Закрученные частицы: генерация
 и потенциальные приложения в квантовой физике

Дмитрий Карловец
Университет ИТМО
23.05.2024
d.karlovets@gmail.com

I/ITMO

Outline

1. Intro
2. Quantum tomography of the evolved states in QFT:
a. With the plane-wave electrons/protons/ions...
b. With the generalized measurements
3. Vortex electrons, ions, nuclei,... - generation strategies at accelerators
a. Magnetized cathode technique
b. Magnetized stripping foil technique
4. Acceleration of charged particles with vortices and photon emission

Classical light:

- Plane waves
- Spherical waves
- Cylindrical waves

Each wave can be represented as a superposition of the waves from the other set

Quantum light:

- Plane-wave photons
- Spherical (waves of) photons
- Cylindrical (waves of) photons

Each wave function (eigenvector) in a set can be represented
as a superposition of the wave functions (eigenvectors)
from the other set
or the twisted photons

Plane vs. spherical:

Quantum light

- Plane-wave photons: $k_{x}, k_{y}, k_{z}+$ polarization
- Spherical (waves of) photons: $|\boldsymbol{k}|, 1, \mathrm{~m}\left(=L_{z}\right)+$ polarization
- The cylindrical (twisted) photons: $k_{\perp}, k_{z}, \mathrm{~m}\left(=L_{z}\right.$ or $\left.J_{-} z\right)+$ polarization
a Plane wave

Радиально поляризованный свет

Youngworth, Brown, Optics express 7, 77-87(2000)

Beams with quantized angular momentum

Basic exact solutions to the wave equations

$$
\begin{array}{cc}
\psi_{\mathbf{k}}(\mathbf{r})=\exp (\mathrm{ikr}), \\
\psi_{k l m}(\mathbf{r})=\sqrt{\frac{2 \pi}{k r}} J_{l+1 / 2}(k r) Y_{l m}\left(\theta_{r}, \varphi_{r}\right), & \text {-plane waves } \\
\psi_{\nless m k_{z}}(\mathbf{r})=J_{m}(\varkappa \rho) \exp \left[\mathrm{i}\left(m \varphi_{r}+k_{z} z\right)\right] & \text { - spherical waves } \\
\hat{\iota}_{z}=[\hat{\boldsymbol{r}} \times \hat{\boldsymbol{p}}]_{z}=-i \frac{\partial}{\partial \phi_{r}} & \begin{array}{c}
\text { cylindrical waves } \\
\text { (Bessel beams) }
\end{array} \\
\begin{array}{c}
\text { K.Y. Bliokh, et al., } \\
\text { PRL99 (2007) 190404 }
\end{array}
\end{array}
$$

a Plane wave

b
b Spiral-type wave

The picture from M. Uchida, A. Tonomura, Nature 464, 737 (2010)

Generalizations for relativistic bosons and fermions are straightforward!

The uncertainty relation: the definite L_{-}z implies indefinite azimuthal angle!

$$
\left\langle\left(\Delta L_{z}\right)^{2}\right\rangle\left\langle\left(\Delta \sin \phi_{r}\right)^{2}\right\rangle \geq \frac{1}{4}\left\langle\cos \phi_{r}\right\rangle^{2}
$$

P. Carruthers, M.M. Nieto, Rev. Mod. Phys. 40, 411 (1968)

Цилиндрическая волна
 с угловым моментом $=0$

First Observation of Photons Carrying Orbital Angular Momentum in Undulator Radiation

J. Bahrdt, K. Holldack, P. Kuske, R. Müller, M. Scheer, and P. Schmid
Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany (Received 26 February 2013; published 15 July 2013)

Photon beams of 99 eV energy carrying orbital angular momentum (OAM) have been observed in the 2nd harmonic off-axis radiation of a helical undulator at the 3rd generation synchrotron radiation light source BESSY II. For detection, the OAM carrying photon beam was superimposed with a reference beam without OAM. The interference pattern, a spiral intensity distribution, was recorded in a plane perpendicular to the propagation direction. The orientation of the observed spiral structure is related to the helicity of the undulator radiation. Excellent agreement between measurements and simulations has been found.

DOI: 10.1103/PhysRevLett.111.034801

Classically: the radiation is twisted always when the electron trajectory is helical!

PRL 118, 094801 (2017)
PHYSICAL REVIEW LETTERS

Angular Momentum of Twisted Radiation from an Electron in Spiral Motion

M. Katoh, ${ }^{1,2, *}$ M. Fujimoto, ${ }^{1,2}$ H. Kawaguchi, ${ }^{3}$ K. Tsuchiya, ${ }^{4}$ K. Ohmi, ${ }^{4}$ T. Kaneyasu, ${ }^{5}$ Y. Taira, ${ }^{6}$ M. Hosaka, ${ }^{7}$ A. Mochihashi, ${ }^{7}$ and Y. Takashima ${ }^{7}$

${ }^{1}$ Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
${ }^{2}$ Sokendai (the Graduated University for Advanced Studies), Okazaki 444-8585, Japan
${ }^{3}$ Muroran Institute of Technology, Muroran 050-0071, Japan
${ }^{4}$ High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
${ }^{5}$ Saga Light Source, Tosu 841-0005 Japan
${ }^{6}$ National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
${ }^{7}$ Nagoya University, Nagoya 464-0814, Japan
(Received 10 October 2016; published 27 February 2017)
We theoretically demonstrate for the first time that a single free electron in circular or spiral motion emits twisted photons carrying well-defined orbital angular momentum along the axis of the electron circulation, in adding to spin angular momentum. We show that, when the electron velocity is relativistic, the radiation field contains harmonic components and the photons of l th harmonic carry $l \hbar$ total angular momentum for each. This work indicates that twisted photons are naturally emitted by free electrons and are more ubiquitous in laboratories and in nature than ever thought.

Doing Spin Physics with Unpolarized Particles

Igor P. Ivanov $\bullet^{*}{ }^{*}$
CFTP, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
Nikolai Korchagin ${ }^{\oplus}{ }^{\dagger}$
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Alexandr Pimikov ${ }^{*}$
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Research Institute of Physics, Southern Federal University, Rostov-na-Donu 344090, Russia
Pengming Zhang 0^{\S}
School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
(-) (Received 4 December 2019; accepted 8 April 2020; published 13 May 2020)

Twisted, or vortex, particles refer to freely propagating non-plane-wave states with helicoidal wave fronts. In this state, the particle possesses a nonzero orbital angular momentum with respect to its average propagation direction. Twisted photons and electrons have been experimentally demonstrated, and creation of other particles in twisted states can be anticipated. If brought in collisions, twisted states offer a new degree of freedom to particle physics, and it is timely to analyze what new insights may follow. Here, we theoretically investigate resonance production in twisted photon collisions and twisted $e^{+} e^{-}$annihilation and show that these processes emerge as a completely novel probe of spin and parity-sensitive observables in fully inclusive cross sections with unpolarized initial particles. This is possible because the initial state with a nonzero angular momentum explicitly breaks the left-right symmetry even when averaging over helicities. In particular, we show how one can produce almost 100% polarized vector mesons in unpolarized twisted $e^{+} e^{-}$annihilation and how to control its polarization state.

Beams with quantized angular momentum

The first generation of vortex electrons

- M. Uchida and A. Tonomura, Nature 464, 737 (2010),
- J. Verbeeck, et al., Nature 467 (2010) 301-304,
- B. J. McMorran, et al., Science 331, 192 (2011)
- The highest electron energy is 300 keV
- The highest angular momentum so far is ~ 1000 !
- The smallest spot size is 0.1 nm !

Two main methods:

Beams with quantized angular momentum

Vortex electrons: the probability current has an azimuthal component (recall the Bohmian interpretation of QM)

The electron magnetic moment can be huge!

$$
\begin{gathered}
\left.\mathbf{M}=\frac{1}{2 c} \frac{\int \mathbf{r} \times \mathbf{j}_{e} d^{3} \mathbf{r}}{\int \rho d^{3} \mathbf{r}}=\frac{e}{2 m_{e} c}\langle\mathbf{L})\right\rangle \\
\mu \propto \mu_{B}(\mathbf{I}+2 \mathbf{s})
\end{gathered}
$$

If the OAM is large, $I_{z} \equiv m \gg \hbar$, then $\mu \gg \mu_{B}$!
K.Y. Bliokh et al. / Physics Reports 690 (2017) 1-70

Twisted photons generated in neutron stars

Relativistic Landau states in a magnetic field

$$
\begin{gathered}
\boldsymbol{H}=\{0,0, H\} \quad H_{c}=4.4 \times 10^{9} \mathrm{~T} \\
\Psi_{i}(x)=N_{i}^{\uparrow}\left(\begin{array}{c}
(m+\varepsilon) \Phi_{s, \ell-1 / 2}(\rho) e^{-i \varphi / 2} \\
0 \\
p_{z} \Phi_{s, \ell-1 / 2}(\rho) e^{-i \varphi / 2} \\
-i e H \Phi_{s, \ell+1 / 2}(\rho) e^{i \varphi / 2}
\end{array}\right) e^{-i t \varepsilon+i \ell \varphi+i p_{z} z}
\end{gathered}
$$

The evolved photon state:
$|\gamma\rangle_{e v}=\sum_{\lambda= \pm 1} \int \frac{d^{3} k}{(2 \pi)^{3}}|\boldsymbol{k}, \lambda\rangle S_{f i}^{(1)}=\left(\varepsilon-\varepsilon^{\prime}\right) \sum_{\lambda= \pm 1} \mathcal{F} \int_{0}^{2 \pi} d \varphi_{k}|\boldsymbol{k}, \lambda\rangle e^{i\left(\ell-\ell^{\prime}\right) \varphi_{k}}$.

FIG. 1. The emission probability (31) (left) and the corresponding intensity (32) (right) for $H=H_{c}, p_{z}=10^{-3} \mathrm{mc}$, and no spin flip. For the solid lines, $s=s^{\prime}=20$; the dashed lines correspond to the twisted photons with a simultaneous change of the radial quantum number, $s \rightarrow s^{\prime} \neq s$; and the dash-dotted lines correspond to the untwisted photons with the TAM $j_{z}=\ell-\ell^{\prime}=0$.

Vortex/twisted neutrons

LETTER

Controlling neutron orbital angular momentum

Rule of twos:

- Energy of 20 meV
- Wavelength of $2 \AA$
- Speed of $2000 \mathrm{~m} / \mathrm{s}$

At the National Institute of Standards and Technology (NIST), USA: Created in a 20 MW reactor, cooled in a cryogenic moderator to 20 K , and transported through 30 m of neutron guides.
$\mathrm{E}=11 \mathrm{meV}$, wavelength $=0.27 \mathrm{~nm}$, Transverse coherence length: $60 \mathrm{~nm}-1 \mu \mathrm{~m}$ Beam diameter: 15 mm Fluence $\sim 10^{\wedge} 5-10^{\wedge} 7$ neutrons $/ \mathrm{cm}^{\wedge} 2^{*}$ sec.
a

Aluminum spiral phase plates for neutrons

$$
h=h_{0}+\frac{h_{s} \varphi}{2 \pi}
$$

Phase of wavefunction increases linearly with azimuthal angle φ.

SPPs as seen from above, 25 mm diameter respectively. Milled from Al 6061 dowel by diamond turning.

$$
h_{s}=112 \mu \text { per } 2 \pi \text { phase step. }
$$

$$
\text { Index of refraction } n=1-2.43 \times 10^{-6}
$$

Control phase of $\lambda=0.271 \mathrm{~nm}$ wave motion with 0.1 mm dimensional figure!

Visualization of the neutron transverse coherence length

a)
 Spiral Phase Plate (SPP)

Recall Bohmian interpretation of QM! propagation axis

$\mathrm{E}=11 \mathrm{meV}$, wavelength $=0.27 \mathrm{~nm}$,
Transverse coherence length: $60 \mathrm{~nm}-1 \mu \mathrm{~m}$
Beam diameter: 15 mm

Vortex/twisted neutrons

Figure $2 \mid$ OAM interferograms. Spatial distribution of the neutron counts in the 2D detector ${ }^{30}$ of the neutron interferometer for four SPPs, with values of $L=1,2,4$ and 7.5 , as labelled. The horizontal and vertical postitons on the 2D neutron detector are shown in millimetres. For the integer values of L these distributions display the simple OAM interference pattern expressed in equation (2); for $L=7.5$ we have the superposition of OAM modes given by equation (4) in Methods. The 2D detector is a centroid-type eventcounting detector with a spatial resolution of $100 \mu \mathrm{~m}$ and an 18% quantum efficiency (that is, counts registered per neutron incident on the detector). Its operation is shot-noise (Poissonnoise) limited in this regime. The neutron counts were collected over 3.5 days and normalized by the maximal pixel count, which is about 45.
Research Article \quad Vol. 24, No. $20 \mid 3$ Oct 2016। OPTICS EXPRESS 22528

Holography with a neutron interferometer

Dusan Sarenac, ${ }^{1,2, *}$ Michael G. Huber, ${ }^{3}$ Benjamin
Heacock, ${ }^{4,5}$ Muhammad Arif, ${ }^{3}$ Charles W. Clark, ${ }^{3.6}$ David G. Cory, ${ }^{2,7,8,9}$ Chandra B. Shahi, ${ }^{6,10}$ and Dmitry A. Pushin ${ }^{1,2}$
${ }^{I}$ Department of Physics, University of Waterloo, Waterloo, ON, N2L3G1, Canada
${ }^{2}$ Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L3G1, Canada
${ }^{3}$ National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
${ }^{4}$ North Carolina State University, Raleigh, North Carolina 27695, USA
${ }^{5}$ Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
${ }^{6}$ Joint Quantum Institute, College Park, MD 20742, USA
${ }^{7}$ Department of Chemistry, University of Waterloo, Waterloo, ON, N2L3G1, Canada
${ }^{8}$ Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L2Y5, Canada
${ }^{9}$ Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada
${ }^{10}$ Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188, USA *dsarenac@uwaterloo.ca

Abstract: We use a Mach-Zehnder interferometer to perform neutron holography of a spiral phase plate. The object beam passes through a spiral phase plate, acquiring the phase twist characteristic of orbital angular momentum states. The reference beam passes through a fused silica prism, acquiring a linear phase gradient. The resulting hologram is a fork dislocation image, which could be used to reconstruct neutron beams with various orbital angular momenta. This work paves the way for novel applications of neutron holography, diffraction and imaging.
a)

Digital camera

«Note that the experiment is an expectation valued measurement over many events, each of which involves only a single neutron. That is, there is one neutron at a time in the interferometer and the hologram is build up from an incoherent superposition of many events»

Twisted atoms and ions

RESEARCH ARTICLE

QUANTUM PHYSICS

Vortex beams of atoms and molecules Transverse coherence length $\sim 840 \mathrm{~nm}$

Alon Luski¹ ${ }^{1}$, Yair Segev ${ }^{1} \ddagger \ddagger$, Rea David ${ }^{1}$, Ora Bitton ${ }^{1}$, Hila Nadler ${ }^{1}$, A. Ronny Barnea ${ }^{2}$, Alexey Gorlach ${ }^{3}$, Ori Cheshnovsky ${ }^{2}$, Ido Kaminer ${ }^{3}$, Edvardas Narevicius ${ }^{1 *}$

Angular momentum plays a central role in quantum mechanics, recurring in । microscopic interactions of light and matter to the macroscopic behavior of su intrinsic orbital angular momentum (OAM), are now regularly generated with photons and electrons. Thus far, the creation of a vortex beam of a noneleme demonstrated experimentally. We present vortex beams of atoms and moleci supersonic beams of helium atoms and dimers off transmission gratings. Thi be applied to most atomic and molecular gases. Our results may open new fron additional degree of freedom of OAM to probe collisions and alter fundament

August 2021!

Twisted atoms and ions

Helium and neon atoms and dimers
Wavelength $=90 \mathrm{pm}$,
Transverse coherence length $\sim 840 \mathrm{~nm}$

Intensity [a.u.] - panels (B), (F), (J) and (K)
Intensity [a.u.] - panels (C), (D), (G) and (H)

Luski et al., Science 373, 1105 (2021)

The statement

(rather optimistic)

it is possible to obtain twisted photons, electrons, protons, ions, ... in pretty much all QED/QCD/weak processes:
non-linear Thomson/Compton scattering, e-e+ annihilation, Cherenkov emission, etc.

> We choose the final states as twisted ones
> and calculate the probability
> (which can be lower or higher)!

On a deeper level (moderately optimistic)

1. The choice of the final states implies existence of such a detector

For instance, one can calculate the probability for the generation of gamma-ray vortices via non-linear Compton sc., but how do we make such a detector?
2. Without specifying the detector, one can judge if the state is twisted via the formalism of evolved states:

$$
\left.\left|e^{\prime}, \gamma\right\rangle=\left(\hat{1}+\hat{S}^{(1)}\right) \mid \text { in }\right\rangle \quad \hat{S}=\hat{1}+\hat{S}^{(1)}=\hat{1}-i e \int d^{4} x \hat{j}^{\mu}(x) \hat{A}_{\mu}(x)
$$

3. Once we know that a twisted state is generated, we can detect it with whichever detector we have!

The probability to detect a twisted state \rightarrow

\rightarrow the probability amplitude to generate the twisted state

Differences from the standard approach:

1. No dependence on the detector choice: we derive the state as it is
2. The dependence on a phase of an S-matrix element is kept

QFT approach for photon emission

$$
\left.e \rightarrow e^{\prime}+\gamma \quad\left|e^{\prime}, \gamma\right\rangle^{(\mathrm{ev})}=\hat{S}^{(1)} \mid \text { in }\right\rangle
$$

The field operators:

$$
\begin{gathered}
\hat{\boldsymbol{A}}(\boldsymbol{r}, t)=\sum_{\lambda_{\gamma}= \pm 1} \int \frac{d^{3} k}{(2 \pi)^{3}}\left(\boldsymbol{A}_{\boldsymbol{k} \lambda_{\gamma}}(\boldsymbol{r}, t) \hat{c}_{\boldsymbol{k} \lambda_{\gamma}}+\text { h.c. }\right), \\
\hat{\boldsymbol{E}}(\boldsymbol{r}, t)=-\frac{\partial \hat{\boldsymbol{A}}(\boldsymbol{r}, t)}{\partial t}=\sum_{\lambda_{\gamma}= \pm 1} \int \frac{d^{3} k}{(2 \pi)^{3}} i \omega\left(\boldsymbol{A}_{\boldsymbol{k} \lambda_{\gamma}}(\boldsymbol{r}, t) \hat{c}_{\boldsymbol{c} \lambda_{\gamma}}-\text { h.c. }\right), \\
\hat{\boldsymbol{H}}(\boldsymbol{r}, t)=\nabla \times \hat{\boldsymbol{A}}(\boldsymbol{r}, t)=\sum_{\lambda_{\gamma}= \pm 1} \int \frac{d^{3} k}{(2 \pi)^{3}} i \mathbf{k} \times\left(\boldsymbol{A}_{\boldsymbol{k} \lambda_{\gamma}}(\boldsymbol{r}, t) \hat{c}_{\boldsymbol{k} \lambda_{\gamma}}-\text { h.c. }\right) \\
\boldsymbol{A}_{\boldsymbol{k} \lambda_{\gamma}}(\boldsymbol{r}, t)=\frac{\sqrt{4 \pi}}{\sqrt{2 \omega}} e_{\boldsymbol{k} \lambda_{\gamma}} e^{-i \omega t+i \boldsymbol{k} \cdot \boldsymbol{r}},
\end{gathered}
$$

QFT approach for photon emission

1. The probability amplitude in momentum space:

$$
S_{f i}^{(1)}=\left\langle f_{e}, f_{\gamma}\right| \hat{S}^{(1)}|\mathrm{in}\rangle=\left\langle\mathbf{p}, \lambda ; \mathbf{k}, \lambda_{\gamma}\right| \hat{S}^{(1)}|\mathrm{in}\rangle
$$

2. The probability amplitude in space-time:

$$
\begin{gathered}
\left.\langle 0| \hat{\psi}\left(\boldsymbol{r}_{e}, t_{e}\right) \hat{\boldsymbol{A}}\left(\boldsymbol{r}_{\gamma}, t_{\gamma}\right)\left|e^{\prime}, \gamma\right\rangle{ }^{(\mathrm{ev})}\left|e^{\prime}, \gamma\right\rangle=\left(\hat{1}+\hat{S}^{(1)}\right) \mid \text { in }\right\rangle \\
=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\lambda_{\gamma}= \pm 1} \sum_{\lambda= \pm 1 / 2} \frac{\sqrt{4 \pi}}{\sqrt{2 \omega}} \frac{1}{\sqrt{2 \varepsilon}} u_{p \lambda} \boldsymbol{e}_{k \lambda_{\gamma}} S_{f i}^{(1)} e^{-i \varepsilon t_{e}+i \boldsymbol{p} \cdot \boldsymbol{r}_{e}-i \omega t_{\gamma}+i \boldsymbol{k} \cdot \boldsymbol{r}_{\gamma}}
\end{gathered}
$$

The 2-particle entangled state:

$$
\left.\left|e^{\prime}, \gamma\right\rangle=\mid \text { in }\right\rangle+\sum_{\lambda^{\prime}= \pm 1 / 2, \lambda_{\gamma}= \pm 1} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{d^{3} p^{\prime}}{(2 \pi)^{3}}\left|\mathbf{p}^{\prime}, \lambda^{\prime}\right\rangle \otimes\left|\mathbf{k}, \lambda_{\gamma}\right\rangle S_{f i}^{(1)}
$$

If the electron is detected in a state $\left\langle f_{e}^{(\mathrm{det})}\right|$ the photon evolved state becomes

$$
|\gamma\rangle=\left\langle f_{e}^{(\mathrm{det})} \mid e_{\mathrm{in}}\right\rangle\left|0_{\gamma}\right\rangle+\sum_{\lambda^{\prime}, \lambda_{\gamma}} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{d^{3} p^{\prime}}{(2 \pi)^{3}}\left|\mathbf{k}, \lambda_{\gamma}\right\rangle\left(f_{e}^{(\mathrm{det})}\left(\mathbf{p}^{\prime}, \lambda^{\prime}\right)\right)^{*} S_{f i}^{(1)},
$$

The electron detector function

If the electron is a plane wave:

$$
\begin{aligned}
& \delta\left(\mathbf{p}_{\perp}^{\prime}+\mathbf{k}_{\perp}\right)=\delta\left(p_{x}^{\prime}+k_{x}\right) \delta\left(p_{y}^{\prime}+k_{y}\right)=\frac{1}{p_{\perp}^{\prime}} \delta\left(p_{\perp}^{\prime}-k_{\perp}\right)\left(\left.\delta\left(\phi^{\prime}-\left(\phi_{k}-\pi\right)\right)\right|_{\phi_{k} \in[\pi, 2 \pi]}+\left.\delta\left(\phi^{\prime}-\left(\phi_{k}+\pi\right)\right)\right|_{\phi_{k} \in[0, \pi]}\right) \\
& |\gamma\rangle=\left\langle f_{e}^{(\mathrm{det})} \mid e_{\mathrm{in}}\right\rangle\left|0_{\gamma}\right\rangle+\sum_{\lambda^{\prime}, \lambda_{\gamma}} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{d^{3} p^{\prime}}{(2 \pi)^{3}}\left|\mathbf{k}, \lambda_{\gamma}\right\rangle\left(f_{e}^{(\mathrm{det})}\left(\mathbf{p}^{\prime}, \lambda^{\prime}\right)\right)^{*} S_{f i}^{(1)}, \\
& 3 \text { delta-functions } 4 \text { delta-functions }
\end{aligned}
$$

The photon evolved state is a plane wave!

Quantum tomography naturally arises in photon emission

 (even if the detected electron is a plane wave)$$
\left.\left.\mathcal{W}(\mathrm{r}, t)=\frac{1}{8 \pi}\langle\gamma| \hat{\boldsymbol{E}}^{2}(\boldsymbol{r}, t)+\hat{\boldsymbol{H}}^{2}(\boldsymbol{r}, t)|\gamma\rangle-\frac{\varepsilon_{0}}{4 \pi}=\left.\frac{1}{4 \pi}(|\langle 0| \hat{\boldsymbol{E}}(\boldsymbol{r}, t)| \gamma\rangle\right|^{2}+|\langle 0| \hat{\boldsymbol{H}}(\boldsymbol{r}, t)| \gamma\right\rangle\left.\right|^{2}\right),
$$

The vacuum contribution

$$
\begin{gathered}
\langle 0| \hat{\boldsymbol{E}}(\boldsymbol{r}, t)|\gamma\rangle=\sum_{\lambda_{\gamma}} \int \frac{d^{3} k}{(2 \pi)^{3}} i \omega \boldsymbol{A}_{\boldsymbol{k} \lambda_{\gamma}}(\boldsymbol{r}, t) S_{f i}^{(\mathrm{GM})}\left(\mathbf{k}, \lambda_{\gamma}\right), \\
\boldsymbol{A}_{\boldsymbol{k} \lambda_{\gamma}}(\boldsymbol{r}, t)=\frac{\sqrt{4 \pi}}{\sqrt{2 \omega}} e_{\boldsymbol{k} \lambda_{\gamma}} e^{-i \omega t+i \boldsymbol{k} \cdot \boldsymbol{r}}, \\
S_{f i}^{(\mathrm{GM})}\left(\mathbf{k}, \lambda_{\gamma}\right)=\sum_{\lambda^{\prime}} \int \frac{d^{3} p^{\prime}}{(2 \pi)^{3}}\left(f_{e}^{(\mathrm{det})}\left(\mathbf{p}^{\prime}, \lambda^{\prime}\right)\right)^{*} S_{f i}^{(1)}\left(\mathbf{p}^{\prime}, \lambda^{\prime}, \mathbf{k}, \lambda_{\gamma}\right)
\end{gathered}
$$

Quantum tomography naturally arises in photon emission

 (even if the detected electron is a plane wave)$$
\begin{gathered}
\left.\frac{1}{4 \pi}|\langle 0| \hat{\boldsymbol{E}}(\boldsymbol{r}, t)| \gamma\right\rangle\left.\right|^{2}=\frac{1}{4 \pi} \sum_{\lambda_{\gamma}, \tilde{\lambda}_{\gamma}} \int \frac{d^{3} K}{(2 \pi)^{3}} \frac{d^{3} k}{(2 \pi)^{3}} \boldsymbol{E}_{\hat{\lambda}_{\gamma}}^{*}(\mathbf{K}-\mathbf{k} / 2) \cdot \boldsymbol{E}_{\lambda_{\gamma}}(\mathbf{K}+\mathbf{k} / 2) e^{-i t(\omega(\mathbf{K}+\mathbf{k} / 2)-\omega(\mathbf{K}-\mathbf{k} / 2))+i \mathbf{r} \cdot \mathbf{k}}= \\
=\int \frac{d^{3} K}{(2 \pi)^{3}} \mathcal{W}(\mathbf{r}, \mathbf{K}, t)
\end{gathered}
$$

The photon Wigner function:

$$
\begin{gathered}
\mathcal{W}(\mathbf{r}, \mathbf{K}, t)=\frac{1}{4 \pi} \sum_{\lambda_{\gamma}, \bar{\lambda}_{\gamma}} \int \frac{d^{3} k}{(2 \pi)^{3}} \boldsymbol{E}_{\lambda_{\gamma}}^{*}(\mathbf{K}-\mathbf{k} / 2) \cdot \boldsymbol{E}_{\lambda_{\gamma}}(\mathbf{K}+\mathbf{k} / 2) e^{-i t(\omega(\mathbf{K}+\mathbf{k} / 2)-\omega(\mathbf{K}-\mathbf{k} / 2))+i \mathbf{r} \cdot \mathbf{k}}, \\
\boldsymbol{E}_{\lambda_{\gamma}}(\mathbf{k})=\frac{i \omega \sqrt{4 \pi}}{\sqrt{2 \omega n^{2}}} e_{\mathbf{k} \lambda_{\gamma}} \sum_{\lambda} \int \frac{d^{3} p}{(2 \pi)^{3}} f_{e}^{(\mathrm{in})}(\mathbf{p}, \lambda) S_{f i}^{(1)}\left(\mathbf{p}, \lambda, \mathbf{k}, \lambda_{\gamma}\right)
\end{gathered}
$$

The first marginal distribution:

$$
\begin{gathered}
\int d^{3} x \mathcal{W}(\mathbf{r}, \mathbf{K}, t)=\frac{\omega}{2 n^{2}}\left|\sum_{\lambda} \int \frac{d^{3} p}{(2 \pi)^{3}} f_{e}^{(\text {in) })}(\mathbf{p}, \lambda) S_{f i}^{(1)}\left(\mathbf{p}, \lambda, \mathbf{k}, \lambda_{\gamma}\right)\right|^{2}= \\
=\frac{\omega}{2 n^{2}}(2 \pi)^{2} \frac{T}{2 \pi} \delta\left(\varepsilon(\mathbf{p})-\varepsilon^{\prime}-\omega\right) \frac{4 \pi}{2 \omega(\mathbf{k}) n^{2}(\omega(\mathbf{k})) 2 \varepsilon(\mathbf{p}) 2 \varepsilon^{\prime}\left(\mathbf{p}^{\prime}\right)}\left|\sum_{\lambda} f_{e}^{(\text {(in) }}(\mathbf{p}, \lambda) M_{f i}\left(\mathbf{p}, \mathbf{k}, \lambda, \lambda_{\gamma}\right)\right|_{\mathbf{p}=\mathbf{p}^{\prime}+\mathbf{k}}^{2}
\end{gathered}
$$

The customary probability in momentum space!

The second marginal distribution:

$$
\left.\int \frac{d^{3} K}{(2 \pi)^{3}} \mathcal{W}(\mathrm{r}, \mathbf{K}, t)=\frac{1}{4 \pi}|\langle 0| \hat{\boldsymbol{E}}(\boldsymbol{r}, t)| \gamma\right\rangle\left.\right|^{2}
$$

The probability in space-time!

Quantum tomography naturally arises in photon emission

(even if the detected electron is a plane wave)

1. The energy density of the photon evolved state in space-time depends on the shape of the incoming electron packet:
a snapshot of the electron wave function!

$$
\left.\frac{1}{4 \pi}|\langle 0| \hat{\boldsymbol{E}}(\boldsymbol{r}, t)| \gamma\right\rangle\left.\right|^{2} \propto\left|\psi_{e}^{(\mathrm{in})}(\boldsymbol{r}, t)\right|^{2}
$$

2. Complementary measurements - the phase space and the Wigner functions come into play!

Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light

33/46

Now let's detect the electron in the generalized measurement scheme

1. Projective (von Neumann) measurements: the errors are vanishing
2. Generalized (realistic) measurements: some errors can be finite:
a. Without the loss of information
b. With the loss of information

The electron is detected in a state

$$
\left|e^{\prime}\right\rangle=\int \frac{d^{3} p^{\prime}}{(2 \pi)^{3}} f_{p}\left(\mathbf{p}^{\prime}\right)\left|\mathbf{p}^{\prime}, \lambda^{\prime}\right\rangle
$$

The detector function can be of the Gaussian form:

$$
f_{p}\left(\mathbf{p}^{\prime}\right) \propto \prod_{i} \exp \left\{-\left(p_{i}^{\prime}-\left\langle p_{i}\right\rangle\right)^{2} /\left(2 \sigma_{i}\right)^{2}\right\}
$$

Generation of vortex particles via generalized measurements

ІІітМо

Consider $2 \rightarrow 2$ scattering/annihilation: en \rightarrow en, $\mathrm{np} \rightarrow \mathrm{np}$, ep $\rightarrow \mathrm{ep}, \mathrm{e}+\mathrm{mu} \rightarrow \mathrm{e}+\mathrm{mu}$, etc.

Projective: a plane-wave state

Generation of vortex particles via generalized measurements

Generation of vortex particles via generalized measurements

When the uncertainty approaches 2 pi:
Cherenkov radiation: the electron scattering angle

$$
\text { is } \sim 10^{\wedge}-6-10^{\wedge}-5 \mathrm{rad}!
$$

D.K., et al., Eur. Phys. J. C 83, 372 (2023)

First Observation of Photons Carrying Orbital Angular Momentum in Undulator Radiation

> J. Bahrdt, K. Holldack, P. Kuske, R. Müller, M. Scheer, and P. Schmid
> Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, 12489 Berlin, Germany (Received 26 February 2013; published 15 July 2013)

Photon beams of 99 eV energy carrying orbital angular momentum (OAM) have been observed in the 2nd harmonic off-axis radiation of a helical undulator at the 3rd generation synchrotron radiation light source BESSY II. For detection, the OAM carrying photon beam was superimposed with a reference beam without OAM. The interference pattern, a spiral intensity distribution, was recorded in a plane perpendicular to the propagation direction. The orientation of the observed spiral structure is related to the helicity of the undulator radiation. Excellent agreement between measurements and simulations has been found.

DOI: $10.1103 /$ PhysRevLett. 111.034801

Here we have an effective projection to the state with the $\mathrm{OAM}=0$, detected at the vanishing scattering angle

Undulator radiation at XFEL:
the electron scattering angles are $\sim 10^{\wedge}-6-10^{\wedge}-3 \mathrm{rad}$!

Generation of vortex particles via generalized measurements

When the uncertainty approaches 2 pi:

$$
A^{(\mathrm{ev})}(\mathbf{k}, \omega)=\int_{0}^{2 \pi} \frac{d \phi^{\prime}}{2 \pi} \sum_{\lambda_{\gamma}= \pm 1} e S_{f i}^{(\mathrm{pw})} \longleftarrow \quad \begin{aligned}
& \text { The vector potential } \\
& \text { of the evolved state }
\end{aligned}
$$

Example 1: Cherenkov radiation

$$
\hat{j}_{z}^{(\gamma)} A^{(\mathrm{ev})}=\left(\lambda-\lambda^{\prime}\right) A^{(\mathrm{ev})},
$$

Example 2: Non-linear Compton scattering at the s-th harmonic/helical undulator

$$
\begin{array}{ll}
\hat{j}_{z}^{(\gamma)} A_{(\mathrm{g})}^{(\mathrm{ev}, s)}=\left(s+\lambda-\lambda^{\prime}\right) A_{(\mathrm{g})}^{(\mathrm{ev}, s)}, & \text { - with a Volkov electron } \\
\hat{j}_{z}^{(\gamma)} A_{(\mathrm{g})}^{(f, s)}=\left(s+m-\lambda^{\prime}\right) A_{(\mathrm{g})}^{(f, s)}, & \text { - with a Bessel-Volkov electron }
\end{array}
$$

A POVM scheme: does the loss of information destroy the photon vorticity?

$$
\hat{\rho}_{\gamma}^{(\mathrm{POVM})}=\operatorname{Tr}\left\{\hat{F}_{e}^{(\mathrm{det})} \hat{\rho}_{e \gamma}\right\}
$$

If the plane-wave detector is used:

$$
\begin{gathered}
\hat{F}_{e}^{(\mathrm{det})}=\sum_{\lambda^{\prime}} \int \frac{d^{3} p^{\prime}}{(2 \pi)^{3}} F_{e}^{(\mathrm{det})}\left(\mathbf{p}^{\prime}, \lambda^{\prime}\right)\left|\mathbf{p}^{\prime}, \lambda^{\prime}\right\rangle\left\langle\mathbf{p}^{\prime}, \lambda^{\prime}\right|, \\
\hat{\rho}_{\gamma}=T \sum_{\lambda^{\prime}, \lambda_{\gamma}, \lambda_{\gamma}^{\prime}} \int d \Gamma F_{e}^{(\mathrm{det})}\left(\mathbf{p}^{\prime}, \lambda^{\prime}\right) T_{f i}^{\left(\lambda^{\prime} \lambda_{\gamma}\right)}\left(T_{f i}^{\left(\lambda^{\prime} \lambda_{\gamma}^{\prime}\right)}\right)^{*}\left|\mathbf{k}, \lambda_{\gamma}\right\rangle\left\langle\mathbf{k}, \lambda_{\gamma}^{\prime}\right|, \square\left\langle\hat{J}_{z}\right\rangle=0
\end{gathered}
$$

For a cylindrical-basis detector:

$$
\hat{F}_{t w-e}^{(\mathrm{det})}=\sum_{m^{\prime}=-\infty}^{\infty} \sum_{\lambda^{\prime}} \int \frac{d p_{z}^{\prime}}{2 \pi} \frac{p_{\perp}^{\prime} d p_{\perp}^{\prime}}{2 \pi} F_{t w-e}^{(\mathrm{det})}\left(p_{z}^{\prime}, p_{\perp}^{\prime}, m^{\prime}, \lambda^{\prime}\right)\left|p_{z}^{\prime}, p_{\perp}^{\prime}, m^{\prime}, \lambda^{\prime}\right\rangle\left\langle p_{z}^{\prime}, p_{\perp}^{\prime}, m^{\prime}, \lambda^{\prime}\right| \square\left\langle\hat{J}_{z}\right\rangle \neq 0
$$

Even with the loss of information, the twisted photons are still generated!

On the way to experiments at accelerators....

The project of the relativistic vortex electron source

at Joint Institute for Nuclear research (Dubna):

- First at a $6-\mathrm{MeV}$ electron photo-gun,
- Then at the $200-\mathrm{MeV}$ linac

https://rscf.ru/en/project/23-62-10026/

Vortex electrons, ions, nuclei,... - generation strategies at accelerators

Planar-to-circular beam adapters: analogous to Hermite-Gaussian \rightarrow Laguerre-Gaussian conversion of light

- Round beams for circular colliders: elimination of betatron resonances, increase of the beam lifetime.
- Flat beams for linear colliders:
to increase the luminosity and to suppress the beamstrahlung, and to enhance the efficiency of generation of em radiation from X-rays to THz (say, for Smith-Purcell radiation).

Burov A, Nagaitsev S and Derbenev Y, Phys. Rev. E 66 016503, 200243

6. Berechnung der Bahn

 von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde;von \boldsymbol{H}. Busch
Vor einiger Zeit habe ich eine Methode der e / m-Bestimmung angegeben ${ }^{1}$, die - ursprünglich nur zu Unterrichtszwecken ausgearbeitet - sich im Laufe der Versuche als sehr geeignet zu Präzisionsmessungen erwies. ${ }^{2}$) Im folgenden sollen die theoretischen Grundlagen der Methode mitgeteilt werden.

Das Meßverfahren beruht auf der bekannten Erscheinung, dab ein von einem Punkte P ausgehendes divergentes Kathodenstrahlbündel durch ein longitudinales, d. h. parallel zur Bündelachse gerichtetes Magnetfeld wieder in einem Punkte P^{\prime} vereinigt, "fokussiert" wird. Aus der Entfernung l zwischen Brennpunkt P^{\prime} und Ausgangspunkt P in Verbindung mit der Stãrke \mathfrak{H} des Magnetfeldes erhält man eine Beziehung zwischen der Elektronengeschwindigkeit v und ihrer spezifischen Ladung $\eta=\frac{e}{m}$, die, in ublicher Weise mit einer zweiten, etwa aus dem von den Elektronen durchfallenen Entladungspotential V zu gewinnenden Gleichung kombiniert, η und v einzeln zu berechnen gestattet.

Im Falle eines homogenen Magnetfeldes ist jene Beziehung sehr einfach; hier bilden die Elektronenbahnen die bekannten regelmảBigen Schraubenlinien und die besagte Be ziehung lautet:

$$
\begin{equation*}
l=\frac{2 \pi v}{\eta \sqrt{V}} \cos \alpha \tag{1}
\end{equation*}
$$

worin $\boldsymbol{\alpha}$ den Winkel bedeutet, den die Anfangsrichtung der Elektronenbahn mit \mathfrak{G} bildet. ${ }^{3}$)

[^0]Busch H 1926 Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde Ann. Phys. 386

$$
974
$$

The Busch theorem:

a charged beam/particle in magnetic field gets vorticity

$$
\begin{gathered}
\hat{H}=\frac{\left(\hat{\boldsymbol{p}}^{\mathrm{kin}}\right)^{2}}{2 m}=\frac{\left(\hat{\boldsymbol{p}}^{\mathrm{can}}\right)^{2}}{2 m}-\omega_{\mathrm{L}} \hat{L}_{z}^{\mathrm{can}}+\frac{m}{2} \omega_{\mathrm{L}}^{2} \rho^{2} \\
\hat{\boldsymbol{p}}^{\mathrm{can}}=\hat{\boldsymbol{p}}^{\mathrm{kin}}+e \boldsymbol{A}=-\mathrm{i} \nabla \\
\hat{\boldsymbol{L}}^{\mathrm{can}}=\boldsymbol{r} \times \hat{\boldsymbol{p}}^{\mathrm{can}} \quad \text { and } \quad \hat{\boldsymbol{L}}^{\mathrm{kin}}=\boldsymbol{r} \times \hat{\boldsymbol{p}}^{\mathrm{kin}} \\
\left\langle\hat{L}_{z}^{\mathrm{kin}}\right\rangle=\ell-m \omega_{\mathrm{L}}\left\langle\rho^{2}\right\rangle=\ell-2 \operatorname{sgn}(e) \frac{\left\langle\rho^{2}\right\rangle}{\rho_{\mathrm{H}}^{2}} \quad \rho_{\mathrm{H}}=\sqrt{\frac{4}{|e| H}}=2 \lambda_{\mathrm{c}} \sqrt{\frac{H_{\mathrm{c}}}{H}}
\end{gathered}
$$

In quantum mechanics, the canonic OAM is an integer:

$$
\left\langle\hat{L}_{z}^{\mathrm{can}}\right\rangle=\ell, \quad \ell=0, \pm 1, \pm 2, \ldots
$$

The Busch theorem: a charged beam/particle in magnetic field gets vorticity

$$
\left\langle\hat{L}_{z}^{\text {kin }}\right\rangle=0 \quad \Longleftrightarrow \quad \ell=\frac{e H}{2}\left\langle\rho^{2}\right\rangle=2 \operatorname{sgn}(e) \frac{\left\langle\rho^{2}\right\rangle}{\rho_{\mathrm{H}}^{2}}=\frac{1}{2} \operatorname{sgn}(e) \frac{\left\langle\rho^{2}\right\rangle}{\lambda_{\mathrm{c}}^{2}} \frac{H}{H_{\mathrm{c}}},
$$

The flux of the field through the area of the beam (classical) or of the wave packet (quantum):

$$
\langle\Phi\rangle=H \pi\left\langle\rho^{2}\right\rangle
$$

Akin to the Aharonov-Bohm effect:

$$
\Psi \rightarrow \Psi \exp \left\{i \theta \frac{q}{2 \pi \hbar}\langle\oint A d l\rangle\right\}=\Psi e^{i \ell \theta}
$$

Generation of angular-momentum-dominated electron beams from a photoinjector

Y.-E Sun, ${ }^{1, *}$ P. Piot, ${ }^{2, \dagger}$ K.-J. Kim, ${ }^{1,3}$ N. Barov, ${ }^{4, *}$ S. Lidia, ${ }^{5}$ J. Santucci, ${ }^{2}$ R. Tikhoplav, ${ }^{6}$ and J. Wennerberg ${ }^{2, \delta}$
${ }^{1}$ University of Chicago, Chicago, Illinois 60637, USA
${ }^{2}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{3}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{4}$ Northern Illinois University, DeKalb, Illinois 60115, USA
${ }^{5}$ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{6}$ University of Rochester, Rochester, New York 14627, USA
(Received 2 November 2004; published 22 December 2004)
Various projects under study require an angular-momentum-dominated electron beam generated by a
\section*{Up to $<\mathrm{L}>\sim 10^{\wedge} 8^{*} \hbar$!} photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g., electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g., possible electron injectors for light sources and linear colliders). In th an angular-momentum-dominated beam produced in a ph angular momentum on initial conditions. We also briefly dis results of the experiment, carried out at the Fermilab/NICAI in good agreement with theoretical and numerical models.

DOI: 10.1103/PhysRevSTAB.7.123501
UV laser, cesium telluride photocathode e: $\mathbf{4} \mathbf{~ M e V} / \mathrm{c} \rightarrow \mathbf{1 6} \mathbf{~ M e V} / \mathrm{c}$ after the booster cavity
$<\mathrm{L}>$ is conserved during the acceleration!

Electron wave packets: reference numbers

The rms-radii in SEMs, TEMs, electron accelerators, photo-electrons, etc.:

$$
\sqrt{\left\langle\rho^{2}\right\rangle} \sim \mathbf{1 - 1 0 0} \mathbf{n m}
$$

Example 1: a radius of the ground Landau state in the field $\mathrm{H} \sim 0.1-10 \mathrm{~T}$ is

$$
\rho_{\mathrm{H}}=\sqrt{\frac{4}{|e| H}} \sim \mathbf{1 0 - 1 0 0} \mathbf{~ n m}
$$

Example 2: the transverse coherence length of an electron from a Tungsten photo-cathode or a field-emitter (at room temperature) is*

$$
\sqrt{\left\langle\rho^{2}\right\rangle} \sim 0.5-1 \mathrm{~nm}
$$

*Ehberger D, et al., Phys. Rev. Lett. 114, 227601 (2015)

Highly Coherent Electron Beam from a Laser-Triggered Tungsten Needle Tip
Dominik Ehberger, ${ }^{1,2,{ }^{*}}$ Jakob Hammer, ${ }^{1,2}$ Max Eisele, ${ }^{2, \dagger}$ Michael Krüger, ${ }^{1,2, \#}$ Jonathan Noe, ${ }^{3}$ Alexander Högele, ${ }^{3}$ and Peter Hommelhoff ${ }^{1,2,4, \S}$
${ }^{1}$ Department of Physics, Friedrich Alexander University Erlangen-Nuremberg, Staudtstrasse 1, D-91058 Erlangen, Germany, EU
${ }^{2}$ Max Planck Institute of Quantum Optics, Hans-Kopfermann-Strasse 1,
D-85748 Garching/Munich, Germany, EU
${ }^{3}$ Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München,
Geschwister-Scholl-Platz 1, 80539 München, Germany, EU
${ }^{4}$ Max Planck Institute for the Science of Light, Günther-Scharowsky-Strasse 1/ Building 24, D-91058 Erlangen, Germany, EU
(Received 10 December 2014; published 5 June 2015)
We report on a quantitative measurement of the spatial coherence of electrons emitted from a sharp metal needle tip. We investigate the coherence in photoemission triggered by a near-ultraviolet laser with a photon energy of 3.1 eV and compare it to dc-field emission. A carbon nanotube is brought into close proximity to the emitter tip to act as an electrostatic biprism. From the resulting electron matter wave interference fringes, we deduce an upper limit of the effective source radius both in laser-triggered and dc-field emission mode, which quantifies the spatial coherence of the emitted electron beam. We obtain $(0.80 \pm 0.05) \mathrm{nm}$ in laser-triggered and $(0.55 \pm 0.02) \mathrm{nm}$ in dc-field emission mode, revealing that the outstanding coherence properties of electron beams from needle tip field emitters are largely maintained in laser-induced emission. In addition, the relative coherence width of 0.36 of the photoemitted electron beam is the largest observed so far. The preservation of electronic coherence during emission as well as ramifications for time-resolved electron imaging techniques are discussed.

"We use a freestanding carbon nanotube (CNT) as an electron beam splitter, which acts as a biprism filament with nanometer radius"

At room temperature!

van Cittert-Zernicke

theorem

$$
r_{\mathrm{eff}}=\frac{\lambda_{\mathrm{dB}} \cdot l_{s-d}}{\pi \cdot \xi_{\perp}}
$$

The Busch theorem: a charged beam/particle in magnetic field gets vorticity

The realistic estimate:

$$
|q|=|e Z| \quad|\ell| \approx 1.5 \times 10^{-3}|Z|\left\langle r^{2}\right\rangle\left[\mathrm{nm}^{2}\right]\left|B_{z, 0}\right|[\mathrm{T}],
$$

For electrons

- $\mathrm{H}>100 \mathrm{~T}$ for Tungsten at room temperature,
- Or to cool the emitter down to $\sim 10 \mathrm{~K}$: the electron inelastic mean free path in metals

$$
\text { is } \sim 10 \mathrm{~nm}-1000 \mathrm{~nm} \text { for of } 3.5-178 \mathrm{~K} \text {, }
$$

- Or to employ special cathodes: GaAs, ring-shaped, photo-cathode with a twisted laser, etc.

The Busch theorem: a charged beam/particle in magnetic field gets vorticity

1. The photon OAM can be transferred to photo-electrons
2. The electron transverse coherence length can correlate with that of the photon
3. The pulsed magnetic field higher than 1 T can be used; it is required only in the generation region!
4. Photocathodes with a ring-shaped emissive area on a non-emissive background (also, for field emission!) can be used

Magnetized stripping foil technique for ions

week ending

Experimental Proof of Adjustable Single-Knob Ion Beam Emittance Partitioning

L. Groening, ${ }^{*}$ M. Maier, C. Xiao, L. Dahl, P. Gerhard, O. K. Kester, S. Mickat, H. Vormann, and M. Vossberg GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt D-64291, Germany

Nuclear Instruments and Methods in Physics Research A 767 (2014) 153-158

M. Chung

Ulsan National Institute of Science and Technology, Ulsan 698-798, Republic of Korea (Received 26 September 2014; published 30 December 2014)
The performance of accelerators profits from phase-space tailoring by coupling of degrees of fre Previously applied techniques swap the emittances among the three degrees but the set of av emittances is fixed. In contrast to these emittance exchange scenarios, the emittance transfer sc presented here allows for arbitrarily changing the set of emittances as long as the product of the emit is preserved. This Letter is the first experimental demonstration of transverse emittance transfer an ion beam line. The amount of transfer is chosen by setting just one single magnetic field The envelope functions (beta) and slopes (alpha) of the finally uncorrelated and repartitioned be the exit of the transfer line do not depend on the amount of transfer.

Nitrogen: Z from +3 to +7

The foil (carbon, $200 \mu \mathrm{~g} / \mathrm{cm}^{2}, 30 \mathrm{~mm}$ in diameter)
Contents lists available at ScienceDirect
Nuclear Instruments and Methods in
Physics Research A
Physics Research A
journal homepage: www.elsevier.com/locate/nima

Minimization of the emittance growth of multi-charge particle beams
(D)

Ji-Gwang Hwang ${ }^{\text {a }}$, Eun-San Kim ${ }^{\text {a,* }}$, Hye-Jin Kim ${ }^{\text {b,* }}$, Dong-O Jeon ${ }^{\text {b }}$
${ }^{2}$ Department of Physics, Kyungpook National University, Daegu 702-701, Korea
${ }^{\mathrm{b}}$ Rare Sotope Science Project, Institute for Basic Science, Jeonmin-dong Yuseong-gu, Daejeon, Korea

ARTICLEINFO

```
Article history:
Received 20 April }201
Received 20 Aprii 2014
26 July 2014
Accepted 13 August 2014
Available online 21 August 2014
Keywords:
Rare Isotope Science Project
Beam dynamics for multicharge particles
Emittance growth in dispersive section
```


ABSTRACT

The charge stripping section of the Rare isotope Accelerator of Newness (RAON), which is one of the critical components to achieve a high power of 400 kW with a short lianc, is a source of transverse emittance growth. The dominant effects are the angular straggling in the charge stripper required to separate the selected ion beam from the various ion beams produced in the stripper. Since the main separate the selected ion beam from the various ion beams produced in the stripper. Since the main
source of transverse emittance growth in the stripper is the angular straggling, it can be compensated for by changing the angle of the phase ellipse. Therefore the emittance growth is minimized by optimizing the Twiss parameters at the stripper. The emittance growth in the charge selection section is also minimized by the correction of high-order aberrations using six sextupole magnets. In this paper, we present a method to minimize the transverse emittance growth in the stripper by changing the Twiss parameters and in the charge selection section by using sextupole magnets.

Magnetized stripping foil technique for ions

The quantum Busch theorem for ions:

$$
\ell=\frac{q_{\text {out }}-q_{\text {in }}}{2} H\left\langle\rho^{2}\right\rangle=\left(Z_{\text {out }}-Z_{\text {in }}\right) \frac{e H}{2}\left\langle\rho^{2}\right\rangle
$$

Requirements:

- Negligible space charge (no Coulomb repulsion)
- The transverse coherence larger than 100 nm at $\mathrm{H} \sim 1 \mathrm{~T}$
- No emittance degradation: small scattering in the target

Magnetized stripping foil technique for ions

The general spreading law is

$$
\left\langle\rho^{2}\right\rangle(t)=\left\langle\rho^{2}\right\rangle(0)+\frac{\partial\left\langle\rho^{2}\right\rangle(0)}{\partial t} t+\left\langle u_{\perp}^{2}\right\rangle t^{2}
$$

For the LG packet in the far-field $\left(<\mathrm{z} \ggg \mathrm{z}_{-}\right.$R $)$:

$$
\langle z\rangle=\frac{\langle p\rangle}{2 n+|\ell|+1} \sqrt{\left\langle\rho^{2}\right\rangle(\langle z\rangle)} \sqrt{\left\langle\rho^{2}\right\rangle(0)} \equiv \frac{\rho \rho_{0}}{\lambda} \frac{1}{2 n+|\ell|+1},
$$

For the ground mode, $n=e l l=0$, this is the van Cittert-Zernike theorem!

Magnetized stripping foil technique for ions

Examples:

1. A 100 keV proton with $\mathrm{n}=\ell=0$ spreads from $\rho(0) \sim 1$ Angstrom to $1-100 \mu \mathrm{~m}$: the needed distance is $\langle\mathrm{z}\rangle \sim 7 \mathrm{~mm}-70 \mathrm{~cm}$, respectively.
2. For higher energies of $\varepsilon \sim 1 \mathrm{MeV}$, the distance to spread from 1 nm to $\sim 100 \mu \mathrm{~m}$ is $1-10$ meters.

Good news: $|\ell| \sim 10^{2}-10^{4}$
But can we really neglect scattering in the foil? (for beams of many ions - yes)

Magnetized stripping foil technique for ions

If the final ion is an LG:

$$
p_{\perp} \rho=2 n+|\ell|+1,
$$

$$
\begin{aligned}
& \rho \equiv \sqrt{\left\langle\rho^{2}\right\rangle} \\
& p_{\perp} \equiv \sqrt{\left\langle p_{\perp}^{2}\right\rangle}
\end{aligned}
$$

Decreases as the LG packet spreads From the Busch theorem
Assuming $\underline{\mathrm{n} \ll \text { ell }}$ we get $p_{\perp} \approx \frac{|\ell|}{\rho}=\frac{\left|Z_{\mathrm{in}}-Z_{\text {out }}\right|}{2 \rho} \frac{\rho^{2}}{\lambda_{c}^{2}} \frac{H}{H_{c}}$,
We require that the opening angle of the momentum cone

$$
\tan \theta_{0}=\tan \frac{p_{\perp}}{p_{z}} \approx \frac{p_{\perp}}{p_{z}} \ll 1
$$

be larger than the scattering angle in the foil

Magnetized stripping foil technique for ions

We take light ions or protons with the energy of a few 100 keV with and get:

$$
p_{\perp} \sim 0.1-1 \mathrm{keV} \quad \underline{\theta_{0} \sim 1-100 \mu \mathrm{rad}}
$$

Whereas the typical scattering angles are

(https://web-docs.gsi.de/~weick/atima/atima14.html)

$$
\sim 1-100 \mathrm{mrad}!
$$

$$
\begin{gathered}
\rho \sim 1-10 \mu \mathrm{~m} \\
H \sim 0.5-1 \mathrm{~T} \\
\left|Z_{\text {in }}-Z_{\text {out }}\right| \sim 1,
\end{gathered}
$$

Magnetized stripping foil technique for ions

- An ion interacts with the solenoid magnetic field and a nucleus of the foil
- The scattered ions are projected on the plane waves - what defines their azimuthal angle for a thin target (carbon)?
- If the ion packet is very wide, there is no preferential angle, and the ion evolved state may not necessarily be the plane wave
- This can no longer be a pure state but a mixed one, "averaged" over impact-parameters

> So, there is no solid reason to think that the ion evolved state is a plane wave

Magnetized stripping foil technique for ions

If the final ion is an LG (pure or mixed):

$$
p_{\perp} \rho=2 n+|\ell|+1
$$

$$
\begin{aligned}
& \rho \equiv \sqrt{\left\langle\rho^{2}\right\rangle} \\
& p_{\perp} \equiv \sqrt{\left\langle p_{\perp}^{2}\right\rangle}
\end{aligned}
$$

Defined by the scattering
From the Busch theorem

Large scattering angles imply large transverse momenta, so

1. Either it is not an LG that is generated - it can well be!
2. Or it still is an LG but with $\mathrm{n} \gg \mathrm{ell}-$ it is also possible!

Acceleration of charged particles with vortices and photon emission

The fields may be inhomogeneous for a beam, but still homogeneous for an ion/proton/electron packet!

Inside a magnetic lens, the vortex electron is in the Landau state

Relativistic Landau states

$$
\boldsymbol{H}=\{0,0, H\}
$$

$$
\Psi_{i}(x)=N_{i}^{\uparrow}\left(\begin{array}{c}
(m+\varepsilon) \Phi_{s, \ell-1 / 2}(\rho) e^{-i \varphi / 2} \\
0 \\
p_{z} \Phi_{s, \ell-1 / 2}(\rho) e^{-i \varphi / 2} \\
-i e H \Phi_{s, \ell+1 / 2}(\rho) e^{i \varphi / 2}
\end{array}\right) e^{-i t \varepsilon+i \ell \varphi+i p_{z} z}=4.4 \times 10^{9} \mathrm{~T}^{\prime}
$$

The evolved photon state:

$$
|\gamma\rangle_{e v}=\sum_{\lambda= \pm 1} \int \frac{d^{3} k}{(2 \pi)^{3}}|\boldsymbol{k}, \lambda\rangle S_{f i}^{(1)}=\left(\varepsilon-\varepsilon^{\prime}\right) \sum_{\lambda= \pm 1} \mathcal{F} \int_{0}^{2 \pi} d \varphi_{k}|\boldsymbol{k}, \lambda\rangle e^{i\left(t-\epsilon^{\prime}\right) \varphi_{k}} .
$$

FIG. 5. The dependence of the emission probability (left) and the intensity (right) on the electron momentum p_{z} for $H=0.1 H_{c}$, $s=s^{\prime}=20$. The transition $20 \frac{1}{2} \rightarrow 19 \frac{1}{2}$ means $\ell=20 \frac{1}{2}, \ell^{\prime}=19 \frac{1}{2}, s=s^{\prime}=20$; those with $\ell: 20 \frac{1}{2} \rightarrow 20 \frac{1}{2}$ correspond to the untwisted photons with $j_{z}=0$. The green line overlaps with the pink dashed one on the left; the cyan line on the left overlaps with the blue one on the right. The magenta dash-dotted line corresponds to an increase of the electron OAM during the emission (so that the photon TAM is $\left.\ell-\ell^{\prime}=-1\right)$.

DK, Di Piazza, PRD 108, 063007 (2023); Pavlov, DK, PRD 109, 036017 (2024)

An effective time period of loosing the vorticity: $\mathrm{s}=3, \mathrm{p}_{-} \mathrm{z} \ll \mathrm{m}$

An effective time period of loosing the vorticity: $\mathrm{s}=3, \mathrm{p}_{-} \mathrm{z} \ll \mathrm{m}$

U238_37+

Summary

1. The evolved-state formalism says if the twisted states are really generated
2. With two final particles, one can make one of them twisted by projecting the other one onto the vortex - pure or mixed - state with the $\mathrm{OAM}=0$
3. This generalized-measurement technique can be used to generate vortex states
of highly energetic protons, nuclei, ions, atoms, and so forth
4. Even when projecting the electron to the plane-wave, the photon state depends on a phase and on a transverse coherence of the incoming electron (quantum tomography)
5. The magnetized cathode \& stripping foil techniques for electrons and ions
can be tested together with more conventional methods
6. Once twisted, charged particles can be accelerated in a linac without loss of the OAM

Potential applications

1. Twisted photons: optical manipulations, tweezers, non-dipole effects in atoms, nuclei, ...
2. Vortex electrons: electron microscopy, magnetic materials, entanglement in QED,
quantum measurements, etc.
3. Vortex protons: proton spin puzzle, deep inelastic ep, pp, ... scattering, etc.
4. Vortex neutrons: low-energy nuclear physics, probing strong interactions
beyond the perturbative QCD
5. Vortex atoms, ions, nuclei: the role of center-of-mass

Quantum optics with massive -- especially composite - particles is much fun!

©

Thank you!

Special thanks to Andrei Surzhykov, Dima Glazov, Andrei Volotka, Valery Serbo, Igor Ivanov, Antonino Di Piazza as well to my group: George Sizykh, Alisa Chaikovskaia, Dima Grosman,

Ilia Pavlov, and many others

d.karlovets @qmail.com

What's the use of twisted neutrons?

PHYSICAL REVIEW C 100, 051601(R) (2019)

Schwinger scattering of twisted neutrons by nuclei
Andrei V. Afanasev©, ${ }^{1}$ D. V. Karlovets, ${ }^{2}$ and V. G. Serbo ${ }^{3,4}$
${ }^{1}$ Department of Physics, The George Washington University, Washington, D.C. 20052, USA
${ }^{2}$ Tomsk State University, Lenina Avenue 36, 634050 Tomsk, Russia
${ }^{3}$ Novosibirsk State University, RUS-630090 Novosibirsk, Russia
${ }^{4}$ Sobolev Institute of Mathematics, RUS-630090 Novosibirsk, Russia(Received 28 March 2019; revised manuscript received 5 September 2019; published 25 November 2019
Standard Schwinger cross section (plane waves):

$$
\begin{aligned}
& \frac{d \sigma^{(\mathrm{st})}\left(\mathbf{e}_{3}, \mathbf{n}^{\prime}, \zeta\right)}{d \Omega^{\prime}}=|a|^{2}+\frac{1}{4}\left[\beta \cot \left(\theta^{\prime} / 2\right)\right]^{2} \\
&-\beta \zeta_{\perp}(\operatorname{Im} a) \cot \left(\theta^{\prime} / 2\right) \sin \left(\varphi^{\prime}-\varphi_{\zeta}\right) \\
& \mathbf{n}=\mathbf{p} / p \text { and } \mathbf{n}^{\prime}=\mathbf{p}^{\prime} / p \quad \zeta_{\perp}=\zeta_{\perp}\left(\cos \varphi_{\zeta}, \sin \varphi_{\zeta}, 0\right)
\end{aligned}
$$

J. Schwinger, Phys. Rev. 73, 407 (1948)

Scattering amplitude:

$$
\begin{aligned}
f_{\lambda \lambda^{\prime}}\left(\mathbf{n}, \mathbf{n}^{\prime}\right) & =w_{\lambda^{\prime}}^{\prime \dagger}(a+i \mathbf{B} \sigma) w_{\lambda}, \quad \mathbf{B}=\beta \frac{\mathbf{n} \times \mathbf{n}^{\prime}}{\left(\mathbf{n}-\mathbf{n}^{\prime}\right)^{2}} \\
\beta & =\frac{\mu_{n} Z e^{2}}{m_{p} c^{2}}=-Z \times 2.94 \times 10^{-16} \mathrm{~cm}
\end{aligned}
$$

a nucleus. For thermal neutrons with the energies near 25 meV and an ${ }_{79}^{197} \mathrm{Au}$ nuclear target $(a=7.63 \mathrm{fm}$ [19]), the relevant parameters are

$$
\varepsilon \equiv|\beta / a| \approx 0.03, \quad|(\operatorname{Im} a) / a| \approx 2 \times 10^{-4}
$$

No sensitivity to:

1. The neutron's helicity
2. $\operatorname{Re} a$

What's the use of twisted neutrons?

$$
\begin{gathered}
\psi_{\varkappa m p_{z} \lambda}(\mathbf{r})=\int \frac{d^{2} \mathbf{p}_{\perp}}{(2 \pi)^{2}} a_{\varkappa m}\left(\mathbf{p}_{\perp}\right) i^{\lambda} w^{(\lambda)}(\mathbf{n}) e^{\mathrm{i} \mathbf{p r} / \hbar} . \\
a_{\varkappa m}\left(\mathbf{p}_{\perp}\right)=i^{-m} e^{\mathrm{i} m \varphi} \frac{2 \pi}{p_{\perp}} \delta\left(p_{\perp}-\hbar \varkappa\right) . \quad \mathbf{p}=\left(\mathbf{p}_{\perp}, p_{z}\right)=\left(\hbar \varkappa \cos \varphi, \hbar \varkappa \sin \varphi, p_{z}\right) .
\end{gathered}
$$

Macroscopic target (incoherent superposition of many nuclei):

$$
\begin{aligned}
\frac{d \bar{\sigma}\left(\theta, \theta^{\prime}, \varphi^{\prime}, \zeta\right)}{d \Omega^{\prime}}=\frac{1}{\cos \theta} \int_{0}^{2 \pi} \frac{d \sigma^{(\mathrm{st})}\left(\mathbf{n}, \mathbf{n}^{\prime}, \zeta\right)}{d \Omega^{\prime}} \frac{d \varphi}{2 \pi}= & \frac{1}{\cos \theta}\left[|a|^{2}+\beta^{2} G\left(\theta, \theta^{\prime}\right)\right. & G\left(\theta, \theta^{\prime}\right)=\frac{1}{2\left|\cos \theta-\cos \theta^{\prime}\right|}-\frac{1}{4} \\
& \left.-\beta(\operatorname{Im} a) \zeta_{\perp} g\left(\theta, \theta^{\prime}\right) \sin \left(\varphi^{\prime}-\varphi_{\zeta}\right)\right], & g\left(\theta, \theta^{\prime}\right)= \begin{cases}\cot \left(\theta^{\prime} / 2\right), & \text { at } \theta^{\prime}>\theta, \\
-\tan \left(\theta^{\prime} / 2\right) & \text { at } \theta^{\prime}<\theta\end{cases}
\end{aligned}
$$

Angular singularity at $1 /\left|\theta^{\prime}-\theta\right|$ instead of 0 !

What's the use of twisted neutrons?

PHYSICAL REVIEW C 103, 054612 (2021)

Elastic scattering of twisted neutrons by nuclei

A. V. Afanasev $\odot,{ }^{1}$ D. V. Karlovets $\odot,^{2,3}$ and V. G. Serbo $\odot^{4,5}$
${ }^{1}$ Department of Physics, The George Washington University, Washington, DC 20052, USA
${ }^{2}$ Faculty of Physics, Tomsk State University, Lenina Avenue 36, 634050 Tomsk, Russia
${ }^{3}$ School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
${ }^{4}$ Novosibirsk State University, 630090 Novosibirsk, Russia
${ }^{5}$ Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia(Received 19 February 2021; accepted 10 May 2021; published 20 May 2021)
$\left.W_{\lambda}^{(m)}\left(\theta, \theta^{\prime}, \mathbf{b}\right)=\left.\sum_{\lambda^{\prime}}\langle | F_{\lambda \lambda^{\prime}}^{(m)}\left(\theta, \theta^{\prime}, \varphi^{\prime}, \mathbf{b}\right)\right|^{2}\right\rangle=\frac{1}{2} \Sigma^{(m)}+\lambda \Delta^{(m)}$,
Depends on Re a !
Neutron helicity!

Helicity asymmetry:

$$
A_{\lambda}=\frac{W_{\lambda=1 / 2}^{(m)}-W_{\lambda=-1 / 2}^{(m)}}{W_{\lambda=1 / 2}^{(m)}+W_{\lambda=-1 / 2}^{(m)}}=\frac{\Delta^{(\mathrm{m})}}{\Sigma^{(\mathrm{m})}}
$$

For a target of a finite width, we average the probability with

$$
n\left(\mathbf{b}-\mathbf{b}_{t}\right)=\frac{1}{2 \pi \sigma_{t}^{2}} e^{-\left(\mathbf{b}-\mathbf{b}_{t}\right)^{2} /\left(2 \sigma_{t}^{2}\right)}
$$

What's the use of twisted neutrons?

Averaged over the azimuthal angle of the final neutron:

$$
\begin{gathered}
\Sigma^{(m)}=|a|^{2}\left(J_{m-1 / 2}^{2}(\varkappa b)+J_{m+1 / 2}^{2}(\varkappa b)\right)+\sum_{\sigma}\left\langle\left(\mathbf{B}^{(\sigma) *} \mathbf{B}^{(\sigma)}\right)-2 \sigma \operatorname{Im}\left(\mathbf{B}^{(\sigma) *} \times \mathbf{B}^{(\sigma)}\right)_{z}\right\rangle, \\
\Delta^{(m)}=\left[|a|^{2} \cos \theta-(\operatorname{Re} a) \beta h\left(\theta, \theta^{\prime}\right)\right]\left(J_{m-1 / 2}^{2}(\varkappa b)-J_{m+1 / 2}^{2}(\varkappa b)\right)+\cos \theta \sum\left\langle 2 \sigma\left(\mathbf{B}^{(\sigma) *} \mathbf{B}^{(\sigma)}\right)-\operatorname{Im}\left(\mathbf{B}^{(\sigma) *} \times \mathbf{B}^{(\sigma)}\right)_{z}\right\rangle \\
-\sin \theta\left\langle\operatorname{Im}\left(\mathbf{B}^{(1 / 2) *} \times \mathbf{B}^{(-1 / 2)}\right)_{x}-\operatorname{Re}\left(\mathbf{B}^{(1 / 2) *} \times \mathbf{B}^{(-1 / 2)}\right)_{y}\right\rangle
\end{gathered}
$$

What's the use of twisted neutrons?

FIG. 7. The distribution (38) in units $|a|^{2}$ as a function of the ${ }_{79}^{197} \mathrm{Au}$ nucleus position b for $\theta^{\prime}=0.04 \mathrm{rad}, \theta=0.07 \mathrm{rad}$, and $\varepsilon=0.03$. The case $\operatorname{Im} a>0$ is shown by blue solid lines, while the case $\operatorname{Im} a<0$ is shown by green dashed lines.

$$
\theta^{\prime}<\theta \approx 1^{\circ}-10^{\circ}
$$

What's the use of twisted neutrons?

Within the momentum cone

$$
\theta^{\prime}<\theta \approx 1^{\circ}-10^{\circ}
$$

the asymmetry reaches the values

FIG. 9. The helicity asymmetry as a function of $\varkappa \sigma_{t}$ where σ_{t} is a width of the ${ }_{79}^{197} \mathrm{Au}$ mesoscopic target for $m=5 / 2, \theta^{\prime}=0.04 \mathrm{rad}$, $\theta=0.07 \mathrm{rad}$, and $\varepsilon=0.03, b_{t}=\varphi_{t}=0$. The case $\operatorname{Im} a>0$ is shown by the black solid line, while the case $\operatorname{Im} a<0$ is shown by $3 / a|\approx 0.03, \quad|(\operatorname{Im} a) / a \mid \approx 2 \times 10$ the green dashed line.

FIG. 8. The helicity asymmetry as a function of $\varkappa \sigma_{t}$ where σ_{t} is a width of the ${ }_{79}^{197} \mathrm{Au}$ mesoscopic target for $m=1 / 2, \theta^{\prime}=0.03 \mathrm{rad}$, $\theta=0.06 \mathrm{rad}$, and $\varepsilon=0.03, b_{t}=\varphi_{t}=0$. The case $\operatorname{Im} a>0$ is 4hown by the black solid line, while the case $\operatorname{Im} a<0$ is shown by the green dashed line.

Generation and detection of spin-orbit coupled neutron beams

Dusan Sarenac ${ }^{\text {a, }, 1}$, Connor Kapahi ${ }^{\text {a,b }}$, Wangchun Chen ${ }^{\text {c,d }}$, Charles W. Clark ${ }^{e}$, David G. Cory ${ }^{\text {a,f,g,h }, ~ M i c h a e l ~ G . ~ H u b e r i, ~}$ Ivar Taminiau ${ }^{\text {a }}$, Kirill Zhernenkov ${ }^{\text {aj,j,k }}$, and Dmitry A. Pushin ${ }^{\text {a,b }}$

Spin-orbit coupling of light has come to the fore in nanooptics and plasmonics, and is a key ingredient of topological photonics and

| 20328-20332 | PNAS | October 8, 2019 | vol. 116 | no. 41 |
| :--- | :--- | :--- | :--- | :--- | chiral quantum optics. We demonstrate a basic tool for incorporating analogous effects into neutron optics: the generation and detection of neutron beams with coupled spin and orbital angular momentum. The ${ }^{3} \mathrm{He}$ neutron spin filters are used in conjunction with specifically oriented triangular coils to prepare neutron beams with lattices of spin-orbit correlations, as demonstrated by their spin-dependent intensity profiles. These correlations can, be tailored to particular applications, such as neutron studies of topological materials.

"The triangular coils induce perpendicular phase gradients along the directions that are also perpendicular to the direction of the incoming spin state. Pairs of triangular coils then effectively act as LOV prism pairs."

B $\mathrm{N}=1$ Lattice

Fig. 2. The simulated and observed spin-dependent intensity profiles. A Gaussian filter as well as an intensity gradient was added to each observed image, to highlight the features of interest. The currents on the (first, second, third, and fourth) triangular coil were set to (A) ($0,0,0$, and 2.5 A$)$, (B) ($2.5,2.5,0$, and 0 A$)$, and $(C)(5,5,5$, and 4 A$)$. The spatially varying spin direction (before the spin filtering) is overlaid on the simulated intensity profiles via the red arrows. The $\mathrm{N}=1$ lattice exhibits a vortex antivortex structure, and its spin-dependent intensity profile resembles a checkerboard pattern. The $\mathrm{N}=2$ lattice appears as a lattice of doughnut/ring shapes. Good qualitative agreement is shown between the simulated and observed intensity profiles.

New Journal of Physics

Theopenaccessiouma atthe forefront of physid

PAPER

Methods for preparation and detection of neutron spin-orbit states

D Sarenac ${ }^{1,2}$, J Nsofini ${ }^{1,2}$, I Hincks 2,3, M Arif 4, Charles W Clark ${ }^{5}$, D G Cory ${ }^{2,6,7,8}$, M G Huber 4 and D A Pushin ${ }^{1,2}$

IOP Institute of Physics $\begin{aligned} & \text { with: Deutsche Physikalische } \\ & \text { Gesellschaft and the Institute }\end{aligned}$

C) BB 1 Sequence
$\begin{aligned} & \left|0,0, \tau_{2}\right\rangle \\ & \text { d) }\end{aligned}\left|\Psi_{\text {BB1 }}^{N-2}\right\rangle$

$$
E=\hbar \omega_{\perp}\left(2 n_{r}+|\ell|+1\right)
$$

$\left|\Psi_{\mathrm{so}}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|n_{\uparrow}, \ell_{\uparrow}, \uparrow\right\rangle+\mathrm{e}^{\mathrm{i} \beta}\left|n_{\downarrow}, \ell_{\downarrow}, \downarrow\right\rangle\right.$
Figure 1. Four methods of producing neutron spin-orbit states. The phase and intensity profiles of the output states, post-selected on the spin state correlated to the OAM, are shown on the right. (a) An incoming neutron wavepacket in a coherent superposition of the two spin eigenstates passes through a magnetic SPP which is made out of a material with equal magnetic and nuclear scattering lengths, thereby inducing an azimuthally varying phase for only one spin state. (b) A spin-polarized neutron wavepacket passes through a quadrupole magnetic field which induces the spin-orbit state [18]. After transversing the quadrupole field, the intensity profile of the spin state correlated to the OAM has a ring shape. (c) A sequence of quadrupoles with appropriate length and orientation acts as a BB1 pulse which increases the radii at which the spin and OAM are maximally entangled. (d) In analogy to the LOV prism pairs capable of generating lattices of optical spin-orbit states [34], a sequence of magnetic prisms can be used to approximate the quadrupole operator and produce lattice of neutron spin-orbit states.
a) CYLINDRICALLY POLARIZED STATES
$|\Psi\rangle=\frac{\left|\uparrow_{z}\right\rangle+\mathrm{e}^{i \beta} \mathrm{e}^{i \phi}\left|\downarrow_{z}\right\rangle}{\sqrt{ } 2}$
b) AZIMUTHALLY POLARIZED STATES
$|\Psi\rangle=\frac{\left|\uparrow_{z}\right\rangle-i e^{i \phi}\left|\bigsqcup_{z}\right\rangle}{\sqrt{ } 2}$
$|\Psi\rangle=\frac{\left|\uparrow_{z}\right\rangle+i \mathrm{e}^{i \phi}\left|\downarrow_{z}\right\rangle}{\sqrt{ } 2}$
c) RADIALLY POLARIZED STATES
$|\psi\rangle=\frac{\left|\uparrow_{z}\right\rangle+\mathrm{e}^{i \phi}\left|\downarrow_{z}\right\rangle}{\sqrt{ } 2}$
$|\psi\rangle=\frac{\left|\uparrow_{z}\right\rangle-e^{i \phi}\left|\downarrow_{z}\right\rangle}{\sqrt{ } 2}$

d) HYBRID POLARIZED STATES

$$
|\Psi\rangle=\frac{\left|\uparrow_{\mathrm{z}}\right\rangle+\mathrm{e}^{i \beta} \mathrm{e}^{-i \phi}\left|{L_{z}}\right\rangle}{\sqrt{ } 2}
$$

$\ell_{\uparrow}=0$
$\ell_{\downarrow}=-1$

f) HEDGEHOG SKYRMION STATES
$|\psi\rangle=\cos \left(\frac{\pi \rho}{2 p_{c}}\left|\uparrow_{z}\right\rangle+\mathrm{e}^{i \phi} \sin \left(\frac{\pi \rho}{2 \rho_{\rho}}\right)\left|\|_{\mathrm{z}}\right\rangle\right.$

g) SPIRAL SKYRMION STATES

$$
|\psi\rangle=\cos \left(\frac{\pi \rho}{2 \rho}| | \tau_{z}\right\rangle-i \mathrm{e}^{i \phi_{\sin } \sin \left(\frac{\mu}{2 \rho}\right)}\left|\downarrow_{\mathrm{z}}\right\rangle
$$

(a) 'cylindrically polarized states' where the spin orientation is given by $\vec{P}=\cos (\beta) \hat{\rho}+\sin (\beta) \hat{\phi}$, where β is an arbitrary phase;
(b) 'azimuthally polarized states' which are a subset of cylindrically polarized states where $\vec{P}= \pm \hat{\phi}$;
(c) 'radially polarized states' which are a subset of cylindrically polarized states where $\vec{P}= \pm \hat{r}$; and
(d) 'hybrid polarization states' where $\vec{P}=\sin (2 \phi+\beta) \hat{r}+\cos (2 \phi+\beta) \hat{\phi}$, where β is an arbitrary phase.

The more recent technique: arrays with $N=2500 * 2500$ on silicon substrates

Make a hologram of neutron diffraction gratings

$$
\begin{gathered}
2500 \times 2500= \\
6,250,000
\end{gathered}
$$

gratings in square array

Side view of neutron diffraction gratings

$2500 \times 2500=$ 6,250,000 gratings in square array

[^1]

Sarenac et al., Sci. Adv. 8, eadd2002 (2022)

The more recent technique: arrays with $N=2500^{*} 2500$ on silicon substrates

At the High Flux Isotope Reactor at Oak Ridge National Laboratory

Airy photons and electrons

Non-stationary states in magnetic field

An electron in a constant and homogeneous magnetic field: the stationary Landau state

$$
\Psi(\boldsymbol{r}, t)=\operatorname{const}\left(\frac{\rho}{\rho_{\mathrm{H}}}\right)^{|\ell|} L_{n_{\mathrm{H}}}^{|\ell|}\left(\frac{2 \rho^{2}}{\rho_{\mathrm{H}}^{2}}\right) \exp \left\{-\frac{\rho^{2}}{\rho_{\mathrm{H}}^{2}}+\mathrm{i} \ell \phi+\mathrm{i} p_{z} z-\mathrm{i} \varepsilon t\right\}, \quad \begin{aligned}
& \varepsilon=\varepsilon_{\perp}+\frac{p_{z}^{2}}{2 m}, \\
& \varepsilon_{\perp}=\frac{\left\langle\hat{\left.\left.\boldsymbol{p}_{\mathrm{B}}^{\mathrm{kin}}\right)^{2}\right\rangle}\right.}{2 m}=\left|\omega_{\mathrm{L}}\right|\left(2 n_{\mathrm{H}}+|\ell|-\operatorname{sgn}(e) \ell+1\right)
\end{aligned}
$$

An electron in a magnetic lens (solenoid) with sharp boundaries

A non-stationary Landau-like state?

$$
\begin{aligned}
& \Psi_{n, l}(\rho, t)=N \frac{\rho^{|l|}}{\sigma^{|l|+1}(t)} L_{n}^{|l|}\left(\frac{\rho^{2}}{\sigma^{2}(t)}\right) \times \\
& {\left[i l \varphi-i \Phi_{\mathrm{G}}(t)-\frac{\rho^{2}}{2 \sigma^{2}(t)}\left(1-i \frac{\sigma^{2}(t)}{\lambda_{\mathrm{C}} R(t)}\right)\right]}
\end{aligned}
$$

Non-stationary states in magnetic field

We substitute this to the Schrödinger equation and get:
$\frac{1}{R(t)}=\frac{\sigma^{\prime}(t)}{\sigma(t)}$,
$\frac{1}{\lambda_{\mathrm{C}}^{2} R^{2}(t)}+\frac{1}{\lambda_{\mathrm{C}}^{2}}\left[\frac{1}{R(t)}\right]^{\prime}=\frac{1}{\sigma^{4}(t)}-\frac{1}{\sigma_{\mathrm{L}}^{4}}:$
$\frac{1}{\lambda_{\mathrm{C}}} \Phi_{\mathrm{G}}^{\prime}(t)=\frac{l}{\sigma_{\mathrm{L}}^{2}}+\frac{(2 n+|l|+1)}{\sigma^{2}(t)}$.

Only a very special choice of the initial conditions yields the customary Landau state!
$\sigma(t)=\sigma_{\mathrm{L}}, \sigma^{\prime}(t)=0, \Phi_{\mathrm{G}}(t)=\varepsilon_{\perp} t$,

$$
\sigma_{\mathrm{L}}=\sqrt{2 /|e H|}
$$

Magnetic lens

Non-stationary states in magnetic field

Suppose that at $\mathrm{t}=0$ a free LG state enters the solenoid:

$$
\begin{array}{ll}
\sigma\left(t_{0}\right)=\sigma_{0}=\frac{\rho_{0}}{\sqrt{2 n+|l|+1}}, & \rho(t)=\sqrt{2 n+|l|+1} \sigma(t) \\
\sigma^{\prime}\left(t_{0}\right)=\sigma_{0}^{\prime}=\frac{\rho_{0}^{\prime}}{\sqrt{2 n+|l|+1}} . & \sigma_{\mathrm{L}}=\sqrt{2 /|e H|}
\end{array}
$$

So now the mean energy becomes greater:

$$
\left\langle E_{\perp}\right\rangle=\frac{\omega}{2}(2 n+|l|+1) \frac{\sigma_{0}^{2}}{\sigma_{\mathrm{L}}^{2}} A^{2}+\frac{\omega}{2} l \geq \varepsilon_{\perp}
$$

And the rms radius also becomes greater:

$$
\begin{aligned}
& \left.\rho_{\mathrm{st}}^{2}\right|_{\mathrm{NSLG}_{\mathrm{H}}}=\rho_{\mathrm{L}}^{2} \frac{\sigma_{0}^{2}}{\sigma_{\mathrm{L}}^{2}} A^{2} \geq \rho_{\mathrm{L}}^{2} \\
& A^{2}=\frac{1}{2}\left(1+\left(\frac{\sigma_{\mathrm{L}}}{\sigma_{0}}\right)^{4}+\left(\frac{\sigma_{0}^{\prime} \sigma_{\mathrm{L}}^{2}}{\lambda_{\mathrm{C}} \sigma_{0}}\right)^{2}\right)
\end{aligned}
$$

Quantum betatron oscillations

Figure 2: Oscillations of the r.m.s. radius of the NSLG ${ }_{H}$ wave packet in a magnetic field (solid red line), the stationary radius $\rho_{\text {st }}$ (dot-dashed green line) and the r.m.s. radius of the Landau state (dashed blue line).

The parameters are listed in Table I. (a) SEM, (b) TEM, (c) medical linac, (d) conventional linac.

$$
\begin{aligned}
\xi_{1} & =\frac{\sigma_{\mathrm{L}}}{\sigma_{0}} \\
\xi_{2} & =\frac{\left|\sigma_{0}^{\prime}\right| \sigma_{\mathrm{L}}^{2}}{\lambda_{\mathrm{C}} \sigma_{0}}
\end{aligned}
$$

Setup	$E_{\\|}$	v	H	ρ_{L}	d	z_{R}	ρ_{0}	$d \rho /\left.d z\right\|_{z=z_{0}}$	ξ_{1}	ξ_{2}
SEM	100 eV	$0.02 c$	1 T	72.6 nm	5.16 cm	5.16 cm	$2.82 \mu \mathrm{~m}$	$27 \mathrm{pm} / \mu \mathrm{m}$	0.025	6.6×10^{-4}
TEM	200 KeV	$0.70 c$	1.9 T	52.7 nm	10 cm	179 cm	$2 \mu \mathrm{~m}$	$62 \mathrm{pm} / \mathrm{mm}$	0.026	3.9×10^{-5}
Medical linac	1 MeV	$0.94 c$	0.1 T	$0.23 \mu \mathrm{~m}$	10 cm	243 cm	$2 \mu \mathrm{~m}$	$0.34 \mathrm{~nm} / \mathrm{cm}$	0.115	5.5×10^{-4}
Linac	1 GeV	c	0.01 T	$0.72 \mu \mathrm{~m}$	100 cm	258 cm	$2.14 \mu \mathrm{~m}$	$0.28 \mu \mathrm{~m} / \mathrm{m}$	0.339	0.045

Table I: Experimental scenarios for observing the oscillations of the r.m.s. radius $\rho(z)$. We take $\sigma_{\mathrm{w}}=1 \mu \mathrm{~m}, n=0$, $l=3$. The parameters $\xi_{1}=\sigma_{\mathrm{L}} / \sigma_{0}$ and $\xi_{2}=\sigma_{0}^{\prime} \sigma_{\mathrm{L}}^{2} /\left(\lambda_{\mathrm{C}} \sigma_{0}\right)$ reflect the discrepancy between the NSLG ${ }_{\mathrm{H}}$ state and the

Landau one, the latter being reproduced when $\xi_{1}=1$ and $\xi_{2}=0$.
Sizykh, et al., arXiv: 2306.13161v1

Quantum scattering theory beyond the plane-wave approximation

Scattering of general wave packets

$$
\begin{gathered}
d W=\left|S_{f i}\right|^{2} \prod_{f} V \frac{d^{3} p_{f}}{(2 \pi)^{3}}=\int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \frac{d^{3} p_{2}}{(2 \pi)^{3}} \frac{d^{3} k}{(2 \pi)^{3}} \mathcal{L}\left(\boldsymbol{p}_{i}, \boldsymbol{k}\right) d \sigma\left(\boldsymbol{p}_{i}, \boldsymbol{k}\right), \\
\begin{aligned}
\mathcal{L}\left(\boldsymbol{p}_{i}, \boldsymbol{k}\right)=v\left(\boldsymbol{p}_{i}\right) \int d^{4} x d^{3} R e^{i \boldsymbol{k} \boldsymbol{R}_{1}} n_{1}\left(\boldsymbol{r}, \boldsymbol{p}_{1}, t\right) n_{2}\left(\boldsymbol{r}+\boldsymbol{R}, \boldsymbol{p}_{2}, t\right) & \text { The probability } \\
L=\int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \frac{d^{3} p_{2}}{(2 \pi)^{3}} d^{4} x v\left(\boldsymbol{p}_{i}\right) n_{1}\left(\boldsymbol{r}, \boldsymbol{p}_{1}, t\right) n_{2}\left(\boldsymbol{r}, \boldsymbol{p}_{2}, t\right) . & \text { The correlator } \\
\begin{aligned}
v\left(\boldsymbol{p}_{i}\right) & =\frac{\sqrt{\left(p_{1 \mu} p_{2}^{\mu}\right)^{2}-m_{1}^{2} m_{2}^{2}}}{\left.\varepsilon_{1} \boldsymbol{p}_{1}\right) \varepsilon_{2}\left(\boldsymbol{p}_{2}\right)} \\
& =\sqrt{\left(\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)^{2}-\left[\boldsymbol{u}_{1} \times \boldsymbol{u}_{2}\right]^{2}}
\end{aligned} & \text { The luminosity }
\end{aligned}
\end{gathered}
$$

Scattering of general wave packets

When the wave packets are wide:

$$
\begin{aligned}
d \sigma_{\mathrm{gen}} & =d \sigma^{\mathrm{incoh}}+d \sigma^{\mathrm{int}}+\mathcal{O}\left((\delta p)^{2}\right) \\
d \sigma^{\text {incoh }} & =\frac{d W^{\text {incoh }}}{L} \\
d W^{\text {incoh }} & =\int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \frac{d^{3} p_{2}}{(2 \pi)^{3}} d^{4} x v\left(\boldsymbol{p}_{i}\right) n_{1}\left(r, p_{1}, t\right) n_{2}\left(r, p_{2}, t\right) d \sigma^{(\mathrm{pw})}\left(\boldsymbol{p}_{i}\right)
\end{aligned}
$$

Even the first term is NOT yet the plane-wave cross section!

Scattering of general wave packets

The correction due to quantum interference:

$$
\begin{aligned}
& d \sigma^{\mathrm{int}}=-\frac{1}{L} \int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \frac{d^{3} p_{2}}{(2 \pi)^{3}} d^{4} x v\left(\boldsymbol{p}_{i}\right) n_{1}\left(\boldsymbol{r}, \boldsymbol{p}_{1}, t\right) \frac{\partial n_{2}\left(\boldsymbol{r}, \boldsymbol{p}_{2}, t\right)}{\partial \boldsymbol{r}} d \sigma^{(\mathrm{pw})}\left(\boldsymbol{p}_{i}\right) \partial_{\Delta p} \zeta_{f i}^{(\mathrm{pw})}\left(\boldsymbol{p}_{i}\right) \\
& M_{f i}^{(\mathrm{pw})}=\left|M_{f i}^{(\mathrm{pw})}\right| \exp \left\{i \zeta_{f i}^{(\mathrm{pw})}\right\}, \\
& \partial_{\Delta p}=\frac{\partial}{\partial p_{1}}-\frac{\partial}{\partial p_{2}}, \\
& \zeta_{f i}^{(\mathrm{pw})}=\arctan \frac{\operatorname{Im} M_{f i}^{(\mathrm{pw})}}{\operatorname{Re} M_{f i}^{(\mathrm{pw})}}=\mathrm{inv}
\end{aligned}
$$

Collision of a Gaussian packet with a vortex packet

S-channel at $\sqrt{s} \gg m_{\mu} \quad e^{+}\left(p_{1}\right) e_{\mathrm{tw}}^{-}\left(p_{2}\left(\phi_{2}\right)\right) \rightarrow \mu^{+}\left(p_{3}\right) \mu^{-}\left(p_{4}\right)$

$$
\begin{aligned}
\frac{d \sigma_{\mathrm{CM}}^{\mathrm{incoh}}}{d \Omega_{3}}= & \frac{d \sigma_{\mathrm{CM}}^{(\mathrm{pw})}}{d \Omega_{3}}\left(1+\frac{p_{\perp}^{2}}{s_{0}} g\left(\theta_{3}\right)+\mathcal{O}\left(\frac{p_{\perp}^{4}}{s_{0}^{2}}\right)\right), \\
g\left(\theta_{3}\right)= & -\frac{\cos \theta_{3}}{1+\cos ^{2} \theta_{3}}\left(2+\cos \theta_{3}-4 \cos ^{2} \theta_{3}\right. \\
& \left.+5 \cos ^{3} \theta_{3}\right),
\end{aligned}
$$

Leptons: $\delta p_{2} \lesssim 1 \mathrm{keV}, \quad \sqrt{s_{0}}>1 \mathrm{GeV} \longrightarrow \frac{p_{\perp}^{2}}{s_{0}} \sim \frac{\left(\delta p_{2}\right)^{2}}{s_{0}}|\ell| \lesssim \underline{10^{-12}|\ell|}$
Hadrons: $\quad p_{(\mathrm{tw})} p \rightarrow X, \quad p_{(\mathrm{tw})} \bar{p} \rightarrow X, \quad e p_{(\mathrm{tw})} \rightarrow e p, \quad$ etc.

$$
\frac{p_{\perp}^{2}}{s_{0}} \sim \frac{\left(\delta p_{p}\right)^{2}}{s_{0}}|\ell| \lesssim 10^{-8}|\ell|
$$

Probing the phase in plane-wave scattering

Measurement of elastic pp scattering at $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$ in the Coulomb-nuclear interference region: determination of the ρ-parameter and the total cross-section

TOTEM Collaboration

$$
d \sigma^{\mathrm{PW}} \propto\left|M_{f i}^{\mathrm{em}}+M_{f i}^{\text {strong }}\right|^{2}
$$

With the vortex particles, the cross section does depend on the amplitude's phase already at the tree level!

Quantum interference

$$
\begin{aligned}
d \sigma^{\mathrm{int}}= & \left.\left.-2 \sigma_{12}^{2} \frac{1}{L} \int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \frac{d^{3} p_{2}}{(2 \pi)^{3}} v\left(p_{i}\right)\right)_{t}^{\text {corr }} p_{i} ; \boldsymbol{b}\right) d \sigma^{(\mathrm{pw})}\left(\boldsymbol{p}_{i}\right) \\
& \times\left(\boldsymbol{b}_{\mathrm{eff}}-\frac{\sigma_{12}^{2}}{\sigma_{12}^{2}\left(\Delta u_{\perp}\right)^{2}+\sigma_{12, z}^{2}\left(\Delta u_{z}\right)^{2}} \Delta u\left(\Delta u b_{\mathrm{eff}}\right)\right) \cdot \partial_{\Delta p} \zeta_{f i}^{(\mathrm{pw})}\left(\boldsymbol{p}_{i}\right),
\end{aligned}
$$

An effective impact-parameter (akin to the Goos-Hänchen shift in optics):

$$
b_{\mathrm{eff}}=b+\ell \frac{p_{2} \times \hat{z}}{p_{2}{ }^{2}}
$$

Scattering assymetry:

$$
\mathcal{A}=\frac{d \sigma_{\mathrm{gen}}\left(\boldsymbol{b}_{\mathrm{eff}}\right)-d \sigma_{\mathrm{gen}}\left(-\boldsymbol{b}_{\text {eff }}\right)}{d \sigma_{\mathrm{gen}}\left(\boldsymbol{b}_{\text {eff }}\right)+d \sigma_{\mathrm{gen}}\left(-\boldsymbol{b}_{\text {eff }}\right)}=\frac{d \sigma^{\mathrm{int}}\left(\boldsymbol{b}_{\text {eff }}\right)}{d \sigma^{\mathrm{incoh}}\left(\boldsymbol{b}_{\text {eff }}\right)}
$$

In the perturbative regime for ep, pp very roughly:

$$
\frac{d \sigma^{\text {int }}}{d \sigma^{\text {incoh }}}=\mathcal{O}\left(\alpha \frac{p_{\perp}}{\sqrt{s}}\right) \lesssim \alpha\left(10^{-5}-10^{-4}\right)
$$

DK, Serbo, PRD 101, 076009 (2020)

[^0]: 1) H. Busch, Physik. Ztechr. 23. S. 438. 1922.
 2) Eine solche Präzisionsbestimmung ist im hiesigen Physikalischen Institut im Gange und steht kurz vor dem AbschluB.
 3) Zu beachten ist, daB wegeu des Faktors $\cos \alpha$ die Abbildung des Punktes P in $P^{\prime}-$ in der Sprache der geometrischen Optik - niebt
[^1]: Sarenac et al., Sci. Adv. 8, eadd2002 (2022)

