

Семинар ОЭФ (ПИЯФ) 21 мая 2024

https://arxiv.org/pdf/2405.05653

АТLАЅ и ТОТЕМ: о предполагаемых осцилляциях дифференциальных сечений при 13 ТэВ

В.А.Петров, <u>Н.П.Ткаченко</u>

ИФВЭ, Протвино

Говорить об осцилляциях имеет смысл только когда имеется фитирующая кривая с ясным физическим содержанием и с высоким уровнем достоверности. Для описания дифференциальных сечений мы воспользовались моделью, опубликованной в:

https://link.springer.com/article/10.1140/epjc/s10052-019-6954-6

Модель унитарная и содержит много параметров что даёт возможность описывать дифференциальные сечения в самом широком диапазоне энергий и передач импульса.

Экспериментальные данные ТОТЕМ состоят из двух [опубликованных в журналах] массивов. Один массив состоит из данных с низкими значениями |t|, и второй массив – с более высокими значениями |t|.

Eur. Phys. J. C (2019) 79:861						Page 7 of 15 861
Table 5The differentialcross-section $d\sigma/dt$	$ t _{\text{low}} (\text{GeV}^2)$	t _{high} (GeV ²)	$ t _{\text{repr.}}$ (GeV ²)	dσ/dt	Statistical uncertainty (mb GeV ⁻²)	Systematic uncertainty
	0.03763	0.03926	0.03840	291.005	0.238	23.23
	0.03926	0.04090	0.04004	280.102	0.219	17.10
	0.04090	0.04254	0.04168	270.253	0.208	13.45
	0.04254	0.04419	0.04332	260.682	0.198	10.17
	0.04419	0.04583	0.04496	251.980	0.191	8.04
	0.04583	0.04748	0.04661	243.144	0.183	6.23
	0.04748	0.04912	0.04825	234.997	0.177	5.10
	0.04912	0.05077	0.04990	227.243	0.171	4.35
	0.05077	0.05242	0.05155	219.549	0.165	3.65
	0.05242	0.05408	0.05320	212.265	0.159	3.08
	0.05408	0.05573	0.05486	205.123	0.154	2.55
	0.05573	0.05739	0.05651	198.390	0.149	2.27
	0.05700	0.05004	0.05017	101.004	0.144	2.01

Table 3 The elastic differential cross-section as determined in this analysis (medium binning). The three leftmost columns describe the bins in t. The representative point gives the t value suitable for fitting [40]. The other columns are related to the differential cross-section. The five rightmost columns give the leading systematic biases in $d\sigma/dt$ for 1σ -shifts in the respective quantities, δs_q , see Eqs. (12) and (13). The contribution due to optics corresponds to the third vector in Eq. (7). In order to avoid undesired interplay between statistical and systematic uncertainties, the latter are calculated from the relative uncertainties (Sect. 5.4) by multiplying by a smooth fit (Fig. 14) evaluated at the representative point

t bin (GeV ²)		$d\sigma/dt (mb/GeV^2)$								
Left edge	Right edge	Represent. point	Value	Statist. uncert.	System. uncert.	Normal.	Alignment vert. shift	Optics mode 3	Vert. beam divergence	Beam mom.
0.000800	0.000966	0.000879	868.726	12.518	48.472	+ 46.865	+9.265	- 0.175	- 5.360	+ 0.548
0.000966	0.001144	0.001051	784.894	7.252	42.786	+ 42.318	+5.098	-0.252	- 1.279	+ 0.750
0.001144	0.001335	0.001236	716.217	5.943	39.656	+ 39.476	+2.900	- 0.299	- 0.660	+ 0.876
0.001335	0.001540	0.001434	696.283	5.279	37.685	+ 37.603	+ 1.722	-0.330	-0.435	+ 0.963
0.001540	0.001759	0.001646	655.272	4.710	36.358	+ 36.313	+1.059	- 0.350	-0.327	+1.012
0.001759	0.001995	0.001874	643.657	4.346	35.415	+ 35.385	+0.670	-0.363	- 0.259	+ 1.047
0.001995	0.002248	0.002118	634.502	4.047	34.713	+ 34.689	+0.435	-0.370	-0.212	+1.068
0.002248	0.002519	0.002380	617.090	3.764	34.166	+ 34.144	+0.287	-0.375	-0.180	+1.080
0.002519	0.002809	0.002661	611.317	3.552	33.720	+ 33.699	+0.193	-0.377	-0.156	+1.085
0.002809	0.003117	0.002960	606.121	3.374	33.341	+33.320	+0.132	-0.377	-0.137	+1.085
0.003117	0.003444	0.003279	601.057	3.212	33.005	+ 32.984	+0.092	-0.375	-0.122	+1.080
0.003444	0.003791	0.003616	594.143	3.064	32.695	+ 32.675	+0.065	-0.373	- 0.109	+1.073
0.003791	0.004155	0.003972	589.140	2.945	32.402	+32.382	+0.047	-0.369	- 0.099	+ 1.062
0.004155	0.004538	0.004346	581.891	2.827	32.117	+ 32.097	+0.033	- 0.365	- 0.090	+1.050
0.004538	0 004940	0.004738	577 737	2 726	31.836	⊥ 31 816	± 0.024	_0.360	_ 0.082	⊥ 1.035

Мы условно будем называть эти массивы соответственно Low data и High data. Эти два массива пересекаются на интервале $t \in \sim (0.035 \div 0.20) \text{ GeV}^2$. Объединение этих двух массивов будем называть Full data.

По опубликованным данным были составлены матрицы ковариаций и по ним вычислены полные ошибки.

Результаты фитирования при составлении функции χ^2 с использованием полных ошибок следующие:

- 1. χ^2 /DoF по Full data очень мал и даёт уровень достоверности практически нулевой. По этой причине этот результат фита в дальнейшем не используется.
- 2. Аналогичные результаты дают и фитирования с полными ошибками по каждому из двух массивов данных.

Таким образом нам остаётся воспользоваться только фитированием с использованием только статистических ошибок.

Результаты здесь следующие:

- 1. Full data: χ^2 /DoF >> 1 и это приводит к практически нулевому уровню достоверности. По этой причине этот результат мы отбрасываем.
- 2. Low data: $\chi_{\Sigma}^2 = 123.2$, DoF = 100, PV $\cong 11.5\% \left(\frac{\chi^2}{\text{DoF}} = 1.23\right)$.
- 3. High data: $\chi_{\Sigma}^2 = 232.8$, DoF = 252, PV $\cong 39.7\% \left(\frac{\chi^2}{\text{DoF}} = 0.924\right)$.

Собственно только на эти два последние результата и можно в какой-то степени опираться (особенно на последний). Более высоких достоверностей мы таким образом не имеем.

Но сперва шаг в сторону – пару слов о совместимости этих двух массивов. Оба эти результата вызывают большое сомнение по взаимной совместимости:

TOTEM full data 13 ТэВ (только статистические ошибки)

ТОТЕМ full data 13 ТэВ (только статистические ошибки)

ТОТЕМ data 13 ТэВ. ВЫВОДЫ:

- 1. Из High data можно <u>было бы</u> сделать вполне вероятностное предположение о наличии [затухающих] осцилляций.
- 2. Однако Low data не даёт возможность сделать это осцилляции при более низких передачах импульса не проявляются.
- 3. Параметры H_1 , ответственные за рост σ_{tot} при $s \to \infty$ катастрофически расходятся почти на два порядка(!!!). Это означает несовместимость двух массивов экспериментальных данных High и Low data.
- 4. На эту несовместимость указывает и нефизически огромное значение коеффициента *C*⁺ для двух этих массивов. Причина этой несовместимости возникает из-за возможного смещения центральных значений дифференциальных сечений. Такие смещения вполне возможны, что видно из различных экспериментальных данных ATLAS и TOTEM при энергии 13 ТэВ. На дополнительные аргументы этого плана укажем далее.
- 5. Приведенные аргументы позволяют говорить о преждевременности постановки вопроса об осцилляциях на указанных массивах экспериментальных данных в экспериментах ТОТЕМ.

ТОТЕМ data 13 ТэВ. ВЫВОДЫ:

ATLAS data 13 TeV

ATLAS data 13 TeV

ATLAS data 13 TeV

ATLAS data 13 TeV (с полными и со статистическими ошибками)

- 1. χ^2 /DoF \cong 0.0291 при фитировании с <u>полными</u> ошибками это приводит к практически нулевому уровню достоверности. По этой причине этот результат мы отбрасываем.
- 2. χ^2 /DoF \cong 1.77 при фитировании только с <u>систематическими</u> ошибками это тоже приводит к практически нулевому уровню достоверности. По этой причине этот результат мы отбрасываем.

Таким образом мы не можем анализировать осциллирующие (предположительно) отклонения экспериментальных данных в силу отсутствия достоверной теоретической кривой.

Наиболее вероятной причиной такой ситуации на наш взгляд является, как и в случае с ТОТЕМ, смещение экспериментальных данных дифференциального сечения.

ATLAS data 13 TeV (с весовой матрицей)

$$\chi^2 = 49.32$$
, DoF = 78 - 38 = 40; **PValue = 0.3**.
 $CL(\%) = \frac{100}{2^{\text{DoF}/2} \cdot \Gamma(\text{DoF}/2)} \int_{\chi^2}^{\infty} z^{\frac{\text{DoF}}{2} - 1} \cdot e^{-z/2} dz \approx 45\%$

Однако НИКАКИХ колебаний не наблюдается.

О смещении дифференциальных сечений

Измерения установок ATLAS и TOTEM, их принципиальное расхождение дифференциальных сечений при $\sqrt{s} = 13$ TeV, однозначно говорят что приводимые их центральные значения измерены существенно неточно и при их анализе вполне допустимо предположение о возможном их смещении на некоторую величину.

Такие смещения можно проводить различным способом. Мы рассмотрим один из них: будем изменять каждое центральное значение $d\sigma/dt$ на величину пропорциональную систематической ошибке этого измерения. Коеффициент пропорциональности λ положим одинаковым для каждого измерения. На разных данных этот коеффицент свой. Будем составлять функцию χ^2 используя только статистические ошибки. Описанный выше коеффициент пропорциональности будем считать фитируемым параметром.

Эти коеффиценты указаны на последующих графиках. Таким образом экспериментальные центральные значения TOTEM смещаются незначительно вниз, а значения ATLAS существоенно возрастают. При отсутсвии смещения величина χ^2 /DoF~ нескольких сотен. А на смещённых значениях она всего несколько единиц. Даже значение в несколько единиц является неудовлетворительным со статистической точки зрения. Но это результат только одного способа смещения – возможно и множество других способов...

Этот эффект продемонстрирован на следующих графиках:

Тоже что и на предыдущем рисунке, но на более узком интервале в двойном логарифмическом масштабе (указаны полные ошибки).

Тоже что и на предыдущем графике в полулогарифмическом масштабе (указаны полные ошибки).

HO!!!
$$\chi^2 = 2312.82$$
, DoF = 506 – 41 = 465, $\frac{\chi^2}{\text{DoF}} = 4.97$... CL $\longrightarrow 0$

Формульное описание модели:

 $F_{pp}(s,t) = F_{+}(s,t) + F_{-}(s,t)$ $F_{\overline{p}p}(s,t) = F_{+}(s,t) - F_{-}(s,t)$

Полные сечения σ^{tot} , ρ -параметр и диф. сечения $d\sigma/dt$ описываются соотношениями:

$$\sigma^{\text{tot}}(s) = \frac{\text{Im } F^{N}(s,0)}{\sqrt{s(s-4m_{p}^{2})}}, \rho(s) = \frac{\text{Re } F^{N}(s,0)}{\text{Im } F^{N}(s,0)}, \frac{d\sigma_{\text{tot}}}{dt}(s,t) = \frac{|F(s,t)|^{2}}{64\pi(\hbar c)^{2}s(s-4m_{p}^{2})},$$
$$F(s,t) = F^{N}(s,t) + F^{C}(s,t)$$

где F(s,t) – сумма ядерной (Nuclear) и кулоновской амплитуд (Coulomb) соответственно (mb GeV²), m_p – масса протона. Обратите внимание на то что амплитуды все размерные: [mb GeV²]. ($\hbar c$)² = 0.389379 [mb GeV²] (в системе с = 1).

Обозначения:
$$z_t(s,t) \equiv z_t = \frac{t+2s-4m_p^2}{4m_p^2-t} \equiv \frac{2s}{4m_p^2-t} - 1; z_t(s,0) = \frac{s-2m_p^2}{2m_p^2} \equiv \frac{s}{2m_p^2} - 1;$$

 $z(s,t) = 2m_p^2 \cdot z_t(s,t); \quad z(s,0) = 2m_p^2 \cdot z_t(s,0) = s - 2m_p^2.$
 $\varsigma = \ln(-iz_t) = \ln(z_t) - i\frac{\pi}{2}, \varsigma(s,0) = \ln\left[-i\left(\frac{s}{2m_p^2} - 1\right)\right] = \ln\left[\left(\frac{s}{2m_p^2} - 1\right)\right] - i\frac{\pi}{2},$
 $C^{R_{\pm}}(t) = C^{\pm}e^{2b^{\pm}t}, \qquad (C^{\pm} = C^{\pm}(0), \quad ``\pm'' - \text{ЭТО } R_{+}$ ИЛИ $R_{-})$

Для померона и оддерона несколько сложней:

$$\begin{split} \mathcal{C}^{P}(t) &= \mathcal{C}^{P}\left[d_{\mu} e^{i\theta_{1}^{\mu}} + (1 - d_{\mu}) e^{i\theta_{1}^{\mu}t}\right], \quad \mathcal{C}^{0}(t) = \mathcal{C}^{P}\left[d_{\mu} e^{i\theta_{1}^{\mu}t} + (1 - d_{\mu}) e^{i\theta_{2}^{\mu}t}\right] \\ \mathcal{F}^{P}(s,t) &= -2m_{p}^{2}\underbrace{\mathcal{C}^{0}\left[d_{\mu} e^{i\theta_{1}^{\mu}t} + (1 - d_{\mu}) e^{i\theta_{1}^{\mu}t}\right]}_{\mathcal{C}^{P}(t)} (-iz_{t})^{ip(0) + i\theta_{1}^{\mu}t}, \quad \mathcal{F}^{R_{+}}(s,t) = -2m_{p}^{2}\underbrace{\mathcal{C}^{R_{+}}(t)}_{\mathcal{C}^{R_{+}}(t)} (-iz_{t})^{ip(0) + i\theta_{1}^{\mu}t}, \\ \mathcal{F}^{0}(s,t) &= -2im_{p}^{2}\underbrace{\mathcal{C}^{0}\left[d_{\mu} e^{i\theta_{1}^{\mu}t} + (1 - d_{\mu}) e^{i\theta_{1}^{\mu}t}\right]}_{\mathcal{C}^{0}(t)} (-iz_{t})^{ip(0) + i\theta_{1}^{\mu}t}, \quad \mathcal{F}^{R_{-}}(s,t) = -2im_{p}^{2}\underbrace{\mathcal{C}^{R_{+}}(t)}_{\mathcal{C}^{R_{-}}(t)} (-iz_{t})^{ip(0) + i\theta_{1}^{\mu}t}, \\ \mathcal{F}^{0}(s,t) &= -2im_{p}^{2}\underbrace{\mathcal{C}^{0}\left[d_{\mu} e^{i\theta_{1}^{\mu}t} + (1 - d_{\mu}) e^{i\theta_{1}^{\mu}t}\right]}_{\mathcal{C}^{0}(t)} (-iz_{t})^{ip(0) + i\theta_{1}^{\mu}t}, \quad \mathcal{F}^{R_{-}}(s,t) = -2im_{p}^{2}\underbrace{\mathcal{C}^{R_{+}}(t)}_{\mathcal{C}^{R_{-}}(t)} (-iz_{t})^{ip(0) + i\theta_{1}^{\mu}t}, \\ \mathcal{H}^{0}(s,t) &= -2im_{p}^{2}\underbrace{\mathcal{C}^{0}\left[d_{\mu} e^{i\theta_{1}^{\mu}t} + (1 - d_{\mu}) e^{i\theta_{1}^{\mu}t}\right]}_{\mathcal{C}^{0}(t)} (-iz_{t})^{ip(0) + i\theta_{1}^{\mu}t}, \quad \mathcal{F}^{R_{-}}(s,t) = -2im_{p}^{2}\underbrace{\mathcal{C}^{R_{+}}(t)}_{\mathcal{C}^{R_{-}}(t)} (-iz_{t})^{ip(0) + i\theta_{1}^{\mu}t}, \\ \mathcal{H}^{0}(s,t) &= -2im_{p}^{2}\underbrace{\mathcal{C}^{0}\left[d_{\mu} e^{i\theta_{1}^{\mu}t} + (1 - d_{\mu}) e^{i\theta_{1}^{\mu}t}\right]}_{\mathcal{C}^{0}(t)} (-iz_{t})^{ip(0) + i\theta_{1}^{\mu}t}, \quad \mathcal{F}^{R_{-}}(s,t) = -2im_{p}^{2}\underbrace{\mathcal{C}^{R_{+}}(t)}_{\mathcal{C}^{R_{-}}(t)} (-iz_{t})^{ip(0) + i\theta_{1}^{\mu}t}, \\ \mathcal{H}^{0}(s,t) &= \frac{B_{1}^{P}}{\theta_{1}^{P}}\left[ln(z_{t}) - i\frac{\pi}{2}\right] B_{2}^{P}B_{1}^{P}B_{1}^{P}B_{1}^{P}B_{1}^{P}B_{1}^{P}B_{2}^{P}}e^{i\theta_{1}^{\mu}\theta_{1}^{\mu}t}} + \frac{(1 - d_{t})^{2}}{B_{1}^{P}B_{1}^{P}}e^{i\theta_{1}^{\mu}\theta_{1}^{\mu}t}} + \frac{(1 - d_{t})^{2}}{B_{1}^{P}B_{1}^{P}B_{2}^{P}}e^{i\theta_{1}^{\mu}\theta_{1}^{\mu}t}} + \frac{(1 - d_{t})^{2}}{2B_{1}^{P}}e^{i\theta_{1}^{\mu}\theta_{1}^{\mu}t}} + \frac{(1 - d_{t})^{2}}{B_{1}^{P}B_{1}^{P}}e^{i\theta_{1}^{\mu}\theta_{1}^{\mu}t}} + \frac{(1 - d_{t})^{2}}{B_{1}^{P}B_{1}^{P}}e^{i\theta_{1}^{\mu}\theta_{1}^{\mu}t}} + \frac{(1 - d_{t})^{2}}{B_{1}^{P}B_{1}^{P}}e^{i\theta_{1}^{\mu}\theta_{1}^{\mu}t}} + \frac{(1 - d_{t})^{2}}{B_{1}^{P}B_{1}^{P}}e^{i\theta_{1}^{\mu}\theta_{1}^{\mu}t}} + \frac{(1 - d_{t})^{2}}$$

Далее:
$$q_{+} = 2m_{\pi} - \sqrt{4m_{\pi}^{2} - t}, \quad q_{-} = 3m_{\pi} - \sqrt{9m_{\pi}^{2} - t}.$$
 (π -мезон нейтральный!)
 $\Phi_{H,1}(t) = e^{b_{0}^{H}q_{+}}, \quad \Phi_{H,2}(t) = e^{b_{0}^{H}q_{+}}, \quad \Phi_{H,3}(t) = e^{b_{0}^{H}q_{+}}.$
 $\Phi_{0,1}(t) = e^{b_{0}^{H}q_{-}}, \quad \Phi_{0,2}(t) = e^{b_{0}^{H}q_{-}}, \quad \Phi_{0,3}(t) = e^{b_{0}^{H}q_{-}}.$
 $F^{H}(s,t) = i \overline{2m_{p}^{2}z_{t}} \left[H_{1}\varsigma^{2} \frac{2J_{1}(r_{+}\tau\varsigma)}{r_{+}\tau\varsigma} \Phi_{H,1}^{2}(t) + H_{2}\varsigma \frac{\sin(r_{+}\tau\varsigma)}{r_{+}\tau\varsigma} \Phi_{H,2}^{2}(t) + H_{3}J_{0}(r_{+}\tau\varsigma) \Phi_{H,3}^{2}(t) \right],$
 $F^{M0}(s,t) = 2m_{p}^{2}z_{t} \left[O_{1}\varsigma^{2} \frac{2J_{1}(r_{-}\tau\varsigma)}{r_{-}\tau\varsigma} \Phi_{0,1}^{2}(t) + O_{2}\varsigma \frac{\sin(r_{-}\tau\varsigma)}{r_{-}\tau\varsigma} \Phi_{0,2}^{2}(t) + O_{3}J_{0}(r_{-}\tau\varsigma) \Phi_{0,3}^{2}(t) \right].$
Для справок: $F^{H}(s,0) = i(s-2m_{p}^{2}) \left\{ H_{1} \left(\ln \left[\left(\frac{s}{2m_{p}^{2}} - 1 \right) \right] - i\frac{\pi}{2} \right)^{2} + H_{2} \left(\ln \left[\left(\frac{s}{2m_{p}^{2}} - 1 \right) \right] - i\frac{\pi}{2} \right) + H_{3} \right]$
 $F^{M0}(s,0) = (s-2m_{p}^{2}) \left\{ O_{1} \left(\ln \left[\left(\frac{s}{2m_{p}^{2}} - 1 \right) \right] - i\frac{\pi}{2} \right)^{2} + O_{2} \left(\ln \left[\left(\frac{s}{2m_{p}^{2}} - 1 \right) \right] - i\frac{\pi}{2} \right) + O_{3} \right]$
 $z_{t} = \frac{t+2s-4m_{p}^{2}}{4m_{p}^{2}-t} \equiv -1 + \frac{2s}{4m_{p}^{2}-t}, \quad z(s,t) = 2m_{p}^{2} \cdot z_{t}(s,t), \quad \varsigma = \ln(-iz_{t}) = \ln(z_{t}) - i\frac{\pi}{2}, \quad \tau = \sqrt{-t/t_{0}}.$

Для ядерных амплитуд: $F_{pp}^{N}(s,t) = F^{+} + F^{-}, \quad F_{pp}^{N}(s,t) = F^{+} - F^{-}$

<u>Кулоновский вклад в амплитуду:</u>

$$B_{pp}(s) = \frac{\sigma_{pp}^{\text{tot}}}{4\pi(\hbar c)^{2}}, \quad B_{\bar{p}p}(s) = \frac{\sigma_{\bar{p}p}^{\text{tot}}}{4\pi(\hbar c)^{2}} \qquad \left(\sigma^{\text{tot}}(s) = \frac{\text{Im } F^{N}(s,0)}{\sqrt{s(s-4m_{p}^{2})}}\right)$$

$$\Phi_{pp}(s,t) = -\ln\left[-\frac{t}{2}\left(B_{pp}(s) + \frac{8}{\Lambda^{2}}\right)\right] - \gamma - \frac{4t}{\Lambda^{2}}\ln\left(-\frac{4t}{\Lambda^{2}}\right) - \frac{2t}{\Lambda^{2}},$$

$$\Phi_{\bar{p}p}(s,t) = -\ln\left[-\frac{t}{2}\left(B_{\bar{p}p}(s) + \frac{8}{\Lambda^{2}}\right)\right] - \gamma - \frac{4t}{\Lambda^{2}}\ln\left(-\frac{4t}{\Lambda^{2}}\right) - \frac{2t}{\Lambda^{2}}.$$

$$F_{pp}^{C}(s,t) = e^{t\alpha\Phi_{pp}(s,t)} - \frac{8\pi(hc)^{2}s\alpha}{t\left(\frac{4m_{p}^{2}-2.79t}{4m_{p}^{2}-t}\right)^{2}\left(1-\frac{t}{\Lambda^{2}}\right)}$$

$$F_{pp}^{C}(s,t) = -e^{-i\alpha\Phi_{pp}(s,t)} - \frac{8\pi(hc)^{2}s\alpha}{t\left(\frac{4m_{p}^{2}-2.79t}{4m_{p}^{2}-t}\right)^{2}\left(1-\frac{t}{\Lambda^{2}}\right)}$$