Масса нейтрино: прямые измерения и двойной бета-распад

А.С. Барабаш

НИЦ "Курчатовский институт", Москва

Семинар в НИЦ КИ-ПИЯФ, 4 марта 2025 г.

План доклада

- Введение
- Прямые эксперименты по измерению массы нейтрино
- Двойной бета-распад
- Заключение

I. Введение

Осцилляционные эксперименты:

Что необходимо прояснить:

- **1. Иерархия масс** (нормальная или обратная)?
- **2. Абсолютная шкала масс** (масса самого легкого нейтрино?)

3. Природа массы нейтрино

(дираковская или майорановская?)

4. СР нарушающие фазы в матрице смешивания

Определение массы нейтрино

Космологические ограничения:

Σm, < 0.072 эВ (CMB + DESI) → это прямое указание на «нормальную» иерархию

(модельно зависимо)

- Прямое измерение массы $< m_{\beta} > < 0.45 \Rightarrow B (KATRIN)$ (модельно независимо)
- $m_eta = \sqrt{\sum_i |U_{ei}^2| m_i^2}$ Безнейтринный двойной бета-распад $m_{\beta\beta} = |\sum_{i} U_{ei}^2 m_i|$ <m_{вв}> < 0.12 эВ (KamLAND-Zen)

(модельно зависимо) 🛛 🛆

II. Эксперименты по прямому измерению массы нейтрино

Еще в 1934 г. Енрико Ферми предложил исследовать конечную точку бета спектра для получения информации о массе нейтрино

Исследуемые изотопы

- Тритий (³Н), β-
 - E₀ = 18592.01 (7) эВ, Т_{1/2} = 12.3 лет
- Рений (¹⁸⁷Re), β-
 - E₀ = 2470.9 (13) эВ, Т_{1/2} = 4.3·10¹⁰ лет
- Гольмий (¹⁶³Ho), EC

E₀ = 2863.2 (6) эВ, Т_{1/2} = 4570 лет

Экспериментальные методы

 MAC-E filter (Magnetic Adiabatic Collimation combined with an Electrostatic Filter)

KATRIN

- Cyclotron Radiation Emission Spectroscopy (CRES)
 PROJECT 8, QTNM
- Hybrid spectroscopic techniques

PTOLEMY

- Calorimetry:
 - Low-temperature bolometers (187Re)

Mibeta, MANU, MARE

 for EC-decay: low-temperature micro-calorimetry (Metallic magnetic calorimeters (MMC) and Transition edge sensors (TES))

ECHo, HOLMES

Эксперимент KATRIN

KATRIN: Karlsruhe Tritium Neutrino Experiment

Эксперимент KATRIN

Эксперимент KATRIN

Beta spectrum: $\mathbf{R}_{g}(\mathbf{E};\mathbf{m}^{2}(\mathbf{v}_{e}),\mathbf{E}_{o})$ 10 Count rate (arb.) 8 $m_v = 0 \text{ eV}$ 6 ~ 2·10⁻¹³ 4 2 $m_v = 1 \text{ eV}$ 0 -2 -3 -1 0 $E-E_0 (eV)$

Experimental response: **f(E-qU)**

- 2-3 hour scans, O(100) scans per campaign
- Stack data points with the same measurement conditions
- Analysis window: **[E 0 40 eV, E 0 + 135 eV]** 11

KATRIN spectra

12

Последние результаты (259 дней измерений за 5 компаний)

259 дней измерений (март 2019 – июнь 2021)

1757 β-сканов (36 миллионов зарегистрированных электронов)

Калибровочные измерения с ^{83m}Kr и электронной пушкой

Сдвинутый "анализирующий" электрод (подавление фона ~ в 2 раза)

$$m_{\nu}^2 = -0.14^{+0.13}_{-0.15} \,\mathrm{eV}^2 \qquad \Rightarrow \qquad m_{\nu} < 0.45 \,\mathrm{eV} \ (90 \,\% \,\mathrm{CL})$$

Q value: (18575.0 ± 0.3) eV

(Lokhov-Tkachev method)

(18575.78 ± 0.02) eV []

Планы на будущее

- Набрать 1000 дней измерений до конца 2025 г. → < 0.3 эВ
- **2026-2027** поиск стерильных нейтрино (TRISTAN+KATRIN)
- 2027-2035 R&D по созданию
 KATRIN++ → 0.045 эВ
- (атомарный тритий, снижение фона, дифференциальный метод измерения энергии электронов, новые детекторы, ...)

Новый метод: Cyclotron Radiation Emission Spectroscopy (CRES)

 ΔE

 m_e

B. Monreal and J.A. Formaggio, Phys. Rev. D 80, 051301 (2009) eB $2\pi f(E_{\beta}$ $\overline{\gamma m_e}$ E_{β}

Энергетическое разрешение

^{83m}Kr

1.7 эВ

 $\Delta E (FWHM) =$

Project 8, Phase II

Reconstructed kinetic energy (eV)

Project 8. Phase III and IV

 Phase III (в стадии реализации): CRES +T₂ (либо атомы трития)
 Цель: m_v < 0.2 эВ

• Phase IV (x10 Phase III) CRESS + T Цель: m_v < 0.04 эВ

Другие предложения с тритием

• **QTNM** — **Quantum Technologies for Neutrino Mass**

(атомарный источник трития, высокое разрешение, высокоэффективный CRES, карта магнитного поля с точностью < 1 микроТ, ...)

Демонстратор — 2025 г.

Цель: m_v ~ 0.01-0.05 эВ (2030-2040 г.г.)

• **PTOLEMY**

Основная цель — регистрация реликтовых нейтрино: v_e + ³T → ³He + e⁻ (атомарный источник, CRES, фильтры, микрокалориметры — везде R&D) 2025 г. - полномасштабный прототип в Гран Сассо (Италия) m_v ~ 0.1 эВ (~ 2030 г. с 1 мигрограммом трития)

Для 100 г трития

Эксперименты с Re-187

- ¹⁸⁷**Re:** E₀ = 2470.9 (13) эВ, T_{1/2} = 4.3·10¹⁰ лет, распространенность 63%
- Микро-калориметры [на основе кристаллов из металического Re (1.5 mg) или из AgReO₄ (0.25x8 ≈ 2.2 mg)]
- Mibeta и MANU: < 15 эВ и < 26 эВ (2004 г.)
- MARE-1, MARE-2: планировалось довести чувствительность до ~ 2-3 эВ (~ 5·10⁴
 отдельных кристаллов) и, в дальнейшем, до ~ 0.2 эВ.

• Последние ~ 8 лет активности в этом направлении нет

Эксперименты с ¹⁶³Но (электронный захват)

 ${}^{163}Ho \rightarrow {}^{163}Dy^* + v_e$

 $^{163}Dy^* \rightarrow ^{163}Dy + E_c$

Источник = детектор (измерение E_c калориметром)

- $Q = (2863.2 \pm 0.6) \Rightarrow B$
- Т_{1/2} = 4570 лет
- Первые эксперименты в 1984-1987 г.г. (m, <225 эВ). После 2010 новый всплеск интереса

A. De Rujula, Nucl.Phys. B 188 (1981) 414.A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

Эксперименты ECHo и HOLMES

Метод: низкотемпературные калориметры с имплантированным ¹⁶³Но и с возможностью масштабирования для достижения чувствительности ~ 0.1 эВ.

ECHo-1k

Magnetic Metallic Calorimeters MMCs 60-100 детекторов $1-5 \text{ Бк}(^{163}\text{Ho})/\text{детектор}$ $\Delta E_{FWHM} < 10 \text{ эB}$ $\rightarrow m_v \approx 20 \text{ эB}$

ECHo-100k

MMCs
12000 детекторов
10 Бк(¹⁶³Но)/детектор
ΔE_{FWHM} < 5 эВ
→ m_ν ≈ 1.5 эВ

 $200\ \mu m$

Transition Edges Sensors TESs 1000 detectors 300 Bq(¹⁶³Ho)/pixel $\Delta E_{FWHM} \approx 1 \Rightarrow B$ $\rightarrow m_{v} \approx 2 eV$

Последние результаты ЕСНо и HOLMES

• ECHo-1k (1.26·10⁸ распадов):

m_v < 19 эВ

Q = (2862.1 ± 1.7) ₃B

- HOLMES (52 детектора,
 - **7.10⁷ распадов):**

 $m_v < 28 \ B$

 $Q = 2848^{+11}_{-6} \Im B$

 Sub-eV эксперимент → 0.1-0.2 эВ (10 лет измерений) → создается коллаборация (ЕСНо, HOLMES, BeEST, NIST, LANL,...)

II. Двойной бета-распад

¹⁰⁰ Mo ⇒	¹⁰⁰ Ru + 2e ⁻
¹⁰⁰ Mo ⇒	¹⁰⁰ Ru + 2e ⁻ + χ ⁰
¹⁰⁰ Mo ⇒	100 Ru + 2e ⁻ + 2 \tilde{v}

35 кандидатов:

 $W \sim Q^5 (0_V); W \sim Q^7 (0_V \chi^0)$ $W \sim Q^{11} (2_V)$

Q_{ββ}= 3.033 MeV

Впервые был рассмотрен в 1939 г. -W.H. Farry, Phys. Rev. 56 (1939) 1184

2β isotopes with $Q_{2\beta} > 2$ MeV

Nuclei	<mark>Q</mark> 2β, keV	Abundance , %	
			Natural γ-rays background - E < 2.615 MeV.
1. ⁴⁸ Ca	4268.0	0.187	
2. 150 Nd 2. 96 7 r		5.64	6 golden and
$\begin{array}{c} 3. & 2.1 \\ 4. & 100 \mathbf{M0} \end{array}$	3034 A	2.00 9 7 <i>1</i>	5 silver isotopes
5. ^{82}Se	2997.9	8.82	5 Shren isotopes
6. ¹¹⁶ Cd	2813.5	7.51	
7. ¹³⁰ Te	2527.5	<u>34.08</u>	
8. ¹³⁶ Xe	2457.8	8.86	
9. ¹²⁴ Sn	2291.1	5.79	
10. ⁷⁰ Ge	2039.0	/./5	
11. ^m Pu	201/.1	11./2	

Чем интересны эксперименты по 2β(0v)распаду? ⇒

- □Несохранение лептонного числа (△L=2)
- Природа массы нейтрино (Dirac or Majorana?).
- □ Абсолютная шкала масс (величина или предел на **m**₁).
- Тип иерархии (нормальная, обратная).
- **СР** нарушение в лептонном секторе.

Лучшие современные пределы на <m_v>

Ядро	Т _{1/2} , лет; 90% CL	<m<sub>v>, эВ</m<sub>	Эксперимент
¹³⁶ Xe	> 3.8 •10 ²⁶	< 0.028-0.122	KamLAND-Zen
⁷⁶ Ge	> 1.9·10 ²⁶	< 0.077-0.175	GERDA+Majorana + LEGEND-200
¹³⁰ Te	> 3.8·10 ²⁵	< 0.07-0.240)	CUORE
⁸² Se	> 4.64.10 ²⁴	< 0.263-0.545	CUPID-0/Se
¹⁰⁰ Mo	> 3.0.1024	< 0.21-0.61	AMoRE-I

Консервативный предел: <m_> < 0.12 eV

NME is the main problem

From M. Agostini et al., Rev. Mod. Phys. 95 (2023) 025002

Двойной бета-распад и порядок нейтринных масс

Inverted ordering (IO):

<m_v> = 14-50 meV

(Будет проверено в <mark>2</mark>β-экспериментах следующего поколения)

Normal ordering (NO): <**m**_v> = **0-30 meV** Предельный случай → <**m**_v> = **1-4 meV**

β: <m² > < 0.45 eV (KATRIN)

2β: $< m_v > < 0.12 \text{ eV}$

Σm_v < 0.12 eV (PLANCK'2018) [Σm_v < 0.072 eV (CMB + DESI)]

Слобальный анализ - NO (3-3.5σ); NO – Σmv > 0.06 eV, IO - Σmv > 0.1 eV

KamLAND-Zen (Kamioka, Japan)

1000-ton pure

Liquid scintillator

745 kg Xe-loaded Liquid scintillator (91% enrichment)

Inner balloon (IB)

Big and pure: no background from external γ-rays, purification of LS, replacement of inner balloon is possible

2011 - start of measurements

2019 – Xe increase, cleaner

balloon

→ High scalability

2011 - 320 kg of Xe; 2013 - 383 kg; 2019 - 745 kg ²⁹

Fit to energy spectra for Ovßß

0vββ candidate (sensitive to 0vββ signal)

1131 days livetime R < 1.57 m

Long-lived candidate (Long-lived BG constraint)

Zen 800 -

 $T^{1/2}(0v) > 3.4 \cdot 10^{26} yr$

0vββ best fit: 0 events upper limit: < 10 events at 90% C.L.

Combind -(+ Zen 400) $T_{1/2}(0v) > 3.8 \cdot 10^{26} yr \rightarrow$ < $m_v > < (28-122) meV_{30}$

Current experiments: 1. CUORE (Gran Sasso, Italy)

988 TeO2 crystals **741 kg** (206 kg ¹³⁰Te) T = 10 mK

Start of measurements - 2017

CUORE - how it works?

Recent CUORE result

 $T_{1/2}(0v) > 3.8 \cdot 10^{25} yr$

<m_v> < 70-240 meV

 $T_{1/2}(2v) = 9.323^{+0.052} \cdot 10^{20} yr$

Current experiments: 2. LEGEND-200 (Gran Sasso, Italy)

Installed first **142 kg** of HPGe detectors (**130 kg** operational)

Finally it will be ~ 200 kg of HPGe detectors

LEGEND-200: first result

- Data: **76.2 kg·yr**
- **[GOLDEN]** 0νββ data set: **48.3 kg·yr**
- Blind analysis
- BI = (5.3 ± 2.2)·10⁻⁴ c/keV·kg·yr
- GERDA + MAJORANA + LEGEND-200
 combine fit:
 T_{1/2} > 1.9·10²⁶ yr (90% C.L.)

[<mv> < 0.077-0.175 **9**B]

Main goal is to reach sensitivity ~ 10²⁷ yr (~ 34-90 meV)

Future experiments

Most developed and promising projects for next generation experiments

Exper.	Isotope	M, kg	T _{1/2} , yr	<m<sub>,>, meV</m<sub>	Status
LEGEND	⁷⁶ Ge	1000	1.6x10 ²⁸	9.5-19.5	R&D
nEXO	¹³⁶ Xe	5000	1.35x10 ²⁸	4.7-20.3	R&D
	¹⁰⁰ Mo	250	1.8x10 ²⁷	9-15	
CUPID		1000	9.2x10 ²⁷	4.1-6.5	R&D
KamLAND2- Zen	¹³⁶ Xe	1000	$\sim 2 x 10^{27}$	12-52	R&D
SNO+-II	¹³⁰ Te	~ 8000	~ 10 ²⁷	20-40	R&D
AMoRE-II	100 Mo	100	5x10 ²⁶	16-47	R&D
SuperNEMO	⁸² Se	100-140	$(1-1.5)x10^{26}$	50-140	R&D
PandaX-III	¹³⁶ Xe	200 1000	$\sim 10^{26} \ \sim 10^{27}$	65-170 20-55	R&D

36

LEGEND-1000

nEXO

Overall mass: 5 tonnes, 90% enriched ¹³⁶Xe **Time Projection Chamber (TPC)** Location: SNOLAB (Canada) **Running time: 10 years Energy resolution: 2.35% (FWHM)** Sensitivity: 1.35 · 10²⁸ yr (without Ba) for 10 years of measurements <m> ~ 4.7-20.3 meV

CUPID (CUORE upgrade with particle identification)

39

CUPID sensitivity

CUPID Baseline

250 kg of ¹⁰⁰Mo CUORE cryostat Bkg 1×10^{-4} ckky Excl. sensitivity: T_{1/2}> 1.5×10²⁷ years (IH)

CUPID-reach

250 kg of ¹⁰⁰Mo CUORE cryostat Bkg 2×10^{-5} ckky Excl. sensitivity: T_{1/2}> 2.3×10²⁷ years (IH)

CUPID-1T

Sensitivity of some future experiments

IV. Заключение

I. Прямые измерения массы нейтрино:

- Лучшее ограничение получено в эксперименте KATRIN < 0.45 эВ
- В ближайшие несколько лет: KATRIN < 0.3 эВ
- Большая программа будущих экспериментов: KATRIN++, Project 8, QTNM, PTOLEMY
- (планируемая чувствительность ~ 0.01-0.05 эВ) 2030 2040 г.г.

II. Двойной бета-распад:

- Лучшее (консервативное) современное ограничение $< m_v > < 0.12 \text{ eV}$ (KamLAND-Zen)
- 2 "больших" эксперимента продолжают набор данных: CUORE, LEGEND-200 (<m_v> ~ 0.034-0.09 eV)
- В 2027-2035 г.г. стартуют эксперименты нового поколения: CUPID, LEGEND-1000, nEXO, AmoRE-II, KamLAND2-Zen, SNO+-II, ...
- Чувствительность к <m_v> на уровне ~ 0.01-0.02 eV будет достигнута в 2035-2040 г.г. 42

Back-up slides

Direct shape measurement of integrated β spectrum

44

Схема эксперимента QTNM

PTOLEMEY

Ошибки (KATRIN)

Next next step

51

Physics beyond the SM and 2v decay

• Deviations of the shape of the two-neutrino spectrum from the theoretical one may indicate an admixture of processes occurring outside the framework of the standard model.

Large Scale Structure of the Universe

 $m_v = 0 eV$