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• Дифракция адронов при высоких энергиях 

•  Дифракционное протон-ядерное рассеяние на БАК: проблема с 
описанием данных CMS 

• Вклад сильного взаимодействия и ультра-периферический вклад в 
протон-ядерную дифракционную диссоциацию: общее рассмотрение  

• Обобщение на распределение по щели в быстроте во впередовой 
области ΔηF (forward rapidity gap) в кинематике CMS. 
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Дифракция адронов при высоких энергиях 
• В рассеянии адронов (pp, pA, AA) при высоких энергиях существует 
важный класс событий, характеризующимися отсутствием адронной 
активности в широкой области быстрот = Large Rapidity Gap (LRG). 
Быстрота η=1/2 ln[(E+pz)/(E-pz)]. 

• Такие процессы называются дифракционными по аналогии с 
дифракцией света на мишени, т.к. имеют характерную зависимость от 
переданного импульса (t) с минимумами и максимами. 

• Примеры дифракционных процессов: (b) упругое рассеяние, (c) 
однократная диссоциация, (d) двукратная диссоциация. 

Khoze, Ryskin, Tasevsky, High Energy Soft QCD and Diffraction,  
PDG, Prog. Theor. Exp. Phys. 2020 (2021) 083C01

2 20. High Energy Soft QCD and Di�raction

soft and di�ractive processes. Firstly, soft interactions unavoidably give an underlying component
to rare ‘hard’ events, from which we hope to extract signals for New Physics. Secondly, we should
be able to estimate the probability that rapidity gaps, which occur in ‘hard’ di�ractive events,
survive rescattering e�ects, that is, survive the population of the gaps by the secondary particles
from the underlying event. Thirdly, an understanding of di�ractive processes is very important for
evaluation of pile-up backgrounds in high-luminosity pp collisions, which have a direct impact on
various experimental measurements. Pile-up corresponds to soft independent interactions in the
same bunch crossing whose number rises with increasing instantaneous luminosity. And, finally,
studies of di�ractive processes should help in the understanding of the structure of high-energy
cosmic ray cascades, which requires a very detailed knowledge of the spectra of particles carrying
a large fraction x of the incoming momentum in proton-air and nucleus-air interactions, see for
instance [18].

Experimentally, di�ractive processes are selected using two distinct features:

1. large regions (typically at least ∆÷ > 4) in the detector are devoid of hadronic activity (LRG)
and/or

2. one or both incoming particles stay intact after collision and are registered by the dedicated
forward detectors placed a few hundred meters from the interaction point. The momentum
loss of the initial particle, › = 1 ≠ x, is typically smaller than 0.15.

Thus, in the case of proton-proton collisions, di�ractive events correspond to elastic pp æ pp

scattering and to pp æ p+X (Single Dissociation, SD) and pp æ X +Y (Double Dissociation, DD)
processes, where the + sign denotes a large rapidity gap. Note that strictly speaking in high energy
physics it is impossible to define (and select) rigorously purely di�ractive events. We can always
have some admixture of events of di�erent origin. As a rule we call ’di�ractive’ the events with
su�ciently large gap (with say ∆y > 4, see above) and the vacuum quantum numbers transferred
across the gap. Typically at the LHC the integrated cross sections of di�ractive dissociation, ‡SD,
‡DD, are of the order of 5–10 mb depending on the gap size. Schematic diagrams of all discussed
processes are shown in Fig. 20.1.

20.2 Regge pole approach
In pre-QCD times, in order to describe the behaviour of scattering amplitudes at high en-

ergy,
Ô

s, and small momentum-transfer squared, ≠t, Regge theory was developed and successfully
applied in a wide range of energies. The Regge approach [5–7] is based on the singularities of
amplitudes in the complex angular momentum, j, plane.
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Figure 20.1: Schematic diagrams of soft pp processes. (a) non-di�ractive processes, (b) elastic
scattering, (c) single dissociation and (d) double dissociation. The double line corresponds to the
Pomeron exchange.

For instance, the measured fi
≠

p æ fi
0
n amplitude behaves as

Tfip(s, t) Ã s
–fl(t)

, (20.1)

1st December, 2021
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Зачем изучать дифракцию?  
• Практический аспект: дифракционные события составляют 25-30% 
полного неупругого pp сечения при энергиях БАК  → необходимо для 
хорошего описания дополнительных неупругих pp столкновений (pile-up) 
и мониторинга светимости.  

• Теоретический аспект: дифракция является богатой тестовой 
площадкой динамики мягких (теория Грибова-Редже, модель Гуда-
Волкера) и жестких (природа Померона в КХД, насыщение глюооной 
плотности при малых х, кварк-глюооная структура протонов и ядер в 
КХД) взаимодействий. 

• Феноменологический аспект: проверка Монте-Карло генераторов, 
использующие эти модели → ядра играют роль фильтра, 
представляющим доп. возможность дифференцировать между разл. 
механизмами дифракции по сравнению с протоном. 

• Синергетический аспект: дифракция на ядрах играет роль в физике 
космических лучей (моделирование атмосферных ливней).

на 
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Дифракционное протон-ядерное рассеяние 
на БАК: проблема с описанием данных CMS   
• Первое измерение дифракции в протон-ядерном (pPb) рассеянии на 
БАК при 8.16 ТэВ, CMS Coll., CMS-PAS-HIN-18-019. 

• Результаты в виде распределения по щели в быстроте во впередовой 
области ΔηF. CMS определяет ее как расстояние от края области, 
перекрываемой центральным детектором |η|<3, до первого непустого 
бина в адронном форвардном калориметре (HF). 

• В зависимости от того, какой калориметр срабатывает, различают 2 
топологии: Померон-ядерная (слева) и Померон-протонная (справа).    

на 

4. Forward rapidity gap distributions 3

acceptance corrections and in studies of systematic effects. In addition a set of events triggered
on non-colliding bunches is used to study the noise in the detector.

The integrated luminosity of the minimum bias datasets is 3.9 and 2.5 µb�1 for Pbp and pPb
respectively with a total uncertainty of 3.5% [29]. The offline selection requires that at least one
tower of either HF has an energy of at least 10 GeV. Edge towers of the HF, 2.85 < |h| < 3.14,
are shadowed by the Endcap Hadronic calorimeter and thus are not considered in the selection,
as well as excessively noisy towers. Events with multiple primary vertices [30] were rejected to
minimize contribution from simultaneous inelastic collisions.

Figure 1 shows schematic topologies of single diffractive pomeron-lead (IPPb) and pomeron-
proton (IPp) processes for pPb collisions. The HF calorimeters at the side of lead or proton
dissociation are marked with the corresponding color, and are referred to as HF+ or HF-, de-
pending on the pseudorapidity sign. Single diffractive events are characterized by a large for-
ward rapidity gap (FRG) and an intact proton or ion. Since for these data it was not possible
to measure the intact protons or ions, the analysis is based upon the detection of large FRGs.
Double diffractive dissociation processes, when the proton or ion emitting a pomeron breaks
up, result in two sprays of particles separated by a rapidity gap. If the decay products from the
struck proton or ion escape the detector it is not possible to distinguish such events from single
diffractive ones.

The high Pb nuclear charge, ZPb = 82, enhances the flux of coherent quasi-real photons with
respect to the proton case by a factor of Z

2
Pb. This leads to a significant contribution of electro-

magnetic gp processes to the sample of events with a large gap on the lead side [31–35].
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Figure 1: Topologies of pPb events with large rapidity gaps for IPPb (left) and IPp or gp (right).
The blue and red cones indicate the products of diffractive dissociation for the lead ion and
proton respectively. The regions free of final state particles are marked with green arrows. It is
possible for gPb interactions to mimic the topology on the left but these are much suppressed
compared to the gp case.

4 Forward rapidity gap distributions
The central detector acceptance, |h| < 3, was divided into 12 bins each 0.5 units wide. The
following criteria were used to define empty bins:

• For |h| < 2.5, i.e. within the acceptance of the tracker, a given h bin was considered
to be empty if no high purity track [30] with pT > 200 MeV/c was found and the total
energy of all PF candidates was less than 6 GeV.

• For 2.5 < |h| < 3 a bin was considered to be empty if the total energy of all hadronic
PF candidates was less than 13.4 GeV. Due to a rather long energy tail of fake pho-
tons in this region, only neutral hadron PF candidates were considered to select a
rapidity gap.

The particle flow requirements ensure the rejection of h bins populated with neutral particles
only. The thresholds were set to be low enough to efficiently reject such events but still be above
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Дифракционное протон-ядерное рассеяние 
на БАК: проблема с описанием данных CMS   
• Монте-Карло генераторы (EPOS-LHC, HIJING, QGSJET II) недооценивают 
данные в 2 раза в PPb топологии и в 5 раз в Pp топологии → расхождение 
может быть объяснено ультра-периферическим вкладом, имитирующим 
дифракционный → мы это отметили еще в 2006 г., Guzey, Strikman, PLB 633 (2006) 245; PLB 
663 (2008) 456

на 

8

The diffraction enhanced DhF distributions were obtained as a weighted mean of the pPb and
Pbp spectra unfolded with EPOS-LHC, with weights defined by the statistical uncertainties of
the two spectra. The spectra are shown in Fig 4 together with hadron level predictions from
the EPOS-LHC, QGSJET II and HIJING generators. The results are presented in the laboratory
frame of reference. The nucleon-nucleon center-of-mass system is shifted with respect to the
laboratory frame by ylab = ±0.465 depending on the lead beam direction. All the generators
are below the data for both the IPPb and IPp+gp cases. For both topologies EPOS-LHC is closer
to the data than either QGSJET II or HIJING. For the IPp+gp the data are factor of at least 5 above
the generators, suggesting a strong contribution from gp events. EPOS-LHC and QGSJET II pre-
dictions on contributions from non-diffractive and different kinds of diffractive processes to
the diffraction enhanced DhF spectra are provided in Appendix A. Additional studies on con-
tribution from events without lead nuclear break up to the diffraction enhanced ds

dDhF spectrum
obtained for the IPp+gp event topology are described in Appendix A as well.
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Figure 4: Unfolded diffraction enhanced ds
dDhF spectra compared to hadron level predictions of

the EPOS-LHC, HIJING and QGSJET II generators. The data are corrected for the contribution
from events with undetectable energy in the HF calorimeter adjacent to the rapidity gap. The
corrections are obtained using the EPOS-LHC MC samples. For the pPb data sample, in the IPPb
case (left) the rapidity gap, DhF, is measured from h = 3 and no particles are present within
3 < h < 5.19, while for the IPp+gp case (right) the rapidity gap is measured from h = �3 and
no particles are present within �5.19 < h < �3. The statistical and systematic uncertainties
are added in quadrature. The gray band shows the resulting uncertainty excluding the error
introduced with the correction for the undetectable energy in the HF calorimeter, while the
yellow band accounts for all uncertainty sources. The bottom panels show the ratio of the three
generators to data.

• В случае протонной мишени описание распределения по ΔηF достаточно 
хорошее, Aad et al. [ATLAS], EPJC 72 (2012) 1926; Khachatryan et al. [CMS], PRD 92, no.1 (2015) 012003
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Вклад сильных взаимодействий в протон-
ядерную дифракционную диссоциацию   

• Явление дифракционной диссоциации (ДД) в протон-ядерном рассеянии 
при высоких энергиях p+A → X+A является классическим примером 
составной природы адронов. 

• Комбинируя метод Грибова-Глаубера для адрон-ядерного рассеяния с 
моделью Гуда-Волкера для собственных состояний матрицы рассеяния → 
сечение когерентной ДД на ядрах, Good, Walker, PR 120 (1960) 1857; Frankfurt, Miller, Strikman, 
PRL 71 (1993) 2859; Blattel, Baym, Frankfurt, Heiselberg, Strikman, PRD 47 (1993) 2761 

на 
• 𝚪A(b) = амплитуда рассеяния на ядре в представлении прицельного 
параметра b → учитывает сильный эффект ядерных экранировок (упругих 
и неупругих)
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In this letter, we consider strong and electromagnetic (ultraperipheral) mechanisms in proton-
nucleus coherent diffraction at the LHC. We explicitly demonstrate the dominance of the latter and
explain the CMS data on the forward rapidity gap distribution in pPb collisions at

√

sNN = 8.16
TeV. In particular, we provide simple estimates, which give a good, semi-quantitative description of
both magnitude and shape of the ∆ηF distribution in the Pomeron-proton topology. We also make
predictions for the proton-oxygen run.
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Introduction and motivation . Diffraction in
hadron scattering at high energies remains an active
field of research. It is deeply connected to the na-
ture of colorless exchanges with vacuum quantum num-
bers (Pomeron) in strong interactions and, more gener-
ally, small-x phenomena in Quantum Chromodynamics
(QCD), important for tuning event generators needed
for interpretation of results of ultrarelativistic heavy-
ion scattering, and also relevant for cosmic ray physics.
In experiment diffractive events are characterized by
large gaps in rapidity distributions of produced particles,
which are defined as regions with no hadronic activity.
To enhance sensitivity to such events and, in particular,
to the so-called single diffractive dissociation, one can
select events with the rapidity gaps in the most forward
region of a detector; in proton-proton (pp) scattering such
measurements have been performed at the Large Hadron
Collider (LHC) at

√
sNN = 7 TeV [1, 2].

The CMS collaboration at the LHC for the first time
measured the forward rapidity gap distribution in proton-
Pb (pPb) collisions at

√
sNN = 8.16 TeV [3]. It was found

that for the Pomeron-proton topology, the EPOS-LHC,
QGSJET II, and HIJUNG generators are at least a factor
of five below the data. As a result, it was suggested
that this discrepancy can be explained by a significant
contribution of ultraperipheral photoproduction events
mimicking the signature of diffractive processes.
Actually, this observation was already made in Ref. [4]

in 2006, which showed that in coherent proton-nucleus
(pA) diffraction, the electromagnetic (ultraperipheral)
contribution dominates the cross section for heavy nuclei.
The purpose of this letter is to generalize the results of [4]
for the CMS experimental conditions and, in particular,
to make predictions for the distribution in the forward
rapidity gap ∆ηF . Our predictions for the ∆ηF distribu-
tion in the studied case of the Pomeron-proton topology
agree both in magnitude and the shape with that mea-
sured by the CMS collaboration and, thus, confirm and
quantify the essential role of ultraperipheral photopro-
duction in explanation of the CMS data.
We also make predictions for the case of proton-oxygen

(pO) scattering.
Strong and electromagnetic mechanisms in pA

coherent diffraction . The phenomenon of diffractive
dissociation of protons in proton-nucleus scattering at
high energies is a classic example of composite struc-
ture of hadronic projectiles, which can be conveniently
described within the framework of cross section fluctu-
ations [5–8]. In this approach, the cross section of pA
coherent diffraction dissociation, p+A → X +A, can be
written in the following form

σdiff
pA (s) =

∫

d2#b

[

∫

dσPp(σ)|ΓA(#b)|2 −
∣

∣

∣

∣

∫

dσPp(σ)ΓA(#b)

∣

∣

∣

∣

2
]

,(1)

where s is the total proton-nucleus energy squared per
nucleon. Here ΓA(#b) is nuclear scattering amplitude in
representation of the impact parameter #b, which in the
limit of high energies and large A (heavy nucleus) is usu-
ally expressed in the eikonal form

ΓA(#b) = 1− e−
σ

2
TA(!b) , (2)

where TA(#b) =
∫

dzρA(#r) with ρA(#r) being the nuclear
density [9] normalized to the number of nucleons A. The
ΓA(#b) amplitude sums multiple interactions with target
nucleons and captures the effect of nuclear shadowing
leading to a dramatic suppression of the proton-nucleus
cross section.
The distribution Pp(σ) describes cross section fluctu-

ations of the proton and gives the probability for the
proton to fluctuate into a hadronic configuration inter-
acting with target nucleons with the cross section σ. In
general, Pp(σ) should be modeled, see, e.g. [7, 8]. How-
ever, in the case of diffraction dissociation, the detailed
information on the shape of Pp(σ) is not needed since
one can use the general property that Pp(σ) is peaked
around σtot

pp (s) = 〈σ〉 ≡
∫

dσPp(σ)σ. Thus, expanding
Eq. (1) around 〈σ〉, one obtains [6]

σdiff
pA (s) =

ωσ(s)〈σ〉2

4

∫

d2#b (TA(b))
2 e−〈σ〉TA(b) , (3)

• TA(b) = ядерная оптическая плотность
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field of research. It is deeply connected to the na-
ture of colorless exchanges with vacuum quantum num-
bers (Pomeron) in strong interactions and, more gener-
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for interpretation of results of ultrarelativistic heavy-
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sNN = 7 TeV [1, 2].

The CMS collaboration at the LHC for the first time
measured the forward rapidity gap distribution in proton-
Pb (pPb) collisions at

√
sNN = 8.16 TeV [3]. It was found

that for the Pomeron-proton topology, the EPOS-LHC,
QGSJET II, and HIJUNG generators are at least a factor
of five below the data. As a result, it was suggested
that this discrepancy can be explained by a significant
contribution of ultraperipheral photoproduction events
mimicking the signature of diffractive processes.
Actually, this observation was already made in Ref. [4]

in 2006, which showed that in coherent proton-nucleus
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for the CMS experimental conditions and, in particular,
to make predictions for the distribution in the forward
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coherent diffraction . The phenomenon of diffractive
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high energies is a classic example of composite struc-
ture of hadronic projectiles, which can be conveniently
described within the framework of cross section fluctu-
ations [5–8]. In this approach, the cross section of pA
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where s is the total proton-nucleus energy squared per
nucleon. Here ΓA(#b) is nuclear scattering amplitude in
representation of the impact parameter #b, which in the
limit of high energies and large A (heavy nucleus) is usu-
ally expressed in the eikonal form

ΓA(#b) = 1− e−
σ

2
TA(!b) , (2)

where TA(#b) =
∫

dzρA(#r) with ρA(#r) being the nuclear
density [9] normalized to the number of nucleons A. The
ΓA(#b) amplitude sums multiple interactions with target
nucleons and captures the effect of nuclear shadowing
leading to a dramatic suppression of the proton-nucleus
cross section.
The distribution Pp(σ) describes cross section fluctu-

ations of the proton and gives the probability for the
proton to fluctuate into a hadronic configuration inter-
acting with target nucleons with the cross section σ. In
general, Pp(σ) should be modeled, see, e.g. [7, 8]. How-
ever, in the case of diffraction dissociation, the detailed
information on the shape of Pp(σ) is not needed since
one can use the general property that Pp(σ) is peaked
around σtot

pp (s) = 〈σ〉 ≡
∫

dσPp(σ)σ. Thus, expanding
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Introduction and motivation . Diffraction in
hadron scattering at high energies remains an active
field of research. It is deeply connected to the na-
ture of colorless exchanges with vacuum quantum num-
bers (Pomeron) in strong interactions and, more gener-
ally, small-x phenomena in Quantum Chromodynamics
(QCD), important for tuning event generators needed
for interpretation of results of ultrarelativistic heavy-
ion scattering, and also relevant for cosmic ray physics.
In experiment diffractive events are characterized by
large gaps in rapidity distributions of produced particles,
which are defined as regions with no hadronic activity.
To enhance sensitivity to such events and, in particular,
to the so-called single diffractive dissociation, one can
select events with the rapidity gaps in the most forward
region of a detector; in proton-proton (pp) scattering such
measurements have been performed at the Large Hadron
Collider (LHC) at

√
sNN = 7 TeV [1, 2].

The CMS collaboration at the LHC for the first time
measured the forward rapidity gap distribution in proton-
Pb (pPb) collisions at

√
sNN = 8.16 TeV [3]. It was found

that for the Pomeron-proton topology, the EPOS-LHC,
QGSJET II, and HIJUNG generators are at least a factor
of five below the data. As a result, it was suggested
that this discrepancy can be explained by a significant
contribution of ultraperipheral photoproduction events
mimicking the signature of diffractive processes.
Actually, this observation was already made in Ref. [4]

in 2006, which showed that in coherent proton-nucleus
(pA) diffraction, the electromagnetic (ultraperipheral)
contribution dominates the cross section for heavy nuclei.
The purpose of this letter is to generalize the results of [4]
for the CMS experimental conditions and, in particular,
to make predictions for the distribution in the forward
rapidity gap ∆ηF . Our predictions for the ∆ηF distribu-
tion in the studied case of the Pomeron-proton topology
agree both in magnitude and the shape with that mea-
sured by the CMS collaboration and, thus, confirm and
quantify the essential role of ultraperipheral photopro-
duction in explanation of the CMS data.
We also make predictions for the case of proton-oxygen

(pO) scattering.
Strong and electromagnetic mechanisms in pA

coherent diffraction . The phenomenon of diffractive
dissociation of protons in proton-nucleus scattering at
high energies is a classic example of composite struc-
ture of hadronic projectiles, which can be conveniently
described within the framework of cross section fluctu-
ations [5–8]. In this approach, the cross section of pA
coherent diffraction dissociation, p+A → X +A, can be
written in the following form

σdiff
pA (s) =

∫

d2#b

[

∫

dσPp(σ)|ΓA(#b)|2 −
∣

∣

∣

∣

∫

dσPp(σ)ΓA(#b)

∣

∣

∣

∣

2
]

,(1)

where s is the total proton-nucleus energy squared per
nucleon. Here ΓA(#b) is nuclear scattering amplitude in
representation of the impact parameter #b, which in the
limit of high energies and large A (heavy nucleus) is usu-
ally expressed in the eikonal form

ΓA(#b) = 1− e−
σ

2
TA(!b) , (2)

where TA(#b) =
∫

dzρA(#r) with ρA(#r) being the nuclear
density [9] normalized to the number of nucleons A. The
ΓA(#b) amplitude sums multiple interactions with target
nucleons and captures the effect of nuclear shadowing
leading to a dramatic suppression of the proton-nucleus
cross section.
The distribution Pp(σ) describes cross section fluctu-

ations of the proton and gives the probability for the
proton to fluctuate into a hadronic configuration inter-
acting with target nucleons with the cross section σ. In
general, Pp(σ) should be modeled, see, e.g. [7, 8]. How-
ever, in the case of diffraction dissociation, the detailed
information on the shape of Pp(σ) is not needed since
one can use the general property that Pp(σ) is peaked
around σtot

pp (s) = 〈σ〉 ≡
∫

dσPp(σ)σ. Thus, expanding
Eq. (1) around 〈σ〉, one obtains [6]

σdiff
pA (s) =

ωσ(s)〈σ〉2

4

∫

d2#b (TA(b))
2 e−〈σ〉TA(b) , (3)
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Introduction and motivation . Diffraction in
hadron scattering at high energies remains an active
field of research. It is deeply connected to the na-
ture of colorless exchanges with vacuum quantum num-
bers (Pomeron) in strong interactions and, more gener-
ally, small-x phenomena in Quantum Chromodynamics
(QCD), important for tuning event generators needed
for interpretation of results of ultrarelativistic heavy-
ion scattering, and also relevant for cosmic ray physics.
In experiment diffractive events are characterized by
large gaps in rapidity distributions of produced particles,
which are defined as regions with no hadronic activity.
To enhance sensitivity to such events and, in particular,
to the so-called single diffractive dissociation, one can
select events with the rapidity gaps in the most forward
region of a detector; in proton-proton (pp) scattering such
measurements have been performed at the Large Hadron
Collider (LHC) at

√
sNN = 7 TeV [1, 2].

The CMS collaboration at the LHC for the first time
measured the forward rapidity gap distribution in proton-
Pb (pPb) collisions at

√
sNN = 8.16 TeV [3]. It was found

that for the Pomeron-proton topology, the EPOS-LHC,
QGSJET II, and HIJUNG generators are at least a factor
of five below the data. As a result, it was suggested
that this discrepancy can be explained by a significant
contribution of ultraperipheral photoproduction events
mimicking the signature of diffractive processes.
Actually, this observation was already made in Ref. [4]

in 2006, which showed that in coherent proton-nucleus
(pA) diffraction, the electromagnetic (ultraperipheral)
contribution dominates the cross section for heavy nuclei.
The purpose of this letter is to generalize the results of [4]
for the CMS experimental conditions and, in particular,
to make predictions for the distribution in the forward
rapidity gap ∆ηF . Our predictions for the ∆ηF distribu-
tion in the studied case of the Pomeron-proton topology
agree both in magnitude and the shape with that mea-
sured by the CMS collaboration and, thus, confirm and
quantify the essential role of ultraperipheral photopro-
duction in explanation of the CMS data.
We also make predictions for the case of proton-oxygen

(pO) scattering.
Strong and electromagnetic mechanisms in pA

coherent diffraction . The phenomenon of diffractive
dissociation of protons in proton-nucleus scattering at
high energies is a classic example of composite struc-
ture of hadronic projectiles, which can be conveniently
described within the framework of cross section fluctu-
ations [5–8]. In this approach, the cross section of pA
coherent diffraction dissociation, p+A → X +A, can be
written in the following form

σdiff
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where s is the total proton-nucleus energy squared per
nucleon. Here ΓA(#b) is nuclear scattering amplitude in
representation of the impact parameter #b, which in the
limit of high energies and large A (heavy nucleus) is usu-
ally expressed in the eikonal form

ΓA(#b) = 1− e−
σ

2
TA(!b) , (2)

where TA(#b) =
∫

dzρA(#r) with ρA(#r) being the nuclear
density [9] normalized to the number of nucleons A. The
ΓA(#b) amplitude sums multiple interactions with target
nucleons and captures the effect of nuclear shadowing
leading to a dramatic suppression of the proton-nucleus
cross section.
The distribution Pp(σ) describes cross section fluctu-

ations of the proton and gives the probability for the
proton to fluctuate into a hadronic configuration inter-
acting with target nucleons with the cross section σ. In
general, Pp(σ) should be modeled, see, e.g. [7, 8]. How-
ever, in the case of diffraction dissociation, the detailed
information on the shape of Pp(σ) is not needed since
one can use the general property that Pp(σ) is peaked
around σtot

pp (s) = 〈σ〉 ≡
∫

dσPp(σ)σ. Thus, expanding
Eq. (1) around 〈σ〉, one obtains [6]

σdiff
pA (s) =

ωσ(s)〈σ〉2
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∫

d2#b (TA(b))
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Вклад сильных взаимодействий в протон-
ядерную дифракционную диссоциацию (2)   

• Pp(σ) = вероятность протону находиться в конфигурации, 
взаимодействующей с нуклонами ядра с сечением σ.

на 
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Figure 30. The distribution Pp(�) as a function of � for
p

s = 200 GeV (solid red),p
s = 1.8 TeV (blue short-dashed), and

p
s = 13 TeV (green dot-dashed).

LHC energies reaching the value of !� ⇠ 0.1 at
p

s ⇠ 8 TeV. Thus, one can parameterize

the energy dependence of !� for the proton in the following simple form

!�(s) =

8
><

>:

�
p

s/(24 GeV) ,
p

s < 24 GeV ,

� , 24 <
p

s < 200 GeV ,

� � 0.056 ln(
p

s/200 GeV) ,
p

s > 200 GeV ,

(143)

where � = 0.30 ± 0.05.

The resulting Pp(�) as a function of � for three typical values of energies (
p

s = 200

GeV,
p

s = 1.8 TeV, and
p

s = 13 TeV) is presented in Fig. 30. One can see from the

figure that the distribution Pp(�) remains rather broad for all studied energies since a

decrease of !� is compensated by an increase of �tot [228].

For the pion projectile, one can use the constituent quark counting rule for the

ratio of the nucleon–nucleon and the pion–nucleon total cross sections [251] to obtain

the following simple estimate for !� for pions

!
⇡
� =

3

2
!� . (144)

The resulting P⇡(�) distribution for pions as a function of � for
p

s = 46 GeV andp
s = 62 GeV is shown in Fig. 31. These values correspond to the invariant photon–

nucleon energies accessed in photoproduction of ⇢ mesons in heavy-ion ultraperipheral

collisions at central rapidities at the LHC, see next section.

6.4. P⇢(�) distribution for ⇢ mesons

Color fluctuation phenomena can also be studied in ⇢ meson photoproduction, which

was explored at HERA and in heavy-ion ultraperipheral collisions at the LHC. We note

• Непертурбативное распределение → 
требует моделирования, Frankfurt, Guzey, 

Stasto, Strikman, arXiv:2203.12289 (review submitted to ROPP)  

• Однако в случае ДД на ядрах форма 
Pp(σ) не важна, т.к. можно разложить в 
ряд Тэйлора вблизи 
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Introduction and motivation . Diffraction in
hadron scattering at high energies remains an active
field of research. It is deeply connected to the na-
ture of colorless exchanges with vacuum quantum num-
bers (Pomeron) in strong interactions and, more gener-
ally, small-x phenomena in Quantum Chromodynamics
(QCD), important for tuning event generators needed
for interpretation of results of ultrarelativistic heavy-
ion scattering, and also relevant for cosmic ray physics.
In experiment diffractive events are characterized by
large gaps in rapidity distributions of produced particles,
which are defined as regions with no hadronic activity.
To enhance sensitivity to such events and, in particular,
to the so-called single diffractive dissociation, one can
select events with the rapidity gaps in the most forward
region of a detector; in proton-proton (pp) scattering such
measurements have been performed at the Large Hadron
Collider (LHC) at

√
sNN = 7 TeV [1, 2].

The CMS collaboration at the LHC for the first time
measured the forward rapidity gap distribution in proton-
Pb (pPb) collisions at

√
sNN = 8.16 TeV [3]. It was found

that for the Pomeron-proton topology, the EPOS-LHC,
QGSJET II, and HIJUNG generators are at least a factor
of five below the data. As a result, it was suggested
that this discrepancy can be explained by a significant
contribution of ultraperipheral photoproduction events
mimicking the signature of diffractive processes.
Actually, this observation was already made in Ref. [4]

in 2006, which showed that in coherent proton-nucleus
(pA) diffraction, the electromagnetic (ultraperipheral)
contribution dominates the cross section for heavy nuclei.
The purpose of this letter is to generalize the results of [4]
for the CMS experimental conditions and, in particular,
to make predictions for the distribution in the forward
rapidity gap ∆ηF . Our predictions for the ∆ηF distribu-
tion in the studied case of the Pomeron-proton topology
agree both in magnitude and the shape with that mea-
sured by the CMS collaboration and, thus, confirm and
quantify the essential role of ultraperipheral photopro-
duction in explanation of the CMS data.
We also make predictions for the case of proton-oxygen

(pO) scattering.
Strong and electromagnetic mechanisms in pA

coherent diffraction . The phenomenon of diffractive
dissociation of protons in proton-nucleus scattering at
high energies is a classic example of composite struc-
ture of hadronic projectiles, which can be conveniently
described within the framework of cross section fluctu-
ations [5–8]. In this approach, the cross section of pA
coherent diffraction dissociation, p+A → X +A, can be
written in the following form

σdiff
pA (s) =

∫

d2#b

[

∫

dσPp(σ)|ΓA(#b)|2 −
∣

∣

∣

∣

∫

dσPp(σ)ΓA(#b)

∣

∣

∣

∣

2
]

,(1)

where s is the total proton-nucleus energy squared per
nucleon. Here ΓA(#b) is nuclear scattering amplitude in
representation of the impact parameter #b, which in the
limit of high energies and large A (heavy nucleus) is usu-
ally expressed in the eikonal form

ΓA(#b) = 1− e−
σ

2
TA(!b) , (2)

where TA(#b) =
∫

dzρA(#r) with ρA(#r) being the nuclear
density [9] normalized to the number of nucleons A. The
ΓA(#b) amplitude sums multiple interactions with target
nucleons and captures the effect of nuclear shadowing
leading to a dramatic suppression of the proton-nucleus
cross section.
The distribution Pp(σ) describes cross section fluctu-

ations of the proton and gives the probability for the
proton to fluctuate into a hadronic configuration inter-
acting with target nucleons with the cross section σ. In
general, Pp(σ) should be modeled, see, e.g. [7, 8]. How-
ever, in the case of diffraction dissociation, the detailed
information on the shape of Pp(σ) is not needed since
one can use the general property that Pp(σ) is peaked
around σtot

pp (s) = 〈σ〉 ≡
∫

dσPp(σ)σ. Thus, expanding
Eq. (1) around 〈σ〉, one obtains [6]

σdiff
pA (s) =

ωσ(s)〈σ〉2

4

∫

d2#b (TA(b))
2 e−〈σ〉TA(b) , (3)
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Introduction and motivation . Diffraction in
hadron scattering at high energies remains an active
field of research. It is deeply connected to the na-
ture of colorless exchanges with vacuum quantum num-
bers (Pomeron) in strong interactions and, more gener-
ally, small-x phenomena in Quantum Chromodynamics
(QCD), important for tuning event generators needed
for interpretation of results of ultrarelativistic heavy-
ion scattering, and also relevant for cosmic ray physics.
In experiment diffractive events are characterized by
large gaps in rapidity distributions of produced particles,
which are defined as regions with no hadronic activity.
To enhance sensitivity to such events and, in particular,
to the so-called single diffractive dissociation, one can
select events with the rapidity gaps in the most forward
region of a detector; in proton-proton (pp) scattering such
measurements have been performed at the Large Hadron
Collider (LHC) at

√
sNN = 7 TeV [1, 2].

The CMS collaboration at the LHC for the first time
measured the forward rapidity gap distribution in proton-
Pb (pPb) collisions at

√
sNN = 8.16 TeV [3]. It was found

that for the Pomeron-proton topology, the EPOS-LHC,
QGSJET II, and HIJUNG generators are at least a factor
of five below the data. As a result, it was suggested
that this discrepancy can be explained by a significant
contribution of ultraperipheral photoproduction events
mimicking the signature of diffractive processes.
Actually, this observation was already made in Ref. [4]

in 2006, which showed that in coherent proton-nucleus
(pA) diffraction, the electromagnetic (ultraperipheral)
contribution dominates the cross section for heavy nuclei.
The purpose of this letter is to generalize the results of [4]
for the CMS experimental conditions and, in particular,
to make predictions for the distribution in the forward
rapidity gap ∆ηF . Our predictions for the ∆ηF distribu-
tion in the studied case of the Pomeron-proton topology
agree both in magnitude and the shape with that mea-
sured by the CMS collaboration and, thus, confirm and
quantify the essential role of ultraperipheral photopro-
duction in explanation of the CMS data.
We also make predictions for the case of proton-oxygen

(pO) scattering.
Strong and electromagnetic mechanisms in pA

coherent diffraction . The phenomenon of diffractive
dissociation of protons in proton-nucleus scattering at
high energies is a classic example of composite struc-
ture of hadronic projectiles, which can be conveniently
described within the framework of cross section fluctu-
ations [5–8]. In this approach, the cross section of pA
coherent diffraction dissociation, p+A → X +A, can be
written in the following form

σdiff
pA (s) =

∫

d2#b

[

∫

dσPp(σ)|ΓA(#b)|2 −
∣

∣

∣

∣

∫

dσPp(σ)ΓA(#b)

∣

∣

∣

∣

2
]

,(1)

where s is the total proton-nucleus energy squared per
nucleon. Here ΓA(#b) is nuclear scattering amplitude in
representation of the impact parameter #b, which in the
limit of high energies and large A (heavy nucleus) is usu-
ally expressed in the eikonal form

ΓA(#b) = 1− e−
σ

2
TA(!b) , (2)

where TA(#b) =
∫

dzρA(#r) with ρA(#r) being the nuclear
density [9] normalized to the number of nucleons A. The
ΓA(#b) amplitude sums multiple interactions with target
nucleons and captures the effect of nuclear shadowing
leading to a dramatic suppression of the proton-nucleus
cross section.
The distribution Pp(σ) describes cross section fluctu-

ations of the proton and gives the probability for the
proton to fluctuate into a hadronic configuration inter-
acting with target nucleons with the cross section σ. In
general, Pp(σ) should be modeled, see, e.g. [7, 8]. How-
ever, in the case of diffraction dissociation, the detailed
information on the shape of Pp(σ) is not needed since
one can use the general property that Pp(σ) is peaked
around σtot

pp (s) = 〈σ〉 ≡
∫

dσPp(σ)σ. Thus, expanding
Eq. (1) around 〈σ〉, one obtains [6]

σdiff
pA (s) =

ωσ(s)〈σ〉2

4

∫

d2#b (TA(b))
2 e−〈σ〉TA(b) , (3)

• ωσ(s)= характеризует дисперсию Pp(σ) → определяется из данных по ДД 
на протоне p+p →X+p: 

2

where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
certainty in modeling Pp(σ).
It was explained in [4] that a competing reaction mech-

anism leading to the same final state, p+A → p+γ+A →
X + A, is provided by the electromagnetic contribution
corresponding to ultraperipheral pA scattering. In this
case, proton and Pb beams pass each other at large im-
pact parameters and, hence, short-range strong interac-
tions are suppressed. Instead, the relativistic heavy ion
beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
(Weizsäcker-Williams) approximation, the corresponding
cross section reads [11, 12]

σe.m.
pA (s) =

∫ ωmax

ωmin

dω

ω
Nγ/A(ω)σ

tot
γp (sγp) , (4)

whereNγ/A(ω) is the photon flux; ω is the photon energy;
σtot
γp (sγp) is the total photon-proton cross section and

sγp is the total invariant photon-proton energy squared.
The integration limits can be estimated as follows. In
the laboratory frame, the minimal photon energy corre-
sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2

∆−m2
p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:

Nγ/A(ω) =

2Z2αe.m.

π

(

ξK0(ξ)K1(ξ)−
ξ2

2
(K2

1 (ξ)−K2
0 (ξ))

)

,(5)

where αe.m. is the fine-structure constant; K0,1 are
modified Bessel functions of the second kind; ξ =
(ω/γL(A))bmin with bmin = 1.15RA and RA = 1.145A1/3

fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
positive rapidity), we obtain

∆ηF = ∆η − (8.6− 3) = ∆η − 5.6 . (9)

This is illustrated in Fig. 1. It should be compared to
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FIG. 1: Sketch of the definition of the rapidity gap size ∆ηF

in the Pomeron-proton topology at CMS.

the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],

dσdiff
pp (t = 0)

dt
=

1

16π

(

〈σ2〉 − 〈σ〉2
)

=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)
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where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
certainty in modeling Pp(σ).
It was explained in [4] that a competing reaction mech-

anism leading to the same final state, p+A → p+γ+A →
X + A, is provided by the electromagnetic contribution
corresponding to ultraperipheral pA scattering. In this
case, proton and Pb beams pass each other at large im-
pact parameters and, hence, short-range strong interac-
tions are suppressed. Instead, the relativistic heavy ion
beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
(Weizsäcker-Williams) approximation, the corresponding
cross section reads [11, 12]

σe.m.
pA (s) =

∫ ωmax

ωmin

dω

ω
Nγ/A(ω)σ

tot
γp (sγp) , (4)

whereNγ/A(ω) is the photon flux; ω is the photon energy;
σtot
γp (sγp) is the total photon-proton cross section and

sγp is the total invariant photon-proton energy squared.
The integration limits can be estimated as follows. In
the laboratory frame, the minimal photon energy corre-
sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2

∆−m2
p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:

Nγ/A(ω) =

2Z2αe.m.

π

(

ξK0(ξ)K1(ξ)−
ξ2

2
(K2

1 (ξ)−K2
0 (ξ))

)

,(5)

where αe.m. is the fine-structure constant; K0,1 are
modified Bessel functions of the second kind; ξ =
(ω/γL(A))bmin with bmin = 1.15RA and RA = 1.145A1/3

fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
positive rapidity), we obtain

∆ηF = ∆η − (8.6− 3) = ∆η − 5.6 . (9)

This is illustrated in Fig. 1. It should be compared to

ηA −3

∆η

∆η
F

η

FIG. 1: Sketch of the definition of the rapidity gap size ∆ηF

in the Pomeron-proton topology at CMS.

the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],

dσdiff
pp (t = 0)

dt
=

1

16π

(

〈σ2〉 − 〈σ〉2
)

=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)

• N𝛾/A(ω) = поток фотонов энергии ω
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where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
certainty in modeling Pp(σ).
It was explained in [4] that a competing reaction mech-

anism leading to the same final state, p+A → p+γ+A →
X + A, is provided by the electromagnetic contribution
corresponding to ultraperipheral pA scattering. In this
case, proton and Pb beams pass each other at large im-
pact parameters and, hence, short-range strong interac-
tions are suppressed. Instead, the relativistic heavy ion
beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
(Weizsäcker-Williams) approximation, the corresponding
cross section reads [11, 12]

σe.m.
pA (s) =

∫ ωmax

ωmin

dω

ω
Nγ/A(ω)σ

tot
γp (sγp) , (4)

whereNγ/A(ω) is the photon flux; ω is the photon energy;
σtot
γp (sγp) is the total photon-proton cross section and

sγp is the total invariant photon-proton energy squared.
The integration limits can be estimated as follows. In
the laboratory frame, the minimal photon energy corre-
sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2

∆−m2
p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:

Nγ/A(ω) =

2Z2αe.m.

π

(

ξK0(ξ)K1(ξ)−
ξ2

2
(K2

1 (ξ)−K2
0 (ξ))

)

,(5)

where αe.m. is the fine-structure constant; K0,1 are
modified Bessel functions of the second kind; ξ =
(ω/γL(A))bmin with bmin = 1.15RA and RA = 1.145A1/3

fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
positive rapidity), we obtain

∆ηF = ∆η − (8.6− 3) = ∆η − 5.6 . (9)

This is illustrated in Fig. 1. It should be compared to
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FIG. 1: Sketch of the definition of the rapidity gap size ∆ηF

in the Pomeron-proton topology at CMS.

the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],

dσdiff
pp (t = 0)

dt
=

1

16π

(

〈σ2〉 − 〈σ〉2
)

=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)

• σ𝛾p(s)= полное фотон-протонное сечение 𝛾 + p  → X
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where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
certainty in modeling Pp(σ).
It was explained in [4] that a competing reaction mech-

anism leading to the same final state, p+A → p+γ+A →
X + A, is provided by the electromagnetic contribution
corresponding to ultraperipheral pA scattering. In this
case, proton and Pb beams pass each other at large im-
pact parameters and, hence, short-range strong interac-
tions are suppressed. Instead, the relativistic heavy ion
beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
(Weizsäcker-Williams) approximation, the corresponding
cross section reads [11, 12]

σe.m.
pA (s) =

∫ ωmax

ωmin

dω

ω
Nγ/A(ω)σ

tot
γp (sγp) , (4)

whereNγ/A(ω) is the photon flux; ω is the photon energy;
σtot
γp (sγp) is the total photon-proton cross section and

sγp is the total invariant photon-proton energy squared.
The integration limits can be estimated as follows. In
the laboratory frame, the minimal photon energy corre-
sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2

∆−m2
p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:

Nγ/A(ω) =

2Z2αe.m.

π

(

ξK0(ξ)K1(ξ)−
ξ2

2
(K2

1 (ξ)−K2
0 (ξ))

)

,(5)

where αe.m. is the fine-structure constant; K0,1 are
modified Bessel functions of the second kind; ξ =
(ω/γL(A))bmin with bmin = 1.15RA and RA = 1.145A1/3

fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
positive rapidity), we obtain

∆ηF = ∆η − (8.6− 3) = ∆η − 5.6 . (9)

This is illustrated in Fig. 1. It should be compared to
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FIG. 1: Sketch of the definition of the rapidity gap size ∆ηF

in the Pomeron-proton topology at CMS.

the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],

dσdiff
pp (t = 0)

dt
=

1

16π

(

〈σ2〉 − 〈σ〉2
)

=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)

• Минимальная и максимальная энергии фотонов:  
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where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
certainty in modeling Pp(σ).
It was explained in [4] that a competing reaction mech-

anism leading to the same final state, p+A → p+γ+A →
X + A, is provided by the electromagnetic contribution
corresponding to ultraperipheral pA scattering. In this
case, proton and Pb beams pass each other at large im-
pact parameters and, hence, short-range strong interac-
tions are suppressed. Instead, the relativistic heavy ion
beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
(Weizsäcker-Williams) approximation, the corresponding
cross section reads [11, 12]

σe.m.
pA (s) =

∫ ωmax

ωmin

dω

ω
Nγ/A(ω)σ

tot
γp (sγp) , (4)

whereNγ/A(ω) is the photon flux; ω is the photon energy;
σtot
γp (sγp) is the total photon-proton cross section and

sγp is the total invariant photon-proton energy squared.
The integration limits can be estimated as follows. In
the laboratory frame, the minimal photon energy corre-
sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2

∆−m2
p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:

Nγ/A(ω) =

2Z2αe.m.

π

(

ξK0(ξ)K1(ξ)−
ξ2

2
(K2

1 (ξ)−K2
0 (ξ))

)

,(5)

where αe.m. is the fine-structure constant; K0,1 are
modified Bessel functions of the second kind; ξ =
(ω/γL(A))bmin with bmin = 1.15RA and RA = 1.145A1/3

fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
positive rapidity), we obtain

∆ηF = ∆η − (8.6− 3) = ∆η − 5.6 . (9)

This is illustrated in Fig. 1. It should be compared to
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FIG. 1: Sketch of the definition of the rapidity gap size ∆ηF

in the Pomeron-proton topology at CMS.

the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],

dσdiff
pp (t = 0)

dt
=

1

16π

(

〈σ2〉 − 〈σ〉2
)

=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)
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where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
certainty in modeling Pp(σ).
It was explained in [4] that a competing reaction mech-

anism leading to the same final state, p+A → p+γ+A →
X + A, is provided by the electromagnetic contribution
corresponding to ultraperipheral pA scattering. In this
case, proton and Pb beams pass each other at large im-
pact parameters and, hence, short-range strong interac-
tions are suppressed. Instead, the relativistic heavy ion
beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
(Weizsäcker-Williams) approximation, the corresponding
cross section reads [11, 12]

σe.m.
pA (s) =

∫ ωmax

ωmin

dω

ω
Nγ/A(ω)σ

tot
γp (sγp) , (4)

whereNγ/A(ω) is the photon flux; ω is the photon energy;
σtot
γp (sγp) is the total photon-proton cross section and

sγp is the total invariant photon-proton energy squared.
The integration limits can be estimated as follows. In
the laboratory frame, the minimal photon energy corre-
sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2

∆−m2
p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:

Nγ/A(ω) =

2Z2αe.m.

π

(

ξK0(ξ)K1(ξ)−
ξ2

2
(K2

1 (ξ)−K2
0 (ξ))

)

,(5)

where αe.m. is the fine-structure constant; K0,1 are
modified Bessel functions of the second kind; ξ =
(ω/γL(A))bmin with bmin = 1.15RA and RA = 1.145A1/3

fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
positive rapidity), we obtain

∆ηF = ∆η − (8.6− 3) = ∆η − 5.6 . (9)

This is illustrated in Fig. 1. It should be compared to

ηA −3

∆η

∆η
F

η

FIG. 1: Sketch of the definition of the rapidity gap size ∆ηF

in the Pomeron-proton topology at CMS.

the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],

dσdiff
pp (t = 0)

dt
=

1

16π

(

〈σ2〉 − 〈σ〉2
)

=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)
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Сравнение сильного и ультра-периф. вкладов    

• В кинематике БАК, ультра-периферический вклад доминирует в сечении 
когерентной дифракционной диссоциации в протон-ядерном рассеянии 
для тяжелых ядер.

на 
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Figure 52. The A dependence of the Coulomb and hadronic contributions to the
coherent di↵ractive proton–nucleus cross section at the LHC.

analysis including this e↵ect [332] agrees well with the data on proton coherent di↵ractive

dissociation on He-4 [333].

At collider energies and in a wide range of impact parameters, the interaction

becomes practically completely black leading to a strong suppression of the inelastic

di↵raction and the dominance of the excitation of the proton via the Coulomb photon

exchange [250]. The corresponding cross section is given by convolution of the flux of

the equivalent photons N�/A(!) with the total photon-proton cross section �
�p
tot

�
pA
e.m. =

Z
d!

!
N�/A(!)��p

tot(s) , (204)

where ! is the photon energy Since the Coulomb contribution can be calculated with a

high precision, hadronic di↵raction can be measured up to the energies, where the ratio

of two contributions approaches unity.

The A dependence of the Coulomb and hadronic di↵ractive contributions in the

LHC energy range is presented in Fig. 52 for a sample of nuclei (Pb, Xe, O). One

can see that at the LHC, measurements of the hadronic contribution is possible for

A  16. At the same time, the hadronic contribution to coherent di↵raction on heavy

nuclei begins to compete with the e.m. mechanism only for
p

sNN  100 GeV, see the

discussion in [250].

Note that measurements of coherent di↵raction in pp, pD, and p
4
He scattering

were performed with internal jet targets at FNAL. Therefore, it is maybe possible to

perform similar studies using the gas targets within the ALICE and LHCb gas target

projects.

2

where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
certainty in modeling Pp(σ).
It was explained in [4] that a competing reaction mech-

anism leading to the same final state, p+A → p+γ+A →
X + A, is provided by the electromagnetic contribution
corresponding to ultraperipheral pA scattering. In this
case, proton and Pb beams pass each other at large im-
pact parameters and, hence, short-range strong interac-
tions are suppressed. Instead, the relativistic heavy ion
beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
(Weizsäcker-Williams) approximation, the corresponding
cross section reads [11, 12]

σe.m.
pA (s) =

∫ ωmax

ωmin

dω

ω
Nγ/A(ω)σ

tot
γp (sγp) , (4)

whereNγ/A(ω) is the photon flux; ω is the photon energy;
σtot
γp (sγp) is the total photon-proton cross section and

sγp is the total invariant photon-proton energy squared.
The integration limits can be estimated as follows. In
the laboratory frame, the minimal photon energy corre-
sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2

∆−m2
p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:

Nγ/A(ω) =

2Z2αe.m.

π

(

ξK0(ξ)K1(ξ)−
ξ2

2
(K2

1 (ξ)−K2
0 (ξ))

)

,(5)

where αe.m. is the fine-structure constant; K0,1 are
modified Bessel functions of the second kind; ξ =
(ω/γL(A))bmin with bmin = 1.15RA and RA = 1.145A1/3

fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
positive rapidity), we obtain

∆ηF = ∆η − (8.6− 3) = ∆η − 5.6 . (9)

This is illustrated in Fig. 1. It should be compared to
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FIG. 1: Sketch of the definition of the rapidity gap size ∆ηF

in the Pomeron-proton topology at CMS.

the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],

dσdiff
pp (t = 0)

dt
=

1

16π

(

〈σ2〉 − 〈σ〉2
)

=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)

• Это обуславливается усилением э.м. вклада за счет большого потока 
фотонов ~ Z2 с одновременным подавлением сильного вклада за счет 
большой ядерной экранировки и малой ДД на протоне ~ ωσ(s). 

• Для легких ядер оба вклада сравнимы: 

4

will not significantly affect the resulting total ∆ηF dis-
tribution.
Predictions for proton-oxygen run . One can

readily extend our predictions to proton-oxygen (pO)
scattering at

√
sNN = 9.19 TeV. In this case, σtot

pp (s) =
100.6 mb and ωσ(s) = 0.086±0.014, and we obtain (com-
pare to Eq. (7))

σdiff
pO (s) = 3.1± 0.52 mb ,

σe.m.
pO (s) = 5.0 mb . (17)

One can see that the strong interaction and electromag-
netic contributions have comparable magnitudes for oxy-
gen because of a 100 times smaller photon flux compared
to Pb. As a result, the electromagnetic contribution con-
stitutes a 15−30% correction to the∆ηF distribution. At
the same time, this gives an opportunity to measure the

cross section of soft pO diffraction, which is strongly sup-
pressed by nuclear shadowing compared to the impulse
approximation.
Summary . In summary, we showed that a straight-

forward extension of the results of Ref. [4] can explain the
CMS data on the forward rapidity gap distribution in pPb
collisions at

√
sNN = 8.16 TeV. Notably, we explicitly

demonstrated the dominance of the electromagnetic (ul-
traperipheral) mechanism in the Pomeron-proton topol-
ogy, which provides a good, semi-quantitative description
of both magnitude and shape of the measured ∆ηF dis-
tribution.
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Обобщение на случай распределения по ΔηF: 
вклад сильных взаимодействий   

• Связь между дисперсией Pp(σ) и сечением ДД на протоне p+p →X+p:

на 

2

where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
certainty in modeling Pp(σ).
It was explained in [4] that a competing reaction mech-

anism leading to the same final state, p+A → p+γ+A →
X + A, is provided by the electromagnetic contribution
corresponding to ultraperipheral pA scattering. In this
case, proton and Pb beams pass each other at large im-
pact parameters and, hence, short-range strong interac-
tions are suppressed. Instead, the relativistic heavy ion
beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
(Weizsäcker-Williams) approximation, the corresponding
cross section reads [11, 12]

σe.m.
pA (s) =

∫ ωmax

ωmin

dω

ω
Nγ/A(ω)σ

tot
γp (sγp) , (4)

whereNγ/A(ω) is the photon flux; ω is the photon energy;
σtot
γp (sγp) is the total photon-proton cross section and

sγp is the total invariant photon-proton energy squared.
The integration limits can be estimated as follows. In
the laboratory frame, the minimal photon energy corre-
sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2

∆−m2
p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:

Nγ/A(ω) =

2Z2αe.m.

π

(

ξK0(ξ)K1(ξ)−
ξ2

2
(K2

1 (ξ)−K2
0 (ξ))

)

,(5)

where αe.m. is the fine-structure constant; K0,1 are
modified Bessel functions of the second kind; ξ =
(ω/γL(A))bmin with bmin = 1.15RA and RA = 1.145A1/3

fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
positive rapidity), we obtain

∆ηF = ∆η − (8.6− 3) = ∆η − 5.6 . (9)

This is illustrated in Fig. 1. It should be compared to

ηA −3

∆η

∆η
F

η

FIG. 1: Sketch of the definition of the rapidity gap size ∆ηF

in the Pomeron-proton topology at CMS.

the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],

dσdiff
pp (t = 0)

dt
=

1

16π

(

〈σ2〉 − 〈σ〉2
)

=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)

• Сечение ДД на ядре:
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where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
certainty in modeling Pp(σ).
It was explained in [4] that a competing reaction mech-

anism leading to the same final state, p+A → p+γ+A →
X + A, is provided by the electromagnetic contribution
corresponding to ultraperipheral pA scattering. In this
case, proton and Pb beams pass each other at large im-
pact parameters and, hence, short-range strong interac-
tions are suppressed. Instead, the relativistic heavy ion
beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
(Weizsäcker-Williams) approximation, the corresponding
cross section reads [11, 12]

σe.m.
pA (s) =

∫ ωmax

ωmin

dω

ω
Nγ/A(ω)σ

tot
γp (sγp) , (4)

whereNγ/A(ω) is the photon flux; ω is the photon energy;
σtot
γp (sγp) is the total photon-proton cross section and

sγp is the total invariant photon-proton energy squared.
The integration limits can be estimated as follows. In
the laboratory frame, the minimal photon energy corre-
sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2

∆−m2
p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:

Nγ/A(ω) =

2Z2αe.m.

π

(

ξK0(ξ)K1(ξ)−
ξ2

2
(K2

1 (ξ)−K2
0 (ξ))

)

,(5)

where αe.m. is the fine-structure constant; K0,1 are
modified Bessel functions of the second kind; ξ =
(ω/γL(A))bmin with bmin = 1.15RA and RA = 1.145A1/3

fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
positive rapidity), we obtain

∆ηF = ∆η − (8.6− 3) = ∆η − 5.6 . (9)

This is illustrated in Fig. 1. It should be compared to
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FIG. 1: Sketch of the definition of the rapidity gap size ∆ηF

in the Pomeron-proton topology at CMS.

the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],

dσdiff
pp (t = 0)

dt
=

1

16π

(

〈σ2〉 − 〈σ〉2
)

=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)
• Экспоненциальная зависимость от t: dσppdiff /dt=dσppdiff /dt(t=0)e-B(s)|t|

• Сечение ДД на ядре:
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Making the common assumption of an exponen-
tial momentum transfer t dependence, dσdiff

pp /dt =

e−B(s)|t|dσdiff
pp (t = 0)/dt, we can express the proton-

nucleus diffractive cross section as a product of the t-
integrated proton-proton diffractive cross section σdiff

pp (s)
and the nuclear factor,

σdiff
pA (s) = σdiff

pp (s)4πB(s)

∫

d2#b (TA(b))
2 e−〈σ〉TA(b)

= 2.4 σdiff
pp (s) . (12)

In the second line of Eq. (12), we used that B ≈ Bel +
2α′

IP ln(m2
p/M

2
X) ≈ 15 GeV−2 for 40 ≤ MX ≤ 300 GeV

at
√
sNN = 8.16 TeV. This estimate is based on the

experimental results for the slope of the t dependence
of the elastic pp cross section Bel ≈ 20 GeV−2 [10] and
the general dependence of the slope of single diffractive
dissociation on M2

X in Regge phenomenology with α′
IP ≈

0.25 GeV−2; the used range of MX corresponds to 1 ≤
∆ηF ≤ 5.
Therefore, taking advantage of a simple connection be-

tween σdiff
pA (s) and σdiff

pp (s) and neglecting a weak depen-
dence on ξX of the slope B(s) and the nuclear factor in
Eq. (12), we can generalize Eq. (12) to the form differen-
tial in ∆ηF ,

dσdiff
pA

d∆ηF
= 2.4

dσdiff
pp

d∆ηF
. (13)

Finally, without resorting to a particular model for
dσdiff

pp /d∆ηF , we use the ATLAS result dσdiff
pp /d∆ηF ≈

1 mb [1] and thus arrive at the following estimate,

dσdiff
pA

d∆ηF
≈ 2.4 mb . (14)

This estimate semi-quantitatively agrees with predictions
of EPOS-LHC, QGSJET II, and HIJUNG generators
shown in Fig. 4 of Ref. [3].
Turning to Eq. (4), we notice that the photon energy

required to excited the diffractive massMX is ω = (M2
X−

m2
p)/(4mpγL(p)) ≈ M2

X/(4mpγL(p)) for sufficiently large
MX . Therefore,

dω

ω
= d lnM2

X = d∆ηF . (15)

It allows us to rewrite Eq. (4) in the form differential in
∆ηF

dσe.m.
pA

d∆ηF
= Nγ/A(ω(∆ηF ))σtot

γp (sγp) , (16)

where the photon energy corresponds to the given ∆ηF ,
i.e., to the given MX , see Eqs. (8) and (9). The resulting
values of dσe.m.

pA /d∆ηF as a function of ∆ηF in the 1 ≤
∆ηF ≤ 5 interval are given in Table I.
Our results are summarized in Fig. 2. It shows the

strong (green dot-dashed curve labeled “diff”), electro-
magnetic (blue dotted curve labeled “e.m.”), and to-
tal (the sum of the former two given by the red solid

TABLE I: The contribution of the electromagnetic (ul-
traperipheral) mechanism to pPb coherent diffraction,
dσe.m.

pA /d∆ηF , as a function of the rapidity gap size ∆ηF .

∆ηF dσe.m.
pA /d∆ηF , mb

1 13.9
2 17.8
3 21.1
4 23.9
5 26.3

curve labeled “Total”) contributions to the cross section
of proton-lead (pPb) coherent diffraction as a function
of ∆ηF . A comparison to the CMS results presented in
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FIG. 2: The strong (“diff”), electromagnetic (“e.m.”), and
total (“Total”) contributions to the cross section of pPb co-
herent diffraction as a function of ∆ηF at

√

sNN = 8.16 TeV.

Fig. 4 of [3] shows that our simple estimate reproduces
rather well both the magnitude and the shape of the ∆ηF

distribution. In particular, we demonstrate that the ul-
treperipheral mechanism is responsible for the increase
of dσ/d∆ηF with an increase of ∆ηF .
It is important to note that our estimate of

dσe.m.
pA /d∆ηF is based on the assumption that it receives

contributions from all MX comprising the total photon-
proton cross section and, hence, should be considered as
an upper limit. A more accurate account of the ultrape-
ripheral contribution to dσ/d∆ηF should include mod-
eling of the mass spectrum in photon-proton scattering
and the influence of the detector acceptance, which is
beyond the scope of our work.
While the aim of this letter was to capture the bulk

of physical effects explaining the CMS results in a semi-
quantitative way, our calculations can be improved along
several lines, in particular, in an estimate of the strong
interaction mechanism of coherent diffraction. However,
since it gives a subleading contribution, these refinements
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i.e., to the given MX , see Eqs. (8) and (9). The resulting
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∆ηF ≤ 5 interval are given in Table I.
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FIG. 2: The strong (“diff”), electromagnetic (“e.m.”), and
total (“Total”) contributions to the cross section of pPb co-
herent diffraction as a function of ∆ηF at
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sNN = 8.16 TeV.

Fig. 4 of [3] shows that our simple estimate reproduces
rather well both the magnitude and the shape of the ∆ηF

distribution. In particular, we demonstrate that the ul-
treperipheral mechanism is responsible for the increase
of dσ/d∆ηF with an increase of ∆ηF .
It is important to note that our estimate of

dσe.m.
pA /d∆ηF is based on the assumption that it receives

contributions from all MX comprising the total photon-
proton cross section and, hence, should be considered as
an upper limit. A more accurate account of the ultrape-
ripheral contribution to dσ/d∆ηF should include mod-
eling of the mass spectrum in photon-proton scattering
and the influence of the detector acceptance, which is
beyond the scope of our work.
While the aim of this letter was to capture the bulk

of physical effects explaining the CMS results in a semi-
quantitative way, our calculations can be improved along
several lines, in particular, in an estimate of the strong
interaction mechanism of coherent diffraction. However,
since it gives a subleading contribution, these refinements
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This estimate semi-quantitatively agrees with predictions
of EPOS-LHC, QGSJET II, and HIJUNG generators
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X/(4mpγL(p)) for sufficiently large
MX . Therefore,
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= Nγ/A(ω(∆ηF ))σtot
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where the photon energy corresponds to the given ∆ηF ,
i.e., to the given MX , see Eqs. (8) and (9). The resulting
values of dσe.m.

pA /d∆ηF as a function of ∆ηF in the 1 ≤
∆ηF ≤ 5 interval are given in Table I.
Our results are summarized in Fig. 2. It shows the
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FIG. 2: The strong (“diff”), electromagnetic (“e.m.”), and
total (“Total”) contributions to the cross section of pPb co-
herent diffraction as a function of ∆ηF at

√

sNN = 8.16 TeV.

Fig. 4 of [3] shows that our simple estimate reproduces
rather well both the magnitude and the shape of the ∆ηF

distribution. In particular, we demonstrate that the ul-
treperipheral mechanism is responsible for the increase
of dσ/d∆ηF with an increase of ∆ηF .
It is important to note that our estimate of

dσe.m.
pA /d∆ηF is based on the assumption that it receives

contributions from all MX comprising the total photon-
proton cross section and, hence, should be considered as
an upper limit. A more accurate account of the ultrape-
ripheral contribution to dσ/d∆ηF should include mod-
eling of the mass spectrum in photon-proton scattering
and the influence of the detector acceptance, which is
beyond the scope of our work.
While the aim of this letter was to capture the bulk

of physical effects explaining the CMS results in a semi-
quantitative way, our calculations can be improved along
several lines, in particular, in an estimate of the strong
interaction mechanism of coherent diffraction. However,
since it gives a subleading contribution, these refinements
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where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
certainty in modeling Pp(σ).
It was explained in [4] that a competing reaction mech-

anism leading to the same final state, p+A → p+γ+A →
X + A, is provided by the electromagnetic contribution
corresponding to ultraperipheral pA scattering. In this
case, proton and Pb beams pass each other at large im-
pact parameters and, hence, short-range strong interac-
tions are suppressed. Instead, the relativistic heavy ion
beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
(Weizsäcker-Williams) approximation, the corresponding
cross section reads [11, 12]

σe.m.
pA (s) =

∫ ωmax

ωmin

dω

ω
Nγ/A(ω)σ

tot
γp (sγp) , (4)

whereNγ/A(ω) is the photon flux; ω is the photon energy;
σtot
γp (sγp) is the total photon-proton cross section and

sγp is the total invariant photon-proton energy squared.
The integration limits can be estimated as follows. In
the laboratory frame, the minimal photon energy corre-
sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2

∆−m2
p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:

Nγ/A(ω) =

2Z2αe.m.

π

(

ξK0(ξ)K1(ξ)−
ξ2

2
(K2

1 (ξ)−K2
0 (ξ))

)

,(5)

where αe.m. is the fine-structure constant; K0,1 are
modified Bessel functions of the second kind; ξ =
(ω/γL(A))bmin with bmin = 1.15RA and RA = 1.145A1/3

fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
positive rapidity), we obtain

∆ηF = ∆η − (8.6− 3) = ∆η − 5.6 . (9)

This is illustrated in Fig. 1. It should be compared to

ηA −3

∆η

∆η
F

η

FIG. 1: Sketch of the definition of the rapidity gap size ∆ηF

in the Pomeron-proton topology at CMS.

the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],

dσdiff
pp (t = 0)

dt
=

1

16π

(

〈σ2〉 − 〈σ〉2
)

=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)
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Turning to Eq. (3) and recalling that the cross section
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momentum transfer t = 0 is related to the dispersion of
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where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At
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tion [10] giving 〈σ〉 = σtot

pp (s) = 98.6 mb and a simple
interpolation from fixed-target to Tevatron and further
to LHC energies giving ωσ(s) = 0.092 ± 0.015 [8]. The
spread in the values of ωσ(s) reflects the theoretical un-
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It was explained in [4] that a competing reaction mech-
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X + A, is provided by the electromagnetic contribution
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beam serves as an intensive source of quasi-real photons,
which interact with the proton. In the equivalent photon
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sγp is the total invariant photon-proton energy squared.
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sponding to photo-excitation of the lowest inelastic state
is ωmin = (M2
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p)/(4mpγL(p)), where M∆ and mp are

the masses of ∆(1232) and the proton, respectively, and
γL(p) = Ep/mp is the Lorentz factor of the proton beam
with energy Ep. The maximal photon energy is usually
estimated as ωmax = γL(A)/RA, where RA is the nucleus
effective radius and γL(A) = EA/mp is the Lorentz factor
of the nucleus beam with energy EA.
For the photon flux, we use the approximate expres-

sion corresponding to the point-like (PL) source with the
electric charge Z:
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modified Bessel functions of the second kind; ξ =
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fm. With these parameters, Eq. (5) reproduces well
a more accurate calculation of the photon flux taking
into account the suppression of strong interactions at
|'b| ≤ bmin [13].
For the total photon-proton cross section, we use the

Donnachie and Landshoff fit [14]

σtot
γp (s)/mb = 0.0677s0.0808γp + 0.129s−0.4525

γp , (6)

where sγp = 4ωEp +m2
p.

Employing the input specified above and using Eqs. (3)
and (4), we obtain the following results for the strong and

electromagnetic (ultraperipheral) contributions to the
cross section of pPb coherent diffraction at

√
sNN = 8.16

TeV

σdiff
pA (s) = 7.4± 1.2 mb ,

σe.m.
pA (s) = 450 mb . (7)

These values agree with those of Ref. [4] (the correct
predictions for the electromagnetic contribution are given
in the Erratum to that paper).
Predictions for the strong and electromagnetic

contributions differential in ∆ηF . In proton-nucleus
coherent diffraction, the size of the rapidity gap between
the intact nucleus and the diffractively-produced system
X is

∆η = − ln ξX , (8)

where ξX = M2
X/s is a variable commonly used in diffrac-

tion and MX is the mass of the state X . In the case of
Pomeron-proton topology, the CMS collaboration has de-
fined ∆ηF as the distance from η = −3 to the lower edge
of the last non-empty η bin [3]. Since the elastically scat-
tered nucleus corresponds to ηA = −(1/2) ln(4E2

A/m
2
p) =

ln(2EA/mp) = −8.6 (in the CMS coordinate system, the
direction of the proton beam in pPb collisions defines
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the definition of the ATLAS collaboration in the pp case
at

√
sNN = 7 TeV, ∆ηF = ∆η − 4 [1].

Turning to Eq. (3) and recalling that the cross section
of diffraction dissociation on the proton (nucleon) at the
momentum transfer t = 0 is related to the dispersion of
cross section fluctuations [5],
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dt
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〈σ2〉 − 〈σ〉2
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=
ωσ(s)〈σ〉2

16π
, (10)

Eq. (3) can be rewritten in the following form

σdiff
pA (s) =

dσdiff
pp (t = 0)

dt
4π

∫

d2'b (TA(b))
2 e−〈σ〉TA(b) .

(11)
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where ωσ(s) = 〈σ2〉/〈σ〉2 − 1 quantifies the dispersion
of cross section fluctuations of the proton. At

√
s =√

sNN = 8.16 TeV, we use the COMPETE parametriza-
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Making the common assumption of an exponen-
tial momentum transfer t dependence, dσdiff

pp /dt =

e−B(s)|t|dσdiff
pp (t = 0)/dt, we can express the proton-

nucleus diffractive cross section as a product of the t-
integrated proton-proton diffractive cross section σdiff

pp (s)
and the nuclear factor,

σdiff
pA (s) = σdiff

pp (s)4πB(s)

∫

d2#b (TA(b))
2 e−〈σ〉TA(b)

= 2.4 σdiff
pp (s) . (12)

In the second line of Eq. (12), we used that B ≈ Bel +
2α′

IP ln(m2
p/M

2
X) ≈ 15 GeV−2 for 40 ≤ MX ≤ 300 GeV

at
√
sNN = 8.16 TeV. This estimate is based on the

experimental results for the slope of the t dependence
of the elastic pp cross section Bel ≈ 20 GeV−2 [10] and
the general dependence of the slope of single diffractive
dissociation on M2

X in Regge phenomenology with α′
IP ≈

0.25 GeV−2; the used range of MX corresponds to 1 ≤
∆ηF ≤ 5.
Therefore, taking advantage of a simple connection be-

tween σdiff
pA (s) and σdiff

pp (s) and neglecting a weak depen-
dence on ξX of the slope B(s) and the nuclear factor in
Eq. (12), we can generalize Eq. (12) to the form differen-
tial in ∆ηF ,

dσdiff
pA

d∆ηF
= 2.4

dσdiff
pp

d∆ηF
. (13)

Finally, without resorting to a particular model for
dσdiff

pp /d∆ηF , we use the ATLAS result dσdiff
pp /d∆ηF ≈

1 mb [1] and thus arrive at the following estimate,

dσdiff
pA

d∆ηF
≈ 2.4 mb . (14)

This estimate semi-quantitatively agrees with predictions
of EPOS-LHC, QGSJET II, and HIJUNG generators
shown in Fig. 4 of Ref. [3].
Turning to Eq. (4), we notice that the photon energy

required to excited the diffractive massMX is ω = (M2
X−

m2
p)/(4mpγL(p)) ≈ M2

X/(4mpγL(p)) for sufficiently large
MX . Therefore,

dω

ω
= d lnM2

X = d∆ηF . (15)

It allows us to rewrite Eq. (4) in the form differential in
∆ηF

dσe.m.
pA

d∆ηF
= Nγ/A(ω(∆ηF ))σtot

γp (sγp) , (16)

where the photon energy corresponds to the given ∆ηF ,
i.e., to the given MX , see Eqs. (8) and (9). The resulting
values of dσe.m.

pA /d∆ηF as a function of ∆ηF in the 1 ≤
∆ηF ≤ 5 interval are given in Table I.
Our results are summarized in Fig. 2. It shows the

strong (green dot-dashed curve labeled “diff”), electro-
magnetic (blue dotted curve labeled “e.m.”), and to-
tal (the sum of the former two given by the red solid

TABLE I: The contribution of the electromagnetic (ul-
traperipheral) mechanism to pPb coherent diffraction,
dσe.m.

pA /d∆ηF , as a function of the rapidity gap size ∆ηF .

∆ηF dσe.m.
pA /d∆ηF , mb

1 13.9
2 17.8
3 21.1
4 23.9
5 26.3

curve labeled “Total”) contributions to the cross section
of proton-lead (pPb) coherent diffraction as a function
of ∆ηF . A comparison to the CMS results presented in
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FIG. 2: The strong (“diff”), electromagnetic (“e.m.”), and
total (“Total”) contributions to the cross section of pPb co-
herent diffraction as a function of ∆ηF at

√

sNN = 8.16 TeV.

Fig. 4 of [3] shows that our simple estimate reproduces
rather well both the magnitude and the shape of the ∆ηF

distribution. In particular, we demonstrate that the ul-
treperipheral mechanism is responsible for the increase
of dσ/d∆ηF with an increase of ∆ηF .
It is important to note that our estimate of

dσe.m.
pA /d∆ηF is based on the assumption that it receives

contributions from all MX comprising the total photon-
proton cross section and, hence, should be considered as
an upper limit. A more accurate account of the ultrape-
ripheral contribution to dσ/d∆ηF should include mod-
eling of the mass spectrum in photon-proton scattering
and the influence of the detector acceptance, which is
beyond the scope of our work.
While the aim of this letter was to capture the bulk

of physical effects explaining the CMS results in a semi-
quantitative way, our calculations can be improved along
several lines, in particular, in an estimate of the strong
interaction mechanism of coherent diffraction. However,
since it gives a subleading contribution, these refinements
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Our results are summarized in Fig. 2. It shows the

strong (green dot-dashed curve labeled “diff”), electro-
magnetic (blue dotted curve labeled “e.m.”), and to-
tal (the sum of the former two given by the red solid

TABLE I: The contribution of the electromagnetic (ul-
traperipheral) mechanism to pPb coherent diffraction,
dσe.m.

pA /d∆ηF , as a function of the rapidity gap size ∆ηF .

∆ηF dσe.m.
pA /d∆ηF , mb

1 13.9
2 17.8
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5 26.3

curve labeled “Total”) contributions to the cross section
of proton-lead (pPb) coherent diffraction as a function
of ∆ηF . A comparison to the CMS results presented in
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FIG. 2: The strong (“diff”), electromagnetic (“e.m.”), and
total (“Total”) contributions to the cross section of pPb co-
herent diffraction as a function of ∆ηF at

√

sNN = 8.16 TeV.

Fig. 4 of [3] shows that our simple estimate reproduces
rather well both the magnitude and the shape of the ∆ηF

distribution. In particular, we demonstrate that the ul-
treperipheral mechanism is responsible for the increase
of dσ/d∆ηF with an increase of ∆ηF .
It is important to note that our estimate of

dσe.m.
pA /d∆ηF is based on the assumption that it receives

contributions from all MX comprising the total photon-
proton cross section and, hence, should be considered as
an upper limit. A more accurate account of the ultrape-
ripheral contribution to dσ/d∆ηF should include mod-
eling of the mass spectrum in photon-proton scattering
and the influence of the detector acceptance, which is
beyond the scope of our work.
While the aim of this letter was to capture the bulk

of physical effects explaining the CMS results in a semi-
quantitative way, our calculations can be improved along
several lines, in particular, in an estimate of the strong
interaction mechanism of coherent diffraction. However,
since it gives a subleading contribution, these refinements

• Вспоминая связь MX с ΔηF : 

3

Making the common assumption of an exponen-
tial momentum transfer t dependence, dσdiff

pp /dt =

e−B(s)|t|dσdiff
pp (t = 0)/dt, we can express the proton-

nucleus diffractive cross section as a product of the t-
integrated proton-proton diffractive cross section σdiff

pp (s)
and the nuclear factor,

σdiff
pA (s) = σdiff

pp (s)4πB(s)

∫

d2#b (TA(b))
2 e−〈σ〉TA(b)

= 2.4 σdiff
pp (s) . (12)

In the second line of Eq. (12), we used that B ≈ Bel +
2α′

IP ln(m2
p/M

2
X) ≈ 15 GeV−2 for 40 ≤ MX ≤ 300 GeV

at
√
sNN = 8.16 TeV. This estimate is based on the

experimental results for the slope of the t dependence
of the elastic pp cross section Bel ≈ 20 GeV−2 [10] and
the general dependence of the slope of single diffractive
dissociation on M2

X in Regge phenomenology with α′
IP ≈

0.25 GeV−2; the used range of MX corresponds to 1 ≤
∆ηF ≤ 5.
Therefore, taking advantage of a simple connection be-

tween σdiff
pA (s) and σdiff

pp (s) and neglecting a weak depen-
dence on ξX of the slope B(s) and the nuclear factor in
Eq. (12), we can generalize Eq. (12) to the form differen-
tial in ∆ηF ,

dσdiff
pA

d∆ηF
= 2.4

dσdiff
pp

d∆ηF
. (13)

Finally, without resorting to a particular model for
dσdiff

pp /d∆ηF , we use the ATLAS result dσdiff
pp /d∆ηF ≈

1 mb [1] and thus arrive at the following estimate,

dσdiff
pA

d∆ηF
≈ 2.4 mb . (14)

This estimate semi-quantitatively agrees with predictions
of EPOS-LHC, QGSJET II, and HIJUNG generators
shown in Fig. 4 of Ref. [3].
Turning to Eq. (4), we notice that the photon energy

required to excited the diffractive massMX is ω = (M2
X−

m2
p)/(4mpγL(p)) ≈ M2

X/(4mpγL(p)) for sufficiently large
MX . Therefore,

dω

ω
= d lnM2

X = d∆ηF . (15)

It allows us to rewrite Eq. (4) in the form differential in
∆ηF

dσe.m.
pA

d∆ηF
= Nγ/A(ω(∆ηF ))σtot

γp (sγp) , (16)

where the photon energy corresponds to the given ∆ηF ,
i.e., to the given MX , see Eqs. (8) and (9). The resulting
values of dσe.m.

pA /d∆ηF as a function of ∆ηF in the 1 ≤
∆ηF ≤ 5 interval are given in Table I.
Our results are summarized in Fig. 2. It shows the

strong (green dot-dashed curve labeled “diff”), electro-
magnetic (blue dotted curve labeled “e.m.”), and to-
tal (the sum of the former two given by the red solid
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traperipheral) mechanism to pPb coherent diffraction,
dσe.m.

pA /d∆ηF , as a function of the rapidity gap size ∆ηF .
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FIG. 2: The strong (“diff”), electromagnetic (“e.m.”), and
total (“Total”) contributions to the cross section of pPb co-
herent diffraction as a function of ∆ηF at

√

sNN = 8.16 TeV.

Fig. 4 of [3] shows that our simple estimate reproduces
rather well both the magnitude and the shape of the ∆ηF

distribution. In particular, we demonstrate that the ul-
treperipheral mechanism is responsible for the increase
of dσ/d∆ηF with an increase of ∆ηF .
It is important to note that our estimate of

dσe.m.
pA /d∆ηF is based on the assumption that it receives

contributions from all MX comprising the total photon-
proton cross section and, hence, should be considered as
an upper limit. A more accurate account of the ultrape-
ripheral contribution to dσ/d∆ηF should include mod-
eling of the mass spectrum in photon-proton scattering
and the influence of the detector acceptance, which is
beyond the scope of our work.
While the aim of this letter was to capture the bulk

of physical effects explaining the CMS results in a semi-
quantitative way, our calculations can be improved along
several lines, in particular, in an estimate of the strong
interaction mechanism of coherent diffraction. However,
since it gives a subleading contribution, these refinements
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Making the common assumption of an exponen-
tial momentum transfer t dependence, dσdiff

pp /dt =

e−B(s)|t|dσdiff
pp (t = 0)/dt, we can express the proton-

nucleus diffractive cross section as a product of the t-
integrated proton-proton diffractive cross section σdiff

pp (s)
and the nuclear factor,

σdiff
pA (s) = σdiff

pp (s)4πB(s)

∫

d2#b (TA(b))
2 e−〈σ〉TA(b)

= 2.4 σdiff
pp (s) . (12)

In the second line of Eq. (12), we used that B ≈ Bel +
2α′

IP ln(m2
p/M

2
X) ≈ 15 GeV−2 for 40 ≤ MX ≤ 300 GeV

at
√
sNN = 8.16 TeV. This estimate is based on the

experimental results for the slope of the t dependence
of the elastic pp cross section Bel ≈ 20 GeV−2 [10] and
the general dependence of the slope of single diffractive
dissociation on M2

X in Regge phenomenology with α′
IP ≈

0.25 GeV−2; the used range of MX corresponds to 1 ≤
∆ηF ≤ 5.
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pA (s) and σdiff
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. (13)

Finally, without resorting to a particular model for
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pp /d∆ηF , we use the ATLAS result dσdiff
pp /d∆ηF ≈

1 mb [1] and thus arrive at the following estimate,

dσdiff
pA

d∆ηF
≈ 2.4 mb . (14)

This estimate semi-quantitatively agrees with predictions
of EPOS-LHC, QGSJET II, and HIJUNG generators
shown in Fig. 4 of Ref. [3].
Turning to Eq. (4), we notice that the photon energy

required to excited the diffractive massMX is ω = (M2
X−

m2
p)/(4mpγL(p)) ≈ M2

X/(4mpγL(p)) for sufficiently large
MX . Therefore,

dω

ω
= d lnM2

X = d∆ηF . (15)

It allows us to rewrite Eq. (4) in the form differential in
∆ηF

dσe.m.
pA

d∆ηF
= Nγ/A(ω(∆ηF ))σtot

γp (sγp) , (16)

where the photon energy corresponds to the given ∆ηF ,
i.e., to the given MX , see Eqs. (8) and (9). The resulting
values of dσe.m.

pA /d∆ηF as a function of ∆ηF in the 1 ≤
∆ηF ≤ 5 interval are given in Table I.
Our results are summarized in Fig. 2. It shows the

strong (green dot-dashed curve labeled “diff”), electro-
magnetic (blue dotted curve labeled “e.m.”), and to-
tal (the sum of the former two given by the red solid

TABLE I: The contribution of the electromagnetic (ul-
traperipheral) mechanism to pPb coherent diffraction,
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pA /d∆ηF , as a function of the rapidity gap size ∆ηF .

∆ηF dσe.m.
pA /d∆ηF , mb
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5 26.3

curve labeled “Total”) contributions to the cross section
of proton-lead (pPb) coherent diffraction as a function
of ∆ηF . A comparison to the CMS results presented in
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FIG. 2: The strong (“diff”), electromagnetic (“e.m.”), and
total (“Total”) contributions to the cross section of pPb co-
herent diffraction as a function of ∆ηF at

√

sNN = 8.16 TeV.

Fig. 4 of [3] shows that our simple estimate reproduces
rather well both the magnitude and the shape of the ∆ηF

distribution. In particular, we demonstrate that the ul-
treperipheral mechanism is responsible for the increase
of dσ/d∆ηF with an increase of ∆ηF .
It is important to note that our estimate of

dσe.m.
pA /d∆ηF is based on the assumption that it receives

contributions from all MX comprising the total photon-
proton cross section and, hence, should be considered as
an upper limit. A more accurate account of the ultrape-
ripheral contribution to dσ/d∆ηF should include mod-
eling of the mass spectrum in photon-proton scattering
and the influence of the detector acceptance, which is
beyond the scope of our work.
While the aim of this letter was to capture the bulk

of physical effects explaining the CMS results in a semi-
quantitative way, our calculations can be improved along
several lines, in particular, in an estimate of the strong
interaction mechanism of coherent diffraction. However,
since it gives a subleading contribution, these refinements
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Making the common assumption of an exponen-
tial momentum transfer t dependence, dσdiff

pp /dt =

e−B(s)|t|dσdiff
pp (t = 0)/dt, we can express the proton-

nucleus diffractive cross section as a product of the t-
integrated proton-proton diffractive cross section σdiff

pp (s)
and the nuclear factor,

σdiff
pA (s) = σdiff

pp (s)4πB(s)

∫

d2#b (TA(b))
2 e−〈σ〉TA(b)

= 2.4 σdiff
pp (s) . (12)

In the second line of Eq. (12), we used that B ≈ Bel +
2α′

IP ln(m2
p/M

2
X) ≈ 15 GeV−2 for 40 ≤ MX ≤ 300 GeV

at
√
sNN = 8.16 TeV. This estimate is based on the

experimental results for the slope of the t dependence
of the elastic pp cross section Bel ≈ 20 GeV−2 [10] and
the general dependence of the slope of single diffractive
dissociation on M2

X in Regge phenomenology with α′
IP ≈

0.25 GeV−2; the used range of MX corresponds to 1 ≤
∆ηF ≤ 5.
Therefore, taking advantage of a simple connection be-

tween σdiff
pA (s) and σdiff

pp (s) and neglecting a weak depen-
dence on ξX of the slope B(s) and the nuclear factor in
Eq. (12), we can generalize Eq. (12) to the form differen-
tial in ∆ηF ,

dσdiff
pA

d∆ηF
= 2.4

dσdiff
pp

d∆ηF
. (13)

Finally, without resorting to a particular model for
dσdiff

pp /d∆ηF , we use the ATLAS result dσdiff
pp /d∆ηF ≈

1 mb [1] and thus arrive at the following estimate,

dσdiff
pA

d∆ηF
≈ 2.4 mb . (14)

This estimate semi-quantitatively agrees with predictions
of EPOS-LHC, QGSJET II, and HIJUNG generators
shown in Fig. 4 of Ref. [3].
Turning to Eq. (4), we notice that the photon energy

required to excited the diffractive massMX is ω = (M2
X−

m2
p)/(4mpγL(p)) ≈ M2

X/(4mpγL(p)) for sufficiently large
MX . Therefore,

dω

ω
= d lnM2

X = d∆ηF . (15)

It allows us to rewrite Eq. (4) in the form differential in
∆ηF

dσe.m.
pA

d∆ηF
= Nγ/A(ω(∆ηF ))σtot

γp (sγp) , (16)

where the photon energy corresponds to the given ∆ηF ,
i.e., to the given MX , see Eqs. (8) and (9). The resulting
values of dσe.m.

pA /d∆ηF as a function of ∆ηF in the 1 ≤
∆ηF ≤ 5 interval are given in Table I.
Our results are summarized in Fig. 2. It shows the

strong (green dot-dashed curve labeled “diff”), electro-
magnetic (blue dotted curve labeled “e.m.”), and to-
tal (the sum of the former two given by the red solid

TABLE I: The contribution of the electromagnetic (ul-
traperipheral) mechanism to pPb coherent diffraction,
dσe.m.

pA /d∆ηF , as a function of the rapidity gap size ∆ηF .

∆ηF dσe.m.
pA /d∆ηF , mb

1 13.9
2 17.8
3 21.1
4 23.9
5 26.3

curve labeled “Total”) contributions to the cross section
of proton-lead (pPb) coherent diffraction as a function
of ∆ηF . A comparison to the CMS results presented in
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FIG. 2: The strong (“diff”), electromagnetic (“e.m.”), and
total (“Total”) contributions to the cross section of pPb co-
herent diffraction as a function of ∆ηF at

√

sNN = 8.16 TeV.

Fig. 4 of [3] shows that our simple estimate reproduces
rather well both the magnitude and the shape of the ∆ηF

distribution. In particular, we demonstrate that the ul-
treperipheral mechanism is responsible for the increase
of dσ/d∆ηF with an increase of ∆ηF .
It is important to note that our estimate of

dσe.m.
pA /d∆ηF is based on the assumption that it receives

contributions from all MX comprising the total photon-
proton cross section and, hence, should be considered as
an upper limit. A more accurate account of the ultrape-
ripheral contribution to dσ/d∆ηF should include mod-
eling of the mass spectrum in photon-proton scattering
and the influence of the detector acceptance, which is
beyond the scope of our work.
While the aim of this letter was to capture the bulk

of physical effects explaining the CMS results in a semi-
quantitative way, our calculations can be improved along
several lines, in particular, in an estimate of the strong
interaction mechanism of coherent diffraction. However,
since it gives a subleading contribution, these refinements
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Результат для распределения по ΔηF   

на • Наша полу-количественная оценка объясняет величину и поведение 
данных CMS. 

• В частности, ультра-периферический вклад доминирует и слабо растет с 
ΔηF за счет роста фотонного потока.  

• Вклад сильныx взаимодействий мал и не зависит от ΔηF
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Making the common assumption of an exponen-
tial momentum transfer t dependence, dσdiff

pp /dt =

e−B(s)|t|dσdiff
pp (t = 0)/dt, we can express the proton-

nucleus diffractive cross section as a product of the t-
integrated proton-proton diffractive cross section σdiff

pp (s)
and the nuclear factor,

σdiff
pA (s) = σdiff

pp (s)4πB(s)

∫

d2#b (TA(b))
2 e−〈σ〉TA(b)

= 2.4 σdiff
pp (s) . (12)

In the second line of Eq. (12), we used that B ≈ Bel +
2α′

IP ln(m2
p/M

2
X) ≈ 15 GeV−2 for 40 ≤ MX ≤ 300 GeV

at
√
sNN = 8.16 TeV. This estimate is based on the

experimental results for the slope of the t dependence
of the elastic pp cross section Bel ≈ 20 GeV−2 [10] and
the general dependence of the slope of single diffractive
dissociation on M2

X in Regge phenomenology with α′
IP ≈

0.25 GeV−2; the used range of MX corresponds to 1 ≤
∆ηF ≤ 5.
Therefore, taking advantage of a simple connection be-

tween σdiff
pA (s) and σdiff

pp (s) and neglecting a weak depen-
dence on ξX of the slope B(s) and the nuclear factor in
Eq. (12), we can generalize Eq. (12) to the form differen-
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= 2.4

dσdiff
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. (13)

Finally, without resorting to a particular model for
dσdiff

pp /d∆ηF , we use the ATLAS result dσdiff
pp /d∆ηF ≈

1 mb [1] and thus arrive at the following estimate,

dσdiff
pA

d∆ηF
≈ 2.4 mb . (14)

This estimate semi-quantitatively agrees with predictions
of EPOS-LHC, QGSJET II, and HIJUNG generators
shown in Fig. 4 of Ref. [3].
Turning to Eq. (4), we notice that the photon energy

required to excited the diffractive massMX is ω = (M2
X−

m2
p)/(4mpγL(p)) ≈ M2

X/(4mpγL(p)) for sufficiently large
MX . Therefore,

dω

ω
= d lnM2

X = d∆ηF . (15)

It allows us to rewrite Eq. (4) in the form differential in
∆ηF

dσe.m.
pA

d∆ηF
= Nγ/A(ω(∆ηF ))σtot

γp (sγp) , (16)

where the photon energy corresponds to the given ∆ηF ,
i.e., to the given MX , see Eqs. (8) and (9). The resulting
values of dσe.m.

pA /d∆ηF as a function of ∆ηF in the 1 ≤
∆ηF ≤ 5 interval are given in Table I.
Our results are summarized in Fig. 2. It shows the

strong (green dot-dashed curve labeled “diff”), electro-
magnetic (blue dotted curve labeled “e.m.”), and to-
tal (the sum of the former two given by the red solid

TABLE I: The contribution of the electromagnetic (ul-
traperipheral) mechanism to pPb coherent diffraction,
dσe.m.

pA /d∆ηF , as a function of the rapidity gap size ∆ηF .

∆ηF dσe.m.
pA /d∆ηF , mb

1 13.9
2 17.8
3 21.1
4 23.9
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curve labeled “Total”) contributions to the cross section
of proton-lead (pPb) coherent diffraction as a function
of ∆ηF . A comparison to the CMS results presented in
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FIG. 2: The strong (“diff”), electromagnetic (“e.m.”), and
total (“Total”) contributions to the cross section of pPb co-
herent diffraction as a function of ∆ηF at

√

sNN = 8.16 TeV.

Fig. 4 of [3] shows that our simple estimate reproduces
rather well both the magnitude and the shape of the ∆ηF

distribution. In particular, we demonstrate that the ul-
treperipheral mechanism is responsible for the increase
of dσ/d∆ηF with an increase of ∆ηF .
It is important to note that our estimate of

dσe.m.
pA /d∆ηF is based on the assumption that it receives

contributions from all MX comprising the total photon-
proton cross section and, hence, should be considered as
an upper limit. A more accurate account of the ultrape-
ripheral contribution to dσ/d∆ηF should include mod-
eling of the mass spectrum in photon-proton scattering
and the influence of the detector acceptance, which is
beyond the scope of our work.
While the aim of this letter was to capture the bulk

of physical effects explaining the CMS results in a semi-
quantitative way, our calculations can be improved along
several lines, in particular, in an estimate of the strong
interaction mechanism of coherent diffraction. However,
since it gives a subleading contribution, these refinements

8

The diffraction enhanced DhF distributions were obtained as a weighted mean of the pPb and
Pbp spectra unfolded with EPOS-LHC, with weights defined by the statistical uncertainties of
the two spectra. The spectra are shown in Fig 4 together with hadron level predictions from
the EPOS-LHC, QGSJET II and HIJING generators. The results are presented in the laboratory
frame of reference. The nucleon-nucleon center-of-mass system is shifted with respect to the
laboratory frame by ylab = ±0.465 depending on the lead beam direction. All the generators
are below the data for both the IPPb and IPp+gp cases. For both topologies EPOS-LHC is closer
to the data than either QGSJET II or HIJING. For the IPp+gp the data are factor of at least 5 above
the generators, suggesting a strong contribution from gp events. EPOS-LHC and QGSJET II pre-
dictions on contributions from non-diffractive and different kinds of diffractive processes to
the diffraction enhanced DhF spectra are provided in Appendix A. Additional studies on con-
tribution from events without lead nuclear break up to the diffraction enhanced ds

dDhF spectrum
obtained for the IPp+gp event topology are described in Appendix A as well.
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Figure 4: Unfolded diffraction enhanced ds
dDhF spectra compared to hadron level predictions of

the EPOS-LHC, HIJING and QGSJET II generators. The data are corrected for the contribution
from events with undetectable energy in the HF calorimeter adjacent to the rapidity gap. The
corrections are obtained using the EPOS-LHC MC samples. For the pPb data sample, in the IPPb
case (left) the rapidity gap, DhF, is measured from h = 3 and no particles are present within
3 < h < 5.19, while for the IPp+gp case (right) the rapidity gap is measured from h = �3 and
no particles are present within �5.19 < h < �3. The statistical and systematic uncertainties
are added in quadrature. The gray band shows the resulting uncertainty excluding the error
introduced with the correction for the undetectable energy in the HF calorimeter, while the
yellow band accounts for all uncertainty sources. The bottom panels show the ratio of the three
generators to data.
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l Ультра-периферический вклад доминирует в сечении когерентной 
дифракционной диссоциации протонов на тяжелых ядрах в кинематике 
БАК. 

l Учет этого механизма позволяет полу-количественно объяснить данные 
CMS по распределение по щели в быстроте во впередовой области ΔηF  в 
Померон-протонной кинематике. 

l Это указывает на необходимость учета ультра-периферического вклада 
в Монте-Карло генераторах. 

l Сильный и ультра-периферические вклады сравнимы в случае легких 
ядер (кислород, O). Т.к. ультра-периферический вклад под теор. 
контролем → возможность измерить дифракцию на ядрах.

Заключение


