

Nuclotron-based Ion Collider fAcility

Статус и перспективы эксперимента MPD на коллайдере NICA

В.Г. Рябов

Heavy-ion collisions

High beam energies ($\sqrt{s_{NN}} > 100 \text{ GeV}$)

High temperature: Early Universe evolution

Low beam energies ($\sqrt{s_{NN}} \sim 10$ GeV)

high baryon densities → inner structure of compact stars

- At $\mu_B \sim 0$, smooth crossover (lattice QCD calculations + data)
- ↔ At large μ_B , 1st order phase transition → QCD critical point
- ♦ MPD @NICA \rightarrow study QCD medium at extreme net baryon densities

QCD critical point: predictions/estimations

◆ BM@N and MPD in the collision energy range of the predicted CEP location.

Dense Nuclear Matter

Relativistic heavy-ion collisions provide a unique and controlled experimental way to study the properties of nuclear matter at high baryon density.

Hyperon and Hyper-Nuclei Production in Heavy-Ion Collisions and Neutron Stars

* Nature of matter at extreme density (up to 5-10 ρ_0)

Hyperon and hyper-nuclei measurements in HIC \rightarrow hyperon–nucleon interactions (NY, YNN) \rightarrow key to understanding the EoS at high baryon density and inner structure of neutron stars

Neutron star mergers and heavy-ion collisions

LIGO and Virgo Collaborations, Phys. Rev. Lett. 119 (2017) 16, 161101; Nature Phys. 15 (2019) 10, 1040-1045

✓ Gravitational wave detection from GW170817, confirmation by astronomical observations

✓ T < 70 MeV, $\rho \sim 3\rho0$ → about the same conditions as achieved in HIC in the laboratory

Nuclear synthesis in NS mergers

Nuclear EoS is important also for the r-process nuclear synthesis in neutron star merger

H 1			Big Bang fusion Bars Bang stars							He							
	Be 4		Cos	mic		Mergin	ng	E	xplod	ing		B 5	С 6	N 7	0 8	F 9	Ne 10
Na 11	Mg 12	E	ray fissi	on	۱ ۲	stars	'n	d d	varfs			Al 13	Si 14	P 15	S 16	CI 17	Ar 18
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga ³¹	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Te 52	 53	Xe 54
Cs 55	Ba	<u>م</u>	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
Fr	Ra	م		0.	D	NLL	D	0		0.1	-	5				M	
0/	00		La 57	58 58	Pr 59	60	Pm 61	62 62	EU 63	64 64	65	66 66	H0 67	68	69	YD 70	LU 71
			Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

Neutron capture process (r-process) in NS mergers is responsible for the production of heavy elements such as Au, Pt, U

Relativistic Heavy Ion Experiments

Present:

HADES BES (SIS): Au+Au at $\sqrt{s_{NN}}$ = 2.42 GeV, Ag+Ag at $\sqrt{s_{NN}}$ = 2.42 GeV, 2.55 GeV. STAR BES (RHIC): Au+Au at $\sqrt{s_{NN}}$ = 3-200 GeV

Future:

HIAF/CEE (China) 2.1-4.5 GeV (2026-?) FAIR/CBM (Germany) 2.4-4.9 GeV (2029-?) JPARC-HI (Japan) 2-5 GeV (2030-?)

NICA collision energy

BM@N: 2.3 - 3.3 GeV MPD: 4 - 11 GeV

Multi-Purpose Detector

TPC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.6$; TOF, EMC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.4$ FFD: $|\Delta \phi| < 2\pi$, $2.9 < |\eta| < 3.3$; FHCAL: $|\Delta \phi| < 2\pi$, $2 < |\eta| < 5$

В.Г. Рябов @ Семинар ОФВЭ ПИЯФ, 27.05.2025

CLD and FXT operation at NICA

MPD-CLD and MPD-FXT operation options

♦ Collider mode: two beams, $\sqrt{s_{NN}} = 4-11 \text{ GeV} \rightarrow \text{Xe+Xe/Bi+Bi}$ at $\sqrt{s_{NN}} \sim 7 \text{ GeV}$, ~ 50 Hz at start-up

- ★ Fixed-target mode: one beam + thin wire (~ 50 μ m) → Xe/Bi+W/Au at $\sqrt{s_{NN}}$ ~ 3 GeV, ~ kHz at start-up
- MPD strategy high-luminosity scans in <u>energy</u> and <u>system size</u> to measure a wide variety of signals:
 ✓ order of the phase transition and search for the QCD critical point → structure of the QCD phase diagram
 ✓ hypernuclei and equation of state at high baryon densities → inner structure of compact stars, star mergers
- Scans to be carried out using the <u>same apparatus</u> with all the advantages of collider experiments:

 maximum phase space, minimally biased acceptance, free of target parasitic effects
 - \checkmark correlated systematic effects for different systems and energies \rightarrow simplified extraction of physical signals

Trigger detectors

- FFD (Fast Forward Cherenkov Detector):
- ✓ fast (~ 50 ps) event triggering → photons from π^0 's
- \checkmark T₀ for time-of-flight measurements (TOF and ECAL)

- TOF $(|\eta| < 1.5)$:
- ✓ 280 fast signals for each MRPC chamber
- \checkmark no online timing information

- FHCAL (Forward Hadron Calorimeter):
- ✓ Fast signals for event triggering
 ✓ poor T₀ (~ 1 ns) and event z-vertex resolution

two FHCAL detectors at $2 < |\eta| < 5$, ~ 1x1 m² each

Trigger system of the MPD is effective for <u>different HI collision systems and energies</u> as well as for <u>different operation modes</u> (MPD-CLD vs. MPD-FXT)

MPD magnet

Magnet yoke

Cryogenic platform

Strings for cryogenic pipes and cables hold

- ✤ February: solenoid power cable thermal isolation inside of the Chimney
- ✤ Now: solenoid cooled down to the working temperature of 4.5 K, test current supply

Magnetic field mapper

Novosibirsk BINP magnetic field mapper

Single 3D Hall probe moves in 3 directions: z , R, ϕ Accuracy: 0.1 – 0.3 Gs Number of points: ~ 2.10⁵ (90 hours) Fields to measure: 0.3 – 0.57 T (5-6 points) Number of tunes per field: 5 Total time of measurements: ~ 3-4 months April: mapper delivery to JINR and installation of stationary Hall probes Summer: MF measurements at 02-0.55 T

Central barrel subsystems

Frame - ready

Carbon fiber support frame delivered and unpacked, sagita ~ 5 mm at full load, rails for the TPC and TOF are installed

ECAL

ECAL ~ 38400 towers (2400 modules) produced by Tsinghua University, Shandong University, Fudan University, South China University, Huzhou University and JINR – production in IHEP (Protvino) and Tenzor (Dubna)

45 half-sectors to be ready by August, the rest depends on WLS fiber supply from Tver

TPC – central tracking detector

TOF - ready

All 28 (100%) TOF modules are assembled, tested, stored and ready for installation. Spare modules in production

24+ ROC ready; 100+ % FE cards manufactured TPC gas volume assembly and HV/leakage tests – ongoing TPC + ECAL cooling systems under commissioning

TPC mechanical body assembly with ROCs, leak test and HV test TPC installation to MPD and test June 2025

Nov -Dec 2025

Starting detector commissioning in late 2025 remains the main priority

В.Г. Рябов @ Семинар ОФВЭ ПИЯФ, 27.05.2025

Forward subsystems

FHCAL - ready

FHCal assembled on the platform, (modules are equipped with FEE)

Test installation of FHCAL \rightarrow autumn 2024

FHCAL provides triggering information, centrality and event plane

FFD - ready

Cherenkov modules of FFDE and FFDW, mechanics for installation in container with beam pipe are available, Long term tests with cosmic rays & laser ongoing

FFD provides triggering information, even z-vertex and T_0 for timing measurements

Extension of the MPD project, 2026-2030

Cost estimation

Proposed schedule and resource request for the MPD Project

Expenditures, resources,		Cost (thousands	Cost/Resources, distribution by years					
		funding sources	Resource requirements	1 st year 200	2 nd year	3 rd year 200	4 th year 200	5 th year
		International cooperation	1000		200			200
		Materials	23350	3700	5250	6500	5350	2550
		Equipment, Third-party company services	6450	1100	1150	1850	1550	800
		Commissioning	300	0	50	100	100	50
		R&D contracts with other research organizations	450	100	100	100	100	50
		Software purchasing						
		Design/construction						
		Service costs (planned in case of direct project affiliation)	1000	200	200	200	200	200
		Resources						
red	Iard	- the amount of FTE,	625	125	125	125	125	125
inpə'	itand	- accelerator/installation,	13720	2200	2880	2880	2880	2880
H -		- reactor,						
Sources of funding	JINR Budget	JINR budget (budget items)	33000	5400	7050	9050	7600	3900
	ra ing v	Contributions by partners	500	100	100	100	100	100
	Extr fudni (supplet arv	Funds under contracts with customers						

Resources distribution by years

The main systems, resources, funding		Cost of the main subsystems (k\$)	Cost/Resources distributiom by years (k\$)								
				1 y. (2026)	2 y. (2027)	3 y. (2028)	4 y. (2029)	(2030			
		Time Projection Chamber upgrade (TPC)	5250	700	1200	1650	1000	700			
		Upgrade of Ecal	700	200	200	100	100	100			
		Upgrade of FHCal	350	100	100	50	50	50			
		Upgrade of Forward FFD	250	50	50	50	50	50			
	cms	Cryogenic and Power Supply systems of Magnet	3500	1100	900	800	500	200			
	n syst	Upgrade of DAQ	850	150	150	200	200	150			
	mai	Infrastructure of the MPD	900	250	250	200	100	100			
Year.	The	Second stage detectors									
		Forward TOF	3770	420	750	1100	1100	400			
		Forward Ttracker	13140	1350	2850	3650	3450	1840			
		Inner Tracker (ITS)	4290	1270	1050	1200	700	70			
		Total:	33000	5590	7500	9000	7250	3660			
		International Cooperation	825	165	165	165	165	165			

Project Leader 🧹

o readorlate V.M.Golovatyuk

Laboratory Economist

Inner Tracking System – ITS

The ITS is the key to measuring the production of heavy-flavor hadrons

The complete structure of the 6-layer MPD-ITS detector, from a single pixel to the inner and outer cylindrical layers

- first prototype of ALPIDE-like MAPS (MICA) sensor developed at CCNU and produced in China

- FPGA-based Readout System and the Power Unit developed at USTC for reading out the

"staves" comprising of MICA sensors of IB and OB \rightarrow tests at LHEP in 2025

- first porotypes of the GBT ASICs for the fast aggregation of data and transfer via optical lines designed and manufactured \rightarrow lab tests ongoing in CCNU.

- 1) The TDR was finalized to build an ITS consisting of six cylindrical layers of MAPS (Monolithic Active Pixel Sensors) around the interaction region: 3 layers of inner barrel (IB) surrounded by 3 layers of outer barrel (OB)
- 2) An agreement was reached with Chinese partners to jointly research, develop and manufacture in China the missing components needed to build the tracker and its readout system.

6 layers in 2 barrels final conceptional design and its optimization- by 2024

 D^0 and D^+ reconstruction using information from ITS+TPC+TOF subsystems

Rapidity scan with MPD at NICA

More detailed study of the QCD phase diagram by utilizing a three-dimensional scan in collision energy, interacting system size, and particle rapidity

Motivation for Forward upgrade:

- 1. Full yields of (heavier) identified hadrons and light nuclei with non-trivial rapidity dependence due to baryon stopping, more detailed study of the "horn", the "step" effects for lighter hadrons
- 2. Two-particle correlation and multiparticle cumulant studies with wider coverage in $\Delta \eta$
- 3. Directed and elliptic flow \rightarrow tighter constraints on η/s
- 4. Search for CEP with event-by-event fluctuations of conserved charges → higher sensitivity with wider rapidity coverage
- 5. Hyperon global polarization vs rapidity → insights on the origin of the global polarization signal, tighter constraints for models
- 6. Extended forward rapidity coverage may be beneficial for diffractive studies in proton-proton collisions, such as instanton searches
- 7. Improved trigger efficiency, centrality and event plane determination

... and more

Forward spectrometers – tracking

Two volumes (green and magenta) available for the installation of forward tracker stations

Pseudorapidity coverage of the forward spectrometer

- Five tracking layers within z = 210-300 cm, 1% X₀, ~ 80 µm spatial resolution
- Tracking ACTS package experiment-independent high-level track reconstruction toolkit, including seeding tools and combinatorial Kalman Filter for track finding and vertex reconstruction

В.Г. Рябов @ Семинар ОФВЭ ПИЯФ, 27.05.2025

Forward spectrometers – PID

✤ Last layer is a TOF detector built of MRPC chambers

End-cap TOF detector(s)

Each MRPC chamber contains 64 strips, which both-sides read-out Each TOF ring contains 24 MRPCs \rightarrow 6144 read-out channels in total Same electronics based on NINO and HPTDC chips as in the basic TOF-MPD

- End-cap TOF ring design based on a trapezoidal MRPCs
- ↔ Reliable $\pi/K/p$ separation vs. particle momentum for different rapidity ranges

Rather limited momentum resolution is compensated by a large path length (\sim 3m) \rightarrow reasonable PID for charged hadrons

Funding

- Support program from Russian Ministry of Education and Science for NICA:
 - ✓ Russian groups from subordinated organizations participating in NICA with signed MOUs
 - ✓ 200 MRUB (~2.2 M\$) in 2024 for all NICA activities: MPD, BM@N, SPD, ARIADNA collaborations, accelerator
 - ✓ program has been extended to 2025-2026
 - ✓ new participating institution are possible
- $\bigstar \sim 40$ MRUB for MPD per year:
 - ✓ supported organizations: MEPhI, St.Petersburg Polytechnic University, INR RAS, Belgorod National Research University, North Ossetia State University
- Problems:
 - ✓ KI, MSU, SPbSU, HSE University are excluded from the program (not subordinated organizations)
 - ✓ no funds for travel (shifts, etc.)

MPD physics program

♦ A comprehensive physics program: ions from **p** to Au and collision energies $\sqrt{s_{NN}} = 2.4-11$ GeV

 G. Feofilov, P. Parfenov Global observables Total event multiplicity Total event energy Centrality determination Total cross-section measurement Event plane measurement at all rapidities Spectator measurement 	 V. Kolesnikov, Xia Spectra of light properties of the system of the	nglei Zhu ght flavor and nuclei pectra hypernuclei yields and yield chemical che event Phase Diag.	 K. Mikhailov, A. Taranenko Correlations and Fluctuations Collective flow for hadrons Vorticity, Λ polarization E-by-E fluctuation of multiplicity, momentum and conserved quantities Femtoscopy Forward-Backward corr. Jet-like correlations 		
 D. Peresunko, Chi Yang Electromagnetic pr Electromagnetic calorimeter Photons in ECAL and central Low mass dilepton spectra in modification of resonances a intermediate mass region 	r obes meas. barrel n-medium Ind	Wangmei Zha, A. Zinchenko Heavy flavor • Study of open charm production • Charmonium with ECAL and central barrel • Charmed meson through secondary vertice ITS and HF electrons • Explore production at charm threshold			

Collaboration papers

- ✤ Collaboration papers:
 - I. Status and initial physics performance studies of the MPD experiment at NICA Eur.Phys.J.A 58 (2022) 7, 140 (~ 50 pages)

II. MPD physics performance studies in Bi+Bi collisions at $\sqrt{s_{NN}} = 9.2 \text{ GeV}$ consolidation and publication of physics feasibility studies for BiBi@9.2 GeV, 40+ pages

arXiv:2503.21117 [nucl-ex]

paper has been submitted to the journal, Revista Mexicana de Física

Light identified hadrons

- ✓ probe freeze-out conditions
- \checkmark radial flow and collective expansion
- \checkmark hadronization mechanisms, thermal models vs. coalescence
- ✓ strangeness production, "horn" for K/ π , hidden strangeness with $\phi(1020)$
- \checkmark lifetime and properties of the late hadronic phase
- \checkmark fluctuation of net-baryon (proton) and net-strangeness (kaon) numbers
- \checkmark parton energy loss
- ✓ ...

Charged hadrons, Bi + Bi @ 9.2 GeV

Charged hadrons: large and uniform acceptance + excellent PID capabilities of TPC and TOF

Cover (p_T - rapidity) phase space corresponding to ~ 70% of $\pi/K/p$ total production Cover p_T range that corresponds to > 90% of $\pi/K/p$ total production at midrapidity \rightarrow small unc. for dN/dy Wide p_T coverage for combined Blast-Wave fits $\rightarrow \beta$, T_{kin}

Neutral identified hadrons, Bi + Bi @ 9.2 GeV

- ✤ Neutral mesons:
 - $\checkmark \quad \pi^{0}/\eta \rightarrow \gamma\gamma, \ \pi^{0}/\eta \rightarrow \gamma(e^{+}e^{-}), \ \pi^{0}/\eta \rightarrow (e^{+}e^{-})(e^{+}e^{-}); \ K_{s} \rightarrow \pi^{0}\pi^{0}; \ \omega \rightarrow \pi^{0}\gamma, \ \omega/\eta \rightarrow \pi^{0}\pi^{+}\pi^{-}; \ \eta' \rightarrow \eta\pi^{+}\pi^{-}; \ \eta' \rightarrow \eta\pi^{+}\pi^{+}; \ \eta' \rightarrow \eta\pi^{+}; \ \eta' \rightarrow \eta\pi^{+};$
- Photons: ECAL reconstruction + photon conversion method (PCM)

Extended p_T ranges compared to charged particle measurements Different systematics and species (masses, quark contents)

★ ... and event baryons: Σ⁰ → Λγ, Σ⁰ → Λ(e⁺e⁻), Σ⁺ → pπ⁰

В.Г. Рябов @ Семинар ОФВЭ ПИЯФ, 27.05.2025

Hadronic resonances

* Resonances probe reaction dynamics and particle production mechanisms vs. system size and $\sqrt{s_{NN}}$:

✓ strangeness production, lifetime and properties of the hadronic phase, spin alignment of vector mesons, flow etc.

increasing lifetime							
	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	Ξ(1530)	(1020)	
c τ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2	
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_{\pi}\sigma_{\Lambda}$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$	

✤ Properties of the hadronic phase are studied by measuring ratios of resonance yields to yields of longlived particles with same/similar quark contents: ρ/π , K^{*}/K, ϕ/K , Λ^{*}/Λ, Σ^{*±}/Σ and Ξ^{*0}/Ξ

Suppression of the ratios for shorter-lived resonances is explained by the existence of a <u>hadronic</u> <u>phase that lives long enough (up to τ ~ 10 fm/c)</u> to cause a significant reduction of the reconstructed yields → present at NICA confirmed by measurements and transport model (UrQMD) calculations

Precise measurements at NICA are needed to validate description of the hadronic phase in models

Hadronic resonances, Bi + Bi @ 9.2 GeV

• PID capabilities of TPC and TOF + topology selections for weak decays of daughters (K_s , Λ)

A wide variety of resonances is constructible, $\rho(770)$, K^{*}(892), $\phi(1020)$, $\Sigma(1385)$, $\Lambda(1520)$ Measurements are possible starting from ~ zero momentum \rightarrow sample most of the yields Angular dependent measurements with larger statistics \rightarrow spin alignment, collective flow

(Multi)strange baryons

Strangeness production

- ♦ Small hadronic cross-sections
 → sensitivity to early stages of medium dynamics
- Yields of strange hadrons (low p_T)

→ strangeness enhancement, proposed as a signature of QGP since 80's, now described by statistical/thermal models

- \rightarrow information about chemical freeze-out parameters
- \rightarrow near or sub-threshold production

✤ Hyperon-to-meson ratios vs. p_T (intermediate p_T)
 → hadronization with parton coalescence, freeze-out conditions

Hyperons, Bi + Bi @ 9.2 GeV

PID capabilities of TPC and TOF + topology selections

- different background estimates (fit function vs mixed-event), testing alternative Machine Learning techniques

MPD has capabilities to measure production of strange charged/neutral kaons, (multi)strange baryons and resonances in pp, p-A and A-A collisions using h-ID in the TPC&TOF and different decay topology selections

Hyperon global polarization

↔ Global polarization of hyperons experimentally observed, decreases with $\sqrt{s_{NN}}$

- ✓ reproduced by AMPT, 3FD, UrQMD+vHLLE
- ✓ hint for a Λ - $\overline{\Lambda}$ difference, magnetic field:

$$P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T} \qquad P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}$$

NICA: <u>extra points in the energy range 2-11 GeV</u> centrality, p_T and rapidity dependence of polarization, not only for Λ , but other (anti)hyperons (Λ , Σ , Ξ)

♦ MPD performance: BiBi@9.2 GeV (PHSD, 15 M events) → full reconstruction → Λ global polarization

Performance study of the hyperon global polarization measurements with MPD at NICA, Eur.Phys.J.A 60 (2024) 4, 85

MPD: first global polarization measurements for $\Lambda/\overline{\Lambda}$ will be possible with ~ 20M data sampled events

Polarization of vector mesons: $K^{\ast}(892)$ and ϕ

 $\rho_{0,0}$ is a probability for vector meson to be in spin state = $0 \rightarrow \rho_{0,0} = 1/3$ corresponds to no spin alignment

- ★ Measurements at RHIC/LHC challenge theoretical understanding $\rightarrow \rho_{00}$ can depend on multiple physics mechanisms (vorticity, magnetic field, hadronization scenarios, lifetimes and masses of the particles ...)
- Measurements should be extended to lower collision energies

Light (hyper)nuclei

(Hyper)nuclei

- Production mechanism usually described with two classes of phenomenological models :
 - ✓ statistical hadronization (SHM) → production during phase transition, $dN/dy \propto exp(-m/T_{chem})$ [1]
 - ✓ coalescence → (anti)nucleons close in phase space ($\Delta p < p_0$) and matching the spin state form a nucleus [2]
- ✤ Hyper nuclei measurement studies are crucial:
 - microscopic production mechanism, Y-N potential, strange sector of nuclear EoS
 - strong implications for astronuclear physics \rightarrow hyperons expected to exist in the inner core of neutron stars
- ✤ Models predict enhanced hypernuclear production at NICA energies → offers great opportunity for hypernuclei measurements in MPD, double hypernuclei may be reachable
- ↔ Observables of interest: binding energies, lifetimes, branching ratios, $\langle p_T \rangle$, dN/dy

Light nuclei in the MPD

✤ MPD has excellent light fragment identification capabilities in a wide rapidity range

✤ Light nuclei reconstruction, Bi + Bi @ 9.2 GeV (PHQMD)

✤ NICA accelerator can deliver different ion beam species and energies → input to the heavy-ion data base for applied and space research to simulate damage from cosmic rays to astronauts, electronics, and spacecraft

MPD performance for hypenuclei

Mass production 29 (PHQMD, BiBi@9.2 GeV, 40M events) *

2- and 3-prong decay modes were studied separately to estimate systematics

 $N(\tau) = N(0) \exp\left(-\frac{\tau}{\tau_0}\right) = N(0) \exp\left(-\frac{ML}{cp\tau_0}\right),$

 $^{3}_{A}H\rightarrow d+p+\pi^{-}$

reconstructed

0.6

0.8

generated

0.4

0.2

105

 10^{4}

Decay channel	Branching ratio	Decay channel	Branching ratio
$\pi^{-+3}He$	24.7%	$\pi^- + p + p + n$	1.5%
$\pi^{0} + {}^{3}H$	12.4%	$\pi^{0} + n + n + p$	0.8%
$\pi^- + p + d$	36.7%	d + n	0.2%
$\pi^{0} + n + d$	18.4%	p + n + n	1.5%

 $_{\Lambda}H^3$ reconstruction with ~ 50M samples events

В.Г. Рябов @ Семинар ОФВЭ ПИЯФ, 27.05.2025

Heavier hypernuclei

• PHQMD events enhanced with hypernuclei signals with the correct $(\eta - p_T)$ phase space distribution

$_{\Lambda}H^4$, $_{\Lambda}He^4$ reconstruction with ~ 150M samples events

Collective flow

Anisotropic flow at RHIC/LHC

• Initial eccentricity and its fluctuations drive momentum anisotropy v_n with specific viscous modulation

Evidence for a dense perfect liquid found at RHIC/LHC (M. Roirdan et al., Scientific American, 2006)

System size scan (p-A, A-A) is an important ingredient: initial geometry \rightarrow flow harmonics $\rightarrow \frac{\eta}{s}(T,\mu), \frac{\zeta}{s}(T,\mu), c_s(T), \alpha_s(T), etc.$

Anisotropic flow at RHIC – partonic?

1.5

Elliptic flow from STAR BES program - I

STAR , Phys Rev C93, 14907 (2016)

В.Г. Рябов @ Семинар ОФВЭ ПИЯФ, 27.05.2025

Elliptic flow from STAR BES program - II

Li-Ke Liu (CCNU), STAR Collaboration, CPOD 2024

At $\sqrt{s_{NN}}$ energies > 5-7 GeV, data follows NCQ scaling, indicating partonic collectivity (?) NCQ scaling for v_2 breaks completely at $\sqrt{s_{NN}} < 3.5$ GeV

Anisotropic flow in HICs at high baryon density

M. Abdallah et al. STAR, Phys. Lett. B 827, 137003 (2022)

Anisotropic flow at NICA energies is a delicate balance between:

- reaction to pressure gradients developed early in the reaction zone $(t_{exp} = R/c_s, c_s = c\sqrt{dp/d\varepsilon})$
- passage time for removal of the shadowing by spectators ($t_{pass} = 2R/\gamma_{CM}\beta_{CM}$)

NCQ scaling: hybrid models

- ✤ Hybrid models with QGP phase are used for BES energy range ($\sqrt{s_{NN}} = 7.7 200$ GeV), such as vHLLE+UrQMD and AMPT SM
- NCQ scaling holds for hybrid models well

NCQ scaling: cascade models

STAR Collaboration, arxiv.org/abs/2007.14005

 KE_T/n_q scaling at 4.5 GeV might be accidental – more detailed studies needed

MPD performance for v_1 , v_2 of $\pi/K/p$

♦ BiBi@9.2 GeV (UrQMD, 50M), full event reconstruction

* Reconstructed and generated v_1 and v_2 for identified hadrons are in good agreement for all methods

MPD has capabilities to measure different flow harmonics for a wide variety of identified hadrons

System size scan for flow measurements is vital for understanding of the medium transport properties and onset of the phase transition

MPD performance for v_1 , v_2 of V0 particles

✤ BiBi@9.2 GeV (PHSD, 15M), full event reconstruction

Differential flow can be defined using the following fit:

$$v_n^{SB}(m_{inv}) = v_n^S \frac{N^S(m_{inv})}{N^{SB}(m_{inv})} + v_n^B(m_{inv}) \frac{N^B(m_{inv})}{N^{SB}(m_{inv})}$$

- v_n^s signal anisotropic flow (set as a parameter in the fit)
- $v_n^B(m_{inv})$ background flow (set as polynomial function)
- Performance of v_1 and v_2 of Λ hyperons:

- Good performance for v_1 , v_2 using invariant mass fit and event plane methods
- ✤ Similar measurements for Ks, other hyperons and short-lived resonances

Electromagnetic radiation

Direct photons and system temperature

- All photons not from the hadron decays:
 ✓ produced during all stages of the collision → penetrating probe
- Thermal low-E photons \rightarrow effective temperature of the system:

$$E_\gamma rac{{\mathsf d}^3 N_\gamma}{{\mathsf d}^3 p_\gamma} \propto e^{-E_\gamma/T_{
m eff}}$$

• Prompt higher-p_T photons:

$$E\frac{\mathrm{d}^3\sigma}{\mathrm{d}p^3} = \sum_{i,j,k} f_i(x_i, Q^2) \otimes f_j(x_j, Q^2) \otimes D_k(z_k, Q^2) \propto 1/p_T^n$$

• Relativistic A+A collisions \rightarrow the highest temperature created in laboratory ~ 10^{12} K

Direct photon yields at NICA

Estimation of the direct photon yields @NICA

- ✓ UrQMD v3.4 with hybrid model (3+1D hydro, bag model EoS, hadronic rescattering and resonances within UrQMD)
- ✓ each cell have Ti, Ei, µbi:
 - T is high QGP phase (Peter Arnold, Guy D. Moore, Laurence G. Yaffe, JHEP 0112:009 2001)
 - T is low HG phase (Simon Turbide, Ralf Rapp, Charles Gale, Phys.Rev.C69:014903,2004)
 - T is intermediate mixed phase
- integrate over all cells and all time steps
- calculations reproduce hydro calculations for the SPS

♦ Non-zero direct photon yields are predicted with $R\gamma \sim 1.05 - 1.15$ and $v2 \sim 0.5\%$ at top NICA energy

В.Г. Рябов @ Семинар ОФВЭ ПИЯФ, 27.05.2025

Prospects for the MPD

✤ Photons can be measured in the ECAL or in the tracking system as e⁺e⁻ conversion pairs (PCM)

◆ Main sources of systematic uncertainties for direct photons → <u>potential yield measurements</u>:

✓ detector material budget → conversion probability; p_T -shapes and reconstruction efficiencies of π^0 and η

✓ with $R\gamma \sim 1.1$ and $\delta R\gamma/R\gamma \sim 3\%$ → uncertainty of $T_{eff} \sim 10\%$

✤ Measurement of Bose-Einstein correlations for direct photons:

- ✓ Correlation function are different for QGP and HG scenario, the presence of the mixed phase causes increasing of the lifetime
- Possibility to extract yields of direct photons at low p_T:

$$\lambda = \frac{1}{2} \left(\frac{N_{\gamma}^{\text{dir}}}{N_{\gamma}^{\text{inc}}} \right)^2 \to R_{\gamma} = \frac{N_{\gamma}^{\text{inc}}}{N_{\gamma}^{\text{decay}}} = \frac{1}{1 - \sqrt{2\lambda}}$$

MPD can potentially provide measurements for direct photon production in the NICA energy range

Summary

MPD Collaboration meeting in JINR (Dubna): April 23-25

- ♦ NICA energy range \rightarrow QCD phase diagram at modest temperatures and maximum (net)baryon densities
- ❖ Preparation of the MPD detector and experimental program is ongoing, develop realistic analysis methods and techniques → MPD commissioning with beams in 2025
- * A comprehensive physics program to be studied for different ions (from p to Au) and collision energies $(\sqrt{s_{NN}} \text{ from 2.4 to 11A GeV}), \text{MPD}@\text{NICA provides capabilities for important/unique contributions in HIC physics}$

BACKUP

Hydrodynamic model

- Calculations were done using UrQMD hydro model
- We consider two scenarios of hydrodynamic evolution:
 - Thermalized hot dense nuclear matter with a first-order phase transition from QGP to hadronic phase Bag model EoS
 - Hadron gas including the same degrees of freedom as UrQMD (hadrons with masses up to 2.2 GeV) HG EoS
- We used out-side-long parametrization of relative momentum (and corresponding observables):
 - out direction along the transverse momentum
 - long along the longitudinal momentum
 - side perpendicular to previous directions

- For each cell in hydro calculations emission rates of thermal photons are calculate according to functions from previous slide:
 - estimation of thermal photon yields for given $p_{T}(K_{T})$ and φ in lab system ٠ integration over all cells and evolution time

21 January 2025

٠

Direct Photons | Cross-PWG MPD

18

Dielectron continuum and LVMs

- The QCD matter produced in A-A interactions is transparent for leptons, once produced they leave the interaction region largely unaffected + not sensitive to collective expansion
- Dielectron continuum carries a wealth of information about reaction dynamics and medium properties

Integrated thermal excess radiation tracks the total fireball lifetime within ~ 10% \rightarrow non-monotonous lifetime variations trace critical phenomena

IMR as thermometer

 $dR_{ll}/dM \propto (MT)^{3/2} \exp(-M/T_s),$ T_s smoothly evolves T = 160 MeV to 260 MeV

e-ID with MPD

• eID with TPC + TOF

✤ eID with ECAL: steps in at higher energies where TPC/TOF become less effective

E/p for electron tracks

- ECAL e-ID for 2σ -matched tracks:
 - ✓ **TOF** < 2 ns (δ ~ 500 ps)
 - ✓ $E/p \sim 1$
- Turns on at $p_T > 200 \text{ MeV/c}$

(Di)electrons

- Dielectron spectra are sensitive probes of the deconfinement and the chiral symmetry restoration
- AuAu@11 GeV (UrQMD for background & PHQMD for signal)

- S/B (integrated in 0.2-1.5 GeV/c²) ~ 5-10%
- Methods to improve S/B ratio while preserving reasonable efficiency for the pairs are being developed and matured