичев; Национальный исследовательский ядерный университет МИФИ: Л.В. Григоренко, С.М. Полозов, С.В. Попруженко; Национальный исследовательский центр «Курчатовский институт»: Л.В. Григоренко, А.Л. Барабанов; Лаборатория теоретической физики им. Н. Н. Боголюбова, Объединенный институт ядерных исследований: Н.В. Антоненко, Р.В. Джолос; Национальный исследовательский центр «Курчатовский институт» — Петербургский институт ядерной физики им. Б.П. Константинова: А.С. Воробьёв, В.Н. Пантелеев, А.П. Серебров; Санкт-Петербургский государственный университет: С.В. Григорьев, С.Ю. Торилов; Государственный университет «Дубна»: А.С. Деникин; Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына Московского государственного университета: Д.О. Ерёменко, Б.С. Ишханов, А.А. Кузнецов; Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики: Н.В. Завьялов, Р.И. Илькаев; Институт ядерных исследований Российской академии наук: Л.В. Кравчук; Национальный исследовательский центр «Курчатовский институт» — Институт теоретической и экспериментальной физики им. А.И. Алиханова: Т.В. Кулевой; GSI Helmholtz Centre for Heavy Ion Research, Дармштадт, Германия: И.Г. Муха; Федеральный исследовательский центр «Институт прикладной физики Российской академии наук»: В.А. Скалыга; Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук: С.Ю. Таскаев; Объединенный институт ядерных исследований: Б.Ю. Шарков; Лаборатория нейтронной физики им. И. М. Франка, Объединенный институт ядерных исследований: В.Н. Швенов.

Состояние дел в ядерной физике низких энергий

Печальное

Исчерпание к концу 80-х научной повестки со стабильными пучками

Исчерпание ресурса и устаревание советской научной инфраструктуры

Исчерпание советских кадровых

запасов

Светлые пятна на темном фоне

ИРИНА (ПИЯФ)

Для изотопов производимых методом ISOL – рекордные в мире интенсивности

> В стороне от задач ПИК, мало места для научных инструментов

Prospective thinking about possible future RIB facility in Russia

Фабрики радиоактивных изотопов "второго поколения" ~ 1985-2007 гг

Joke about construction business

Problem of heavy-ion acceleration for RIB physics

Prospective facility based on LINAC-100 + DFS

High-intensity universal superconducting CW heavy-ion accelerator LINAC-100 Room-temperature fragment separator DFS for high-intensity primary beams

ITEPh — T.Kulevoy

MEPhI — S.Polozov

???

Empty "ecological niche" in modern low-energy nuclear physics

DERICA — Dubna Electron Radioactive Ion Collider fAcility

Facility with world-unique scientific program

Underdeveloped field: storage ring physics with RIBs Empty field: studies of RIBs in electron-RIB collider

Публикации

Научная программа

Physics-Uspekhi 62 (7) 675-690 (2019)

©2019 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

INSTRUMENTS AND METHODS OF INVESTIGATION

PACS numbers: 21.10.Ft, 29.20.-c, 29.25.Rm

Scientific program of DERICA — prospective accelerator and storage ring facility for radioactive ion beam research

L V Grigorenko, B Yu Sharkov, A S Fomichev, A L Barabanov, W Barth, A A Bezbakh, S L Bogomolov, M S Golovkov, A V Gorshkov, S N Dmitriev, V K Eremin, S N Ershov, M V Zhukov, I V Kalagin, A V Karpov, T Katayama, O A Kiselev, A A Korsheninnikov, S A Krupko, T V Kulevoy, Yu A Litvinov, E V Lychagin, I P Maksimkin, I N Meshkov, I G Mukha, E Yu Nikolskii, Yu L Parfenova, V V Parkhomchuk, S M Polozov, M Pfutzner, S I Sidorchuk, H Simon, R S Slepnev, G M Ter-Akopian, G V Trubnikov, V Chudoba, C Scheidenberger, P G Sharov, P Yu Shatunov, Yu M Shatunov, V N Shvetsov, N B Shulgina, A A Yukhimchuk, S Yaramyshev

DOI: https://doi.org/10.3367/UFNe.2018.07.038387

Эскизный проект

ISSN 1063-7788, Physics of Atomic Nuclei, 2021, Vol. 84, No. 1, pp. 68–81. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Yadernaya Fizika, 2021, Vol. 84, No. 1, pp. 53–66.

ELEMENTARY PARTICLES AND FIELDS =

DERICA Project and Strategies of the Development of Low-Energy Nuclear Physics

L. V. Grigorenko^{1),2),3)*}, G. N. Kropachev^{4),1)}, T. V. Kulevoy⁴⁾,
I. N. Meshkov^{5),6),7)}, S. M. Polozov²⁾, A. S. Fomichev^{1),8)},
B. Yu. Sharkov^{9),2)}, P. Yu. Shatunov¹⁰⁾, and M. I. Yavor¹¹⁾

Received May 24, 2020; revised May 24, 2020; accepted May 24, 2020

JINR LONG-TERM Development strategic plan UP to 2030 and beyond

http://www.jinr.ru/wp-content/uploads/JINR_Docs/JINR_Strategy_2030.pdf

http://derica.jinr.ru/

FOR NUCLEAR RESEARCH

Dubna

Front end LINAC-100

Superconductivity at LINAC-100

superconductivity technology in Russia Production: V.G. Zelesski, FTI NAB, Minsk

Μ

aperture
Ring branch design

Design: P.Yu. Shatunov, I.A. Koop, BINP, Novosibirsk

Challenges of DERICA ring branch

- 3-4 rings of different types
- Three ion storage rings are to be equipped with electron cooling system
- Novel developments for electron spectrometer may make scientific objectives of the DERICA project easier to achieve

Conclusion

The ACCULINNA-2 facility provides the world-leading opportunities in its domain – direct reactions with light exotic nuclei at 20-50 AMeV

> The new results, possibly resolving the puzzle of the «superheavy» hydrogen isotopes ⁶H and ⁷H, were obtained during the first experimental campaign in 2018-2020

ACCULINNA-2 continues scientific operation in the beginning 2023, after U-400M upgrade. New «massive» instruments will become available in the ACCULINNA-2 experimental area including unique tritium cryogenic target complex

> Continues the design and prototype development for prospective radioactive ion beam facility based on the universal high-intensity superconducting CW accelerator LINAC-100

Backup

40-year-long quest for ⁷H

It could be quite amusing that such a "fundumental" nuclide was left unexplored for such a long period of time

- K. Seth, "Pionic probes for exotic nuclei," (1981). ⁷Li(π^-,π^+) NOTHING
- V. Evseev et al., Nuclear Physics A 352, 379 (1981). ⁷Li(π^-,π^+) NOTHING
- D. Aleksandrov et al., Yad. Fiz. 36, 1351 (1982). ²⁵²Cf ternary fission NOTHING
- Y. Gurov *et al.*, The EPJ A 32, 261 (2007); PPN 40, 558 (2009). ¹¹B(π⁻,p ³He) NOTHING

- M. S. Golovkov *et al.*, Phys. Lett. B 588, 163 (2004). d(⁸He,⁷H) $T_{1/2} > 1$ ns NOTHING

More recent data on ⁷H

- A. A. Korsheninnikov, PRL 90, 082501 (2003). p(⁸He,2p)⁷H
- Missing mass only \rightarrow 90% of background
- Many events with negative MM energy
- 1.9 MeV MM resolution

Declaraiton:

there is something at the threshold

- Mixed material active target
- Missing mass with ³H coincidences
- No channel identification: ⁵H, ⁶H, or ⁷H

Declaration:

More recent data on ⁷H

S. Fortier et al., AIP CP 912, 3 (2007)

²H(⁸He,³He)⁷H

- Missing mass only \rightarrow 70% of background
- Many events with negative MM energy
- Low energy cutoff ($E_T < 5$ MeV)

Declaration: in this experiment there

should be a peak at about $E_T = 2$ MeV in any case

E. Y. Nikolskii et al., Phys. Rev. C 81, 064606 (2010).

²H(⁸He,³He)⁷H

- Missing mass with 3H coincidences
- Some events with negative MM energy
- 1.7 MeV MM resolution

Declaration: there is something at E_T = 2 MeV, and maybe a resonant state at E_T = 11 MeV,

Available information on ⁶H

D. Aleksandrov *et al.*,
Yad. Fiz. 39 (1984) 513.

⁷Li(⁷Li, ⁸B) ⁶H $E_T = 2.7(4)$ MeV

A. Belozyorov *et al.*,Nuclear Physics A 460 (1986) 352.

 ${}^{9}Be({}^{11}B,{}^{14}O){}^{6}H = E_{T} = 2.6(5) \text{ MeV}$

Available information on ⁶H

3

2

- Y. Gurov *et al.*, The EPJ A 32, 261 (2007).

⁹Be(π⁻,p d)⁶H

Reaction channel			
$^{9}\mathrm{Be}(\pi^{-},\mathrm{pd})^{6}\mathrm{H}$		$^{11}\mathrm{B}(\pi^-,\mathrm{p}^4\mathrm{He})^6\mathrm{H}$	
E_r	Г	E_r	Г
6.6 ± 0.7	5.5 ± 2.0	7.3 ± 1.0	5.8 ± 2.0
10.7 ± 0.7	4 ± 2		_
15.3 ± 0.7	3 ± 2	14.5 ± 1.0	5.5 ± 2.0
21.3 ± 0.4	3.5 ± 1.0	22.0 ± 1.0	5.5 ± 2.0

⁵H

(a)