

Изучение рождения Z бозонов в ppвзаимодействиях при √s = 13 ТэВ в эксперименте LHCb.

Дзюба А.А., НИЦ »Курчатовский институт» – ПИЯФ

Семинар ОФВЭ, 24 января 2023 г.

Аннотация

В докладе будут представлены результаты исследований рождения Z бозонов в область передних углов в протон-протонных взаимодействиях при √s = 13 ТэВ. Измерения выполнены экспериментом LHCb на Большом адронном коллайдере (ЦЕРН). Получены интегральные и дифференциальные сечения рождения Z бозонов [1], исследованы угловые распределения для мюонных пар [2], получено указание на возможный вклад очарованных кварков в волновую функцию протона [3]. Использование мюонного канала распада Z бозона для калибровочных целей позволило провести измерения массы W бозона [4].

Ссылки:

- 1. LHCb Collaboration, Precision measurement of forward **Z** boson production in protonproton collisions at vs=13 TeV, JHEP 07 (2022) 026
- 2. LHCb Collaboration, First measurement of $Z \rightarrow \mu^+ \mu^-$ angular coefficients in the forward region of pp collisions at $\sqrt{s=13}$ TeV, Phys. Rev. Lett. 129 (2022) 091801
- 3. LHCb Collaboration, Study of **Z** bosons produced in association with charm in the forward region, Phys. Rev. Lett. 128 (2022) 082001
- 4. LHCb Collaboration, Measurement of the W boson mass, JHEP 01 (2022) 036

Тяжелые калибровочные бозоны в СМ

В результате механизма Хиггса массивными становятся три комбинации полей V^i_{μ} и B_{μ} , которые описывают W^{\pm} и Z-бозоны:

$$egin{aligned} W^{\pm}_{\mu} &= rac{1}{\sqrt{2}}ig(V^1_{\mu} \mp i V^2_{\mu}ig), \ Z_{\mu} &= rac{1}{\sqrt{g^2 + {g'}^2}}ig(g V^3_{\mu} - g' B_{\mu}ig). \end{aligned}$$

Массы **W** и **Z** определяются константами связи (*g* и *g*') и ненулевым среднем поля Хиггса (*v*)

$$M_W = \frac{gv}{2}, \quad M_Z = \frac{v\sqrt{g^2 + {g'}^2}}{2} = \frac{M_W}{\cos \theta_W}.$$

3

CM, SUSY и масса W

- Для калибровочных W[±] и Z бозонов масса, возникающая при взаимодействии бозонных полей с полем Хиггса, – величина, которая может быть рассчитана, исходя из остальных параметров СМ
 - Отклонение экспериментально измеренной массы W[±] от предсказаний СМ может быть интерпретировано как • проявление новых фундаментальных частиц и M_w [GeV] взаимодействий
 - MSSM predictions, JHEP 2013 (2013) 84 \rightarrow
 - Измерения CDF, Science 376 (2022) 170 ->

• Macca W измеряется экспериментами LHC

- Как будет показано в докладе, несмотря на низкую накопленную интегральную светимость (по сравнению с ATLAS и CMS), эксперимент LHCb оказывается конкурентоспособен в измерениях такого рода
- Для LHCb существенная часть систематической погрешности идет из-за неопределенности партонных распределений, которые могут быть уточнены путем измерения дифференциальных сечений рождения Z в соответствующей кинематической области

W/Z как «частицы-пробники» в исследованиях

структуры протона

- Процессы Дрелла-Яна (DY)
- В рамках КХД сечение рождения Z вычисляется в третьем порядке теории возмущений (N³LO).
 - JHEP 03 (2022) 116
 - Phys. Rev. D 104, L111503
- Измерение дифференциальных сечений рождения Z в кинематической области, доступной в эксперименте LHCb, позволит существенно уменьшить неопределенность партонных распределений для валентных кварков в области малых (x ~ 5×10⁻⁵) и больших (x ~ 0,8) долей импульса
 - Chinese Phys. C 45 (2021) 023110 →

Выводы Chinese Phys. C 45 (2021) 023110

- The largest improvement is in the *d* quark PDFs. The uncertainty of the *d* quark PDFs can be improved significantly by the LHCb 13 TeV W^{\pm}/Z data in the whole *x* region. In the small-*x* region $10^{-5} < x < 10^{-2}$ especially, the uncertainty would be reduced by a factor of 60% at $x \sim 10^{-3}$.
- The uncertainty of *u*, *s*, *c* quark and gluon PDFs can be reduced across the whole *x* region, and significant improvements are expected in very small- and larger-*x* regions.
- The uncertainties of d/u and \bar{d}/\bar{u} ratios can be significantly reduced across the whole x range, even with only 5 fb⁻¹ data. In the very larger-x region, the LHCb 13 TeV data could have a large impact on the d/u ratio.
- The LHCb 13 TeV W[±] and Z data also has a large impact on the u
 and d
 quark PDFs, mainly in the small-x region.

ГНР нейтрино

SeaQuest collaboration, J. Dove *et al.*, *The asymmetry of antimatter in the proton*, Nature **590** (2021) 561, arXiv:2103.04024.

NuSea collaboration, R. S. Towell *et al.*, Improved measurement of the \bar{d}/\bar{u} asymmetry in the nucleon sea, Phys. Rev. D64 (2001) 052002, arXiv:hep-ex/0103030.

• pp $\rightarrow \gamma^*/Z + X \rightarrow \mu^+\mu^- + X$

$$\cos \theta = \frac{\ell_{+}^{-}\ell_{-}^{+} - \ell_{-}^{-}\ell_{+}^{+}}{M\sqrt{M^{2} + p_{T}^{2}}}, \quad \tan \phi = \frac{\sqrt{M^{2} + p_{T}^{2}}}{M} \frac{\vec{\Delta} \cdot \hat{R_{T}}}{\vec{\Delta} \cdot \hat{p_{T}}},$$

- Кинематическое распределение лептонов в конечном состоянии обеспечивает прямое исследование поляризации промежуточного калибровочного бозона, который, в свою очередь, чувствителен к основным механизмам образования КХД.
 - Распределение для углов µ⁺ в Collins-Soper frame [Phys. Rev. D16 (1977) 2219] описывается при помощи набора коэффициентов

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta\mathrm{d}\phi} \propto (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin2\theta\cos\phi + \frac{1}{2}A_2\sin^2\theta\cos2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2\theta\sin2\phi + A_6\sin2\theta\sin\phi + A_7\sin\theta\sin\phi,$$

Измерение угловых коэффициентов для распада $Z \rightarrow \mu^+ \mu^-$ • В ведущем порядке теории в

• $pp \rightarrow \gamma^*/Z + X \rightarrow \mu^+\mu^- + X$

- Кинематическое распределение лептонов в конечном состоянии обеспечивает прямое исследование поляризации промежуточного калибровочного бозона, который, в свою очередь, чувствителен к основным механизмам образования КХД.
 - Распределение для углов µ⁺ в Collins-Soper frame [Phys. Rev. D16 (1977) 2219] описывается при помощи набора коэффициентов

- В ведущем порядке теории возмущений (LO) в рамках КХД все угловые коэффициенты обращаются в нуль при стремлении поперечного импульса ди-лептона к нулю, за исключением A₄, который отличен от нуля изза нарушения четности в слабом взаимодействии.
- В порядке следующем за ведущим порядком (NLO), А₀₋₃ становятся ненулевыми
- А₅₋₇ имеют небольшие отклонения от нуля только в следующем за ведущим порядком (NNLO).

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta\mathrm{d}\phi} \propto (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin2\theta\cos\phi + \frac{1}{2}A_2\sin^2\theta\cos2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2\theta\sin2\phi + A_6\sin2\theta\sin\phi + A_7\sin\theta\sin\phi$$

A₂ пропорционально свертке кварковой и антикварковой функций Бура-Малдерса (transversemomentum dependent (TMD) parton distribution function) в сталкивающихся частицах

Внутреннее очарование протона

- Вклад очарованных кварков в волновую функцию протона
 - расщепление глюонов: $g \rightarrow c \bar{c}$
 - $|uudc\bar{c}\rangle$ компонента в в.ф. протона = внутреннее очарование протона = intrinstic charm (IC) / непертурбативный
- S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, The intrinsic charm of the proton,
 - Phys. Lett. B93 (1980) 451.
- IC может быть обнаружен в *pp* взаимодействиях через рождение *Z* и очарованной струи
- Эффект более ярко выражен при больших быстротах

LHCb: Find \ Identify \ Measure

Excellent vertexing allows efficient heavy

Excellent tracking

Muon system – nice tagging & great potential to search for rare decays with di-muons

Excellent PID allows to suppress

background dramatically and

Светимость и триггер

- LHCb работает в режиме с постоянной мгновенной светимостью (1.1 видимых взаимодействий на пересечение пучков)
- Две ступени триггера: аппаратная (LO) и программная (HLT1,2)
- Тигbo-режим для Run-2 события-кандидаты реконструируруемые на уровне триггера сохраняются и используются в оффлайн анализе:

Beam-beam crossing

L0 Hardware trigger

 $30 \, \mathrm{MHz}$

1 MHz

Arxiv 1903.01360

Критерии отбора событий ($Z \rightarrow \mu^+ \mu^-$)

- Треки идентифицируются как мюоны, если они совпадают с попаданиями либо в три, либо во все четыре самые мюонные станции за калориметром
- Мюоны: р_т > 20 GeV/с и 2.0 < η < 4.5 јнер 07 (2022) 026
- Относительная неопределенность в измерении импульса для каждого мюона не более 10%.
 - Изоляция для работы по изучению угловых распределений: p_f^µ / p_f^{конус} > 0.85 и R < 0.5</p>

JHEP 01 (2022) 036

Критерии отбора событий (*W* → *µv*)

- Треки идентифицируются как мюоны, если они совпадают с попаданиями либо в три, либо во все четыре самые дальние мюонные станции за калориметром
- Мюоны: *p_T* > 6 GeV/с и 2.2 < *η* < 4.4
- Разница в качестве «фитирования» первичной вершины с и без мюонного трека: Δχ_{IP}² < 9
- Относительная неопределенность в измерении импульса для каждого мюона не более 6%.
- Изоляция: дополнительная энергия в конусе < 4 GeV и *R* < 0.4
- Вето, если в событии есть второй мюона с p₇ > 25 GeV/с для подавления вклада Z → μ⁺μ⁻

Вклад фоновых событий

- Тяжелые кварки:
 - Требование на <u>Ах</u>
 - Требование на «изоляцию» (*R* < 0.5)
 - Учет эффективности
 - Вклад фона порядка 1%
- Неправильно идентифицированные адроны:
 - Мюоны одного заряда за вычетом компоненты от тяжелых кварков
- Электрослабые процессы:
 - $t\overline{t}$, W^+W^- , $W^{\pm}Z$, ZZ
 - $Z \rightarrow \tau^+ \tau^-$
 - Вычисление МС в NNLO порядке теории
- Полный вклад фона (1.5 ± 0.1)%

796 000 событий-кандидатов

JHEP 07 (2022) 026

Критерии отбора событий (*c-jets*)

Чувствительный объем (fiducial region):

Z bosons	$p_{\rm T}(\mu) > 20 {\rm GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 {\rm GeV}$
Jets	$20 < p_{\rm T}(j) < 100 {\rm GeV}, \ 2.2 < \eta(j) < 4.2$
Charm jets	$p_{\rm T}(c \text{ hadron}) > 5 \text{GeV}, \Delta R(j, c \text{ hadron}) < 0.5$
Events	$\Delta R(\mu, j) > 0.5$

- Мюоны: *p_T* > 10 GeV/с и 2.2 < *η* < 4.4
- Струи: anti-k_т алгоритм (**FastJet**)
 - Если для одной первичной вершины было реконструирована струй несколько, что выбиралась одна с наибольшем р_т
- Идентификация с-струй:
 - Детально: JINST 17(2022) P02028, arXiv:2112.08435
 - Вторичная вершина (displaced-vertex, DV) в конусе струи
 - Подавление **b**-струй:
 - Распределение по множественности: N_{trk}(DV)
 - $m_{\rm cor}({\rm DV}) \equiv \sqrt{m({\rm DV})^2 + [p({\rm DV})\sin\theta]^2} + p({\rm DV})\sin\theta$

Phys. Rev. Lett. 128 (2022) 082001

Эффективность идентификации:			
р_т = 20-30 ГэВ/с	(23,9 ± 1,4)%,		
р_т = 30-50 ГэВ/с	(24,4 ± 1,9)%,		
р ₇ = 50-100 ГэВ/с	(23,6±4,1)%.		

Эффект миграции и систематика

- Отклик детектора изучается с использованием распределения р_т-баланса р_т(j)=p_т(Z) для Zj-кандидатов, которые разлетаются в разные стороны в поперечной плоскости →
- Эффективность алгоритма с-таггинга определялась в двух струйных событиях, в которых одна струя имела идентифицированный очарованный адрон
 - Подробнее о процедуре: JINST 17 (2022) P02028
- Систематические погрешности

Source	Relative Uncertainty
c tagging DV-fit templates	6-7% 3-4%
Jet reconstruction Jet $p_{\rm T}$ scale & resolution	$1\% \\ 1\%$
Total	8%

Калибровка импульса

- Выстройка детектора (alignment) осуществлялась по положению пика Z бозона, который «устанавливался» на мировые значения
- Калибровка импульса наиболее важна для измерения m_W
 - Распределение для отношение *q/p*, полученного из МС, модифицировалось, чтобы соответствовать экспериментальным данным
 - Параметры определялись из калибровочных распределений J/ψ, Y(1S) и Z
- Погрешность, соответствующая калибровке, оценивается в 5 МэВ

Калибровка импульса

Корректировка на излучение в коңечном состоянии

- 18 интервалов по **у**^z, от 2.0 до 4.5
 - Ширина интервала 0.125 до **у^z** =4.0 и 0.25 выше
- 14 интервалов по р_т²

Сечение

- [0.0, 2.2, 3.4, 4.6, 5.8, 7.2, 8.7, 10.5, 12.8,15.4, 19.0, 24.5, 34.0, 63.0, 270.0] GeV/c
- Unfolding только по этой переменной (итерационный байесовский метод)
- 15 интервалов по ф*
 - [0.002, 0.01, 0.02, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20, 0.30, 0.40, 0.60, 0.80, 1.20, 2.00, 4.00]
 - $\phi_{\eta}^* = \tan((\pi \Delta \phi^{\ell \ell})/2) \sin(\theta_{\eta}^*), \ \cos(\theta_{\eta}^*) = \tanh[(\eta^- \eta^+)/2]$
 - Лучшее разрешение на коллайдерах
- Светимость измеряется централизовано (лим 9 (2014) Р12005)
 - Ван-дер-Мееровское сканирование (счет при изменении положения пучков)
 - Взаимодействие с остаточным газом в трубе

Эффективность

$$\varepsilon^{Z} = \left(\varepsilon^{\mu^{+}}_{\text{track}} \cdot \varepsilon^{\mu^{-}}_{\text{track}}\right) \cdot \left(\varepsilon^{\mu^{+}}_{\text{ID}} \cdot \varepsilon^{\mu^{-}}_{\text{ID}}\right) \cdot \left(\varepsilon^{\mu^{+}}_{\text{trig}} + \varepsilon^{\mu^{-}}_{\text{trig}} - \varepsilon^{\mu^{+}}_{\text{trig}} \cdot \varepsilon^{\mu^{-}}_{\text{trig}}\right)$$

- Все эффективности измерялись методом tag-and-probe для набора предотобранных событий Z (с более мягкими требованиями на событие)
- Проверка на Монте-Карло
 - Сравнение tag-and-probe метода с истинными эффективностями (MC-truth)
- Пример: эффективность треккинга

Корректировка на излучение в конечном состоянии

- Измеренное сечение корректируется до борновского приближения КЭД, так что его можно напрямую сравнивать с различными теоретическими предсказаниями.
- Корректировка излучения конечного состояния → отношение предсказаний связки ResBos+PHOTOS и ResBos.
- Корректирующие факторы получены для всех переменных в каждом интервале, для которого извлекалось сечение

 $2.0 < \eta < 4.5$ $p_{\rm T} > 20 \,{\rm GeV}/c$ $60 < M_{\mu\mu} < 120 \,{\rm GeV}/c^2$

Дифференциальные сечения

 $2.0 < \eta < 4.5$ $p_{\rm T} > 20 \,{\rm GeV}/c$ $60 < M_{\mu\mu} < 120 \,{\rm GeV}/c^2$

Дифференциальные сечения

Дифференциальные сечения

 $2.0 < \eta < 4.5$ $p_{\rm T} > 20 \,{\rm GeV}/c$ $60 < M_{\mu\mu} < 120 \,{\rm GeV}/c^2$

Интегральное сечение

 $\sigma(Z \to \mu^+ \mu^-) = 196.4 \pm 0.2 \pm 1.6 \pm 3.9 \,\mathrm{pb},$

Course	$\Delta \sigma / \sigma [0/1]$
Source	$\Delta 0 / 0 [70]$
Statistical	0.11
Background	0.06
Alignment & calibration	-
Efficiency	0.77
Closure	0.23
FSR	0.15
Total Systematic (excl. lumi.)	0.82
Luminosity	2.00
Total	2.16

Коэффициенты углового разложения

- В ведущем порядке теории возмущений (LO) в рамках КХД все угловые коэффициенты обращаются в нуль при стремлении поперечного импульса ди-лептона к нулю, за исключением A₄, который отличен от нуля из-за нарушения четности в слабом взаимодействии.
- В порядке следующем за ведущим порядком (NLO), А₀₋₃ становятся ненулевыми
- А₅₋₇ имеют небольшие отклонения от нуля только в следующем за ведущим порядком (NNLO).
 - В данной работе **A**₅₋₇ = 0 (fixed)

Коэффициенты углового разложения (малые р_т)

• Непертурбативные TMD PDF можно исследовать с помощью измерения А, в области малых р.

• Хорошее согласие во всех кинематических интервалах

20

Неясно, могут ли непертурбативные корреляции спинимпульс в протоне, описываемые распределением Бура-Малдерса, привести к таким вариациям, поскольку нет доступных феноменологических расчетов.

Ни один из расчетов, использованных при сравнении, не включает этот тип непертурбативного эффекта.

Phys. Rev. Lett. 129 (2022) 091801

Сравнение с теорией без ІС

Phys. Rev. Lett. 128 (2022) 082001

Три набора PDF, из которых формируется набор **PDF4LHC15**, обеспечивают согласованное предсказание.

 $\frac{1.0}{\alpha(Zc)} \frac{1.0}{\alpha(Zj)}$

0.04

0.02

NLO SM

▲ CT14–No IC

2.5

• PDF4LHC15–No IC

▼ MMHT14–No IC

■ NNPDF 3.0–No IC

3

3.5

Наборы PDF ABM16, JR14 и HERAPDF 2.0 также дают качественно схожие предсказания, хотя предсказания JR14 и HERAPDF 2.0 смещены в сторону более низких значений.

Сравнение с теорией с включением ІС

- Наблюдаемый спектр демонстрирует значительное усиление отношения Zc/Zj при больших быстротах Z
- Это согласуется с ожидаемым эффектом, если волновая функция протона содержит компоненту | *ииdcc*>, предсказанную BHPS.
- Однако выводы о том, содержит ли протон внутреннее очарование, можно сделать только после включения этих результатов в глобальный анализ PDF.

Phys. Rev. Lett. 128 (2022) 082001

Macca W

- Сравнение предсказаний СМ и прямых измерений
- Измерения базируются на описании р_траспределения для мюонов из распада W
- Контроль по параметрам мюонов из распадов Z
 - $m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$
 - JHEP 01 (2022) 036
- Измерение LHCb находится в прекрасном согласии с предсказаниями СМ
- По точности новое измерение сопоставимой с объединенными данными LEP

- Измерения CDF II (апрель 2022) отклонение измеренной массы W, от предсказаний CM.
- Индивидуально каждое предыдущее измерение находится в согласии с результатами CDF, но общая картина явно свидетельствует о расхождении

Выводы

- Измерение дифференциальных характеристик рождения Z бозона производилось при помощи выделения событий распада Z → μ⁺μ⁻ в наборе данных LHCb при √s = 13 ТэВ (JHEP 07 (2022) 026)
 - Был проведен анализ угловых распределений и распределений поперечному импульсу
 - Экспериментальные данные находятся в хорошем согласии с теоретическими предсказаниями.
- Коэффициенты углового разложения в целом согласуются с пулом теоретических предсказаний в том числе в районе малых р₇ (Phys. Rev. Lett. 129 (2022) 091801).
- В исследовании корреляций Z + с-струя получено указание на вклад очарованных кварков в волновую функцию протона (Phys. Rev. Lett. 128 (2022) 082001)
- Измерена масса *W* бозона с точностью сопоставимой с объединенными данными LEP (JHEP 01 (2022) 036)

Запасные слайды

Измерение сечений рождения Z бозона в pp взаимодействиях при √s = 13 ТэВ на LHCb

- В рамках КХД сечение рождения Z вычисляется в третьем порядке теории возмущений (N³LO).
- Измерение дифференциальных сечений рождения Z в кинематической области, доступной в эксперименте LHCb (БАК-би), позволит существенно уменьшить неопределенность партонных распределений для валентных кварков в области малых (x ~ 5×10⁻⁵) и больших (x ~ 0,8) долей импульса

796 000 событий-кандидатов.

- Измерение дифференциальных характеристик рождения Z бозона производилось при помощи выделения событий распада Z → μ⁺μ⁻ в наборе данных LHCb при √s = 13 ТэВ.
- Был проведен анализ угловых распределений и распределений поперечному импульсу
- Экспериментальные данные находятся в хорошем согласии с теоретическими предсказаниями.
- Результаты работы опубликованы: JHEP 07 (2022) 26
- Сотрудники НИЦ «Курчатовский институт» ПИЯФ, обеспечивали бесперебойную работу Мюонной системы LHCb и принимавших активное участие в подготовке публикации