Track detectors based on

straw drift tubes

E.Kuznetsova

HEPD seminar 18.10.22

motivation

Large area tracker with a good spatial and/or momentum resolution

- + small material budged (minimal multiple scattering)
- + large area acceptance (unreachable for Si trackers)

sometimes

- + operation in vacuum (reliability + negligible leak rate)
- + operation in magnetic fields
- + ionization losses (dE/dx) allowing particle identification (thanks to proportional mode)
- limitations: rate capability low and moderate rates, depends on the tracker length

Straw tubes – operation principle

- thin wall drift tube of small (O(cm)) diameter
- proportional mode
- drift time of ~first (or ~second) closest to anode electrons represents quite well the distance between the track of the ionizing particle *R* and anode wire

The drift time t_{drift} is measured as the difference between time t_o when an ionizing particle crossed the straw and the time when the induced straw signal

exceeded a given threshold.

Technologies of the straws production

Winding

- Atlas TRT, LHCb OT, COMPASS, NA64,...
- Panda, Mu2e, ...

- NA62
- Comet, SHiP,

Dune, SPD...

Ultrasonic welding

Cross-section of a welded seam

SHIP – Search for Hidden Particles

RDM - random dimuon, HNL - Heavy Neutral Lepton, NEU - neutrolino, HP - Higgs Portal, DP - Dark Photon...

- PNPI+Polytech participates
 from the time of Technical
 Proposal (2015)
 - Main interest Straw Tracker
 - Straw production
 - Simulation and reconstruction
 - TB participation and data analysis
 - Digital electronics and HV

SHiP Spectrometer Straw Tracker (SST)

 $Z-not\ in\ scale-vertex\ in\ tens\ meters\ from\ the\ SST$

- Ultra light straw stations operating in vacuum: 4 YUVY stations = ~20k straws
- Acceptance 5x10m² (=>4x10m²)
- Straws of 20mm diameter, 30um diameter gold-plated tungsten wire
- Spacial resolution better than 120 um

SPD – Spin Physics Detector

PNPI participation – physics, software, tracker

SPD tracker

Deep Underground Neutrino Experiment (DUNE)

• Dune Straw Tube Tracker

Beam monitoring (with ECAL) and neutrino flux measurements

200k straws in total

Why we believe those trackers will work? NA62!

Why we believe those trackers will work? NA62!

Current NA62 straw spectrometer:

- Straw diameter: 9.8 mm
 - Material: 36 µm thick PET
 - Plating: 50 nm copper + 20 nm gold
 - Wire: 30 µm tungsten wire
- Gas: Ar+CO₂ (70:30)
 - 4 chambers, 7168 straws in vacuum
 - 30 straw hits per track
- Total material budget: 1.7% X_0
 - Dominated by the PET (70%)
- Single straw timing performance:
 - Maximum drift time: 150 ns
 - Leading time resolution: 3-4 ns
 - Trailing time resolution: 30 <u>ns</u>

New straw detector, main features:

- Smaller straw diameter: 4.8 mm
 - Maximum drift time reduced to 80 ns
 - Trailing time resolution improved to 6 ns
- Keeping the 4 chambers layout, 21000 straws
 - Number of hits per track increased to 40
- Thinner straw material: 19 or 12 µm thick
 PET
- Lower total material budget: 1.0 1.5% X_0
 - Depending on the PET thickness option
 - Still dominated by the straw wall (60 70%)

How to readout future large straw trackers?

- SHiP ~20k channels, time (~ns), optional Q (signal vs noise, signal (mu) vs BG (e))
- DUNE ~200k channels, time (~ns), Q (PID)
- SPD ~20k channels, time (~ns), Q(PID)

all - triggerless readouts

Possible solutions

New development

for example, SHiP SST/SBT common electronics

https://indico.cern.ch/event/884132/contributions/3732240/attachments/1980538/3297968/20200203_Juelich_V1.pdf - D.Arutinov, SHiP electronics meeting 2020

• Existing solutions?

VMM3/3a? http://cds.cern.ch/record/2693463/files/ATL-MUON-PROC-2019-009.pdf?version=1 - G.lakovidis for ATLAS NSW - potentially matching performance

- reasonable cost: ~1\$/channel

TIGER (BESIII GEM readout) - TIGER: A front-end ASIC for timing and energy measurements with radiation detectors A.Rivetti et al.

Main difference: tiger has two different shapers for Time and Energy measurements

Studies of VMM3/3a operating in T @ T mode

VMM3=>VMM3a : bug fix, high rate adaptation, flexibility for ATLAS NSW (MM and sTGC readout)

Widely operated in time-at-peak mode, we started to have look at time-at-threshold

- Lab tests (VMM3a hybrids) achievable time resolution ~1 ns (hardware)
- Garfield + LTSpice simulation
- Test Beams within RD51 Oct 21 with VMM3a (RD51 hybrid), Apr-June + July 22 with VMM3(mu2e board)

Measurements: VMM3a in T @ T

First observation during the October TB: "latching" channels

- Confirmed by lab tests. A possible explanation is an algorithmic problem in the cases when the time between the threshold crossing and signal peak is too short (<1 clock cycle). A consequence of high rate performance optimization for ATL-NSW??
- Confirmation: A comparison of operation stability with 40MHz and 80MHz clock frequency:

15

Measurements: VMM3 in T @ T

No such effect was found with the previous revision, VMM3:

 the logic of the T@T mode slightly differs between VMM3 and VMM3a

Summary of the TestBeam activities

Setup 1

CERN, H4 (oct21) 4MM +straw station VMM3a readout Setup 2

CERN, H4 (spring+summer 22) 4MM +straw station VMM3 readout (m2e board) SRS +APV25 readout

Data analysis in progress...

Setup 3

CERN, H4 + H8 + H4 (summer + oct22) 4MM +straw station TIGER readout Data taking approaching... tomorrow

Summary

Starting from 2015 PNPI team actively participates in development of future trackers

- Contribution to SHiP SST (testbeam datataking and analysis, sim/reco software, conceptual design of digital electronics and development of the straw production station in PNPI)
- From 2020 active participation in the SPD tracker development starting from the contribution to work on the reconstruction/simulation software and moving towards

- General R&D on searches for optimal solution for optimal straw readout options
- Common work with JINR team
- Collaboration with RD 51, DUNE, NA62 and NA64
- Work ongoing...

backup

VMM3/3a in time-at-threshold mode

Multifunctional Application Specific Integrated Circuit (ASIC) VMM3

- widely used as readout of micro-pattern gas detectors
- was a base for the production VMM3a version for the ATLAS New Small Wheel readout

